xref: /openbmc/linux/drivers/i2c/busses/i2c-mxs.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale MXS I2C bus driver
4  *
5  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7  *
8  * based on a (non-working) driver which was:
9  *
10  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 
29 #define DRIVER_NAME "mxs-i2c"
30 
31 #define MXS_I2C_CTRL0		(0x00)
32 #define MXS_I2C_CTRL0_SET	(0x04)
33 #define MXS_I2C_CTRL0_CLR	(0x08)
34 
35 #define MXS_I2C_CTRL0_SFTRST			0x80000000
36 #define MXS_I2C_CTRL0_RUN			0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE			0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION			0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
45 
46 #define MXS_I2C_TIMING0		(0x10)
47 #define MXS_I2C_TIMING1		(0x20)
48 #define MXS_I2C_TIMING2		(0x30)
49 
50 #define MXS_I2C_CTRL1		(0x40)
51 #define MXS_I2C_CTRL1_SET	(0x44)
52 #define MXS_I2C_CTRL1_CLR	(0x48)
53 
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
63 
64 #define MXS_I2C_STAT		(0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK			0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY			0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
68 
69 #define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
70 
71 #define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
72 
73 #define MXS_I2C_DEBUG0_DMAREQ	0x80000000
74 
75 #define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76 				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77 				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78 				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79 				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80 				 MXS_I2C_CTRL1_SLAVE_IRQ)
81 
82 
83 #define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
84 				 MXS_I2C_CTRL0_PRE_SEND_START |	\
85 				 MXS_I2C_CTRL0_MASTER_MODE |	\
86 				 MXS_I2C_CTRL0_DIRECTION |	\
87 				 MXS_I2C_CTRL0_XFER_COUNT(1))
88 
89 #define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
90 				 MXS_I2C_CTRL0_MASTER_MODE |	\
91 				 MXS_I2C_CTRL0_DIRECTION)
92 
93 #define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94 				 MXS_I2C_CTRL0_MASTER_MODE)
95 
96 enum mxs_i2c_devtype {
97 	MXS_I2C_UNKNOWN = 0,
98 	MXS_I2C_V1,
99 	MXS_I2C_V2,
100 };
101 
102 /**
103  * struct mxs_i2c_dev - per device, private MXS-I2C data
104  *
105  * @dev: driver model device node
106  * @dev_type: distinguish i.MX23/i.MX28 features
107  * @regs: IO registers pointer
108  * @cmd_complete: completion object for transaction wait
109  * @cmd_err: error code for last transaction
110  * @adapter: i2c subsystem adapter node
111  */
112 struct mxs_i2c_dev {
113 	struct device *dev;
114 	enum mxs_i2c_devtype dev_type;
115 	void __iomem *regs;
116 	struct completion cmd_complete;
117 	int cmd_err;
118 	struct i2c_adapter adapter;
119 
120 	uint32_t timing0;
121 	uint32_t timing1;
122 	uint32_t timing2;
123 
124 	/* DMA support components */
125 	struct dma_chan			*dmach;
126 	uint32_t			pio_data[2];
127 	uint32_t			addr_data;
128 	struct scatterlist		sg_io[2];
129 	bool				dma_read;
130 };
131 
132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
133 {
134 	int ret = stmp_reset_block(i2c->regs);
135 	if (ret)
136 		return ret;
137 
138 	/*
139 	 * Configure timing for the I2C block. The I2C TIMING2 register has to
140 	 * be programmed with this particular magic number. The rest is derived
141 	 * from the XTAL speed and requested I2C speed.
142 	 *
143 	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
144 	 */
145 	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146 	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147 	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
148 
149 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
150 
151 	return 0;
152 }
153 
154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
155 {
156 	if (i2c->dma_read) {
157 		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158 		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159 	} else {
160 		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
161 	}
162 }
163 
164 static void mxs_i2c_dma_irq_callback(void *param)
165 {
166 	struct mxs_i2c_dev *i2c = param;
167 
168 	complete(&i2c->cmd_complete);
169 	mxs_i2c_dma_finish(i2c);
170 }
171 
172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173 			struct i2c_msg *msg, uint32_t flags)
174 {
175 	struct dma_async_tx_descriptor *desc;
176 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
177 
178 	i2c->addr_data = i2c_8bit_addr_from_msg(msg);
179 
180 	if (msg->flags & I2C_M_RD) {
181 		i2c->dma_read = true;
182 
183 		/*
184 		 * SELECT command.
185 		 */
186 
187 		/* Queue the PIO register write transfer. */
188 		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189 		desc = dmaengine_prep_slave_sg(i2c->dmach,
190 					(struct scatterlist *)&i2c->pio_data[0],
191 					1, DMA_TRANS_NONE, 0);
192 		if (!desc) {
193 			dev_err(i2c->dev,
194 				"Failed to get PIO reg. write descriptor.\n");
195 			goto select_init_pio_fail;
196 		}
197 
198 		/* Queue the DMA data transfer. */
199 		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200 		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202 					DMA_MEM_TO_DEV,
203 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
204 		if (!desc) {
205 			dev_err(i2c->dev,
206 				"Failed to get DMA data write descriptor.\n");
207 			goto select_init_dma_fail;
208 		}
209 
210 		/*
211 		 * READ command.
212 		 */
213 
214 		/* Queue the PIO register write transfer. */
215 		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
216 				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
217 		desc = dmaengine_prep_slave_sg(i2c->dmach,
218 					(struct scatterlist *)&i2c->pio_data[1],
219 					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
220 		if (!desc) {
221 			dev_err(i2c->dev,
222 				"Failed to get PIO reg. write descriptor.\n");
223 			goto select_init_dma_fail;
224 		}
225 
226 		/* Queue the DMA data transfer. */
227 		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
228 		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
229 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
230 					DMA_DEV_TO_MEM,
231 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
232 		if (!desc) {
233 			dev_err(i2c->dev,
234 				"Failed to get DMA data write descriptor.\n");
235 			goto read_init_dma_fail;
236 		}
237 	} else {
238 		i2c->dma_read = false;
239 
240 		/*
241 		 * WRITE command.
242 		 */
243 
244 		/* Queue the PIO register write transfer. */
245 		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
246 				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
247 		desc = dmaengine_prep_slave_sg(i2c->dmach,
248 					(struct scatterlist *)&i2c->pio_data[0],
249 					1, DMA_TRANS_NONE, 0);
250 		if (!desc) {
251 			dev_err(i2c->dev,
252 				"Failed to get PIO reg. write descriptor.\n");
253 			goto write_init_pio_fail;
254 		}
255 
256 		/* Queue the DMA data transfer. */
257 		sg_init_table(i2c->sg_io, 2);
258 		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
259 		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
260 		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
261 		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
262 					DMA_MEM_TO_DEV,
263 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
264 		if (!desc) {
265 			dev_err(i2c->dev,
266 				"Failed to get DMA data write descriptor.\n");
267 			goto write_init_dma_fail;
268 		}
269 	}
270 
271 	/*
272 	 * The last descriptor must have this callback,
273 	 * to finish the DMA transaction.
274 	 */
275 	desc->callback = mxs_i2c_dma_irq_callback;
276 	desc->callback_param = i2c;
277 
278 	/* Start the transfer. */
279 	dmaengine_submit(desc);
280 	dma_async_issue_pending(i2c->dmach);
281 	return 0;
282 
283 /* Read failpath. */
284 read_init_dma_fail:
285 	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
286 select_init_dma_fail:
287 	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
288 select_init_pio_fail:
289 	dmaengine_terminate_all(i2c->dmach);
290 	return -EINVAL;
291 
292 /* Write failpath. */
293 write_init_dma_fail:
294 	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
295 write_init_pio_fail:
296 	dmaengine_terminate_all(i2c->dmach);
297 	return -EINVAL;
298 }
299 
300 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
301 {
302 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
303 
304 	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
305 		if (readl(i2c->regs + MXS_I2C_CTRL1) &
306 				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
307 			return -ENXIO;
308 		if (time_after(jiffies, timeout))
309 			return -ETIMEDOUT;
310 		cond_resched();
311 	}
312 
313 	return 0;
314 }
315 
316 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
317 {
318 	u32 state;
319 
320 	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
321 
322 	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
323 		i2c->cmd_err = -ENXIO;
324 	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
325 			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
326 			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
327 			  MXS_I2C_CTRL1_SLAVE_IRQ))
328 		i2c->cmd_err = -EIO;
329 
330 	return i2c->cmd_err;
331 }
332 
333 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
334 {
335 	u32 reg;
336 
337 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
338 
339 	/* readback makes sure the write is latched into hardware */
340 	reg = readl(i2c->regs + MXS_I2C_CTRL0);
341 	reg |= MXS_I2C_CTRL0_RUN;
342 	writel(reg, i2c->regs + MXS_I2C_CTRL0);
343 }
344 
345 /*
346  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
347  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
348  * must be written during PIO mode operation. First, the CTRL0 register has
349  * to be programmed with all the necessary bits but the RUN bit. Then the
350  * payload has to be written into the DATA register. Finally, the transmission
351  * is executed by setting the RUN bit in CTRL0.
352  */
353 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
354 					  u32 data)
355 {
356 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
357 
358 	if (i2c->dev_type == MXS_I2C_V1)
359 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
360 
361 	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
362 	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
363 }
364 
365 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
366 			struct i2c_msg *msg, uint32_t flags)
367 {
368 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
369 	uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
370 	uint32_t data = 0;
371 	int i, ret, xlen = 0, xmit = 0;
372 	uint32_t start;
373 
374 	/* Mute IRQs coming from this block. */
375 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
376 
377 	/*
378 	 * MX23 idea:
379 	 * - Enable CTRL0::PIO_MODE (1 << 24)
380 	 * - Enable CTRL1::ACK_MODE (1 << 27)
381 	 *
382 	 * WARNING! The MX23 is broken in some way, even if it claims
383 	 * to support PIO, when we try to transfer any amount of data
384 	 * that is not aligned to 4 bytes, the DMA engine will have
385 	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
386 	 * transfer. This in turn will mess up the next transfer as
387 	 * the block it emit one byte write onto the bus terminated
388 	 * with a NAK+STOP. A possible workaround is to reset the IP
389 	 * block after every PIO transmission, which might just work.
390 	 *
391 	 * NOTE: The CTRL0::PIO_MODE description is important, since
392 	 * it outlines how the PIO mode is really supposed to work.
393 	 */
394 	if (msg->flags & I2C_M_RD) {
395 		/*
396 		 * PIO READ transfer:
397 		 *
398 		 * This transfer MUST be limited to 4 bytes maximum. It is not
399 		 * possible to transfer more than four bytes via PIO, since we
400 		 * can not in any way make sure we can read the data from the
401 		 * DATA register fast enough. Besides, the RX FIFO is only four
402 		 * bytes deep, thus we can only really read up to four bytes at
403 		 * time. Finally, there is no bit indicating us that new data
404 		 * arrived at the FIFO and can thus be fetched from the DATA
405 		 * register.
406 		 */
407 		BUG_ON(msg->len > 4);
408 
409 		/* SELECT command. */
410 		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
411 					      addr_data);
412 
413 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
414 		if (ret) {
415 			dev_dbg(i2c->dev,
416 				"PIO: Failed to send SELECT command!\n");
417 			goto cleanup;
418 		}
419 
420 		/* READ command. */
421 		mxs_i2c_pio_trigger_cmd(i2c,
422 					MXS_CMD_I2C_READ | flags |
423 					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
424 
425 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
426 		if (ret) {
427 			dev_dbg(i2c->dev,
428 				"PIO: Failed to send READ command!\n");
429 			goto cleanup;
430 		}
431 
432 		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
433 		for (i = 0; i < msg->len; i++) {
434 			msg->buf[i] = data & 0xff;
435 			data >>= 8;
436 		}
437 	} else {
438 		/*
439 		 * PIO WRITE transfer:
440 		 *
441 		 * The code below implements clock stretching to circumvent
442 		 * the possibility of kernel not being able to supply data
443 		 * fast enough. It is possible to transfer arbitrary amount
444 		 * of data using PIO write.
445 		 */
446 
447 		/*
448 		 * The LSB of data buffer is the first byte blasted across
449 		 * the bus. Higher order bytes follow. Thus the following
450 		 * filling schematic.
451 		 */
452 
453 		data = addr_data << 24;
454 
455 		/* Start the transfer with START condition. */
456 		start = MXS_I2C_CTRL0_PRE_SEND_START;
457 
458 		/* If the transfer is long, use clock stretching. */
459 		if (msg->len > 3)
460 			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
461 
462 		for (i = 0; i < msg->len; i++) {
463 			data >>= 8;
464 			data |= (msg->buf[i] << 24);
465 
466 			xmit = 0;
467 
468 			/* This is the last transfer of the message. */
469 			if (i + 1 == msg->len) {
470 				/* Add optional STOP flag. */
471 				start |= flags;
472 				/* Remove RETAIN_CLOCK bit. */
473 				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
474 				xmit = 1;
475 			}
476 
477 			/* Four bytes are ready in the "data" variable. */
478 			if ((i & 3) == 2)
479 				xmit = 1;
480 
481 			/* Nothing interesting happened, continue stuffing. */
482 			if (!xmit)
483 				continue;
484 
485 			/*
486 			 * Compute the size of the transfer and shift the
487 			 * data accordingly.
488 			 *
489 			 * i = (4k + 0) .... xlen = 2
490 			 * i = (4k + 1) .... xlen = 3
491 			 * i = (4k + 2) .... xlen = 4
492 			 * i = (4k + 3) .... xlen = 1
493 			 */
494 
495 			if ((i % 4) == 3)
496 				xlen = 1;
497 			else
498 				xlen = (i % 4) + 2;
499 
500 			data >>= (4 - xlen) * 8;
501 
502 			dev_dbg(i2c->dev,
503 				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
504 				xlen, i, msg->len,
505 				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
506 				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
507 				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
508 
509 			writel(MXS_I2C_DEBUG0_DMAREQ,
510 			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
511 
512 			mxs_i2c_pio_trigger_write_cmd(i2c,
513 				start | MXS_I2C_CTRL0_MASTER_MODE |
514 				MXS_I2C_CTRL0_DIRECTION |
515 				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
516 
517 			/* The START condition is sent only once. */
518 			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
519 
520 			/* Wait for the end of the transfer. */
521 			ret = mxs_i2c_pio_wait_xfer_end(i2c);
522 			if (ret) {
523 				dev_dbg(i2c->dev,
524 					"PIO: Failed to finish WRITE cmd!\n");
525 				break;
526 			}
527 
528 			/* Check NAK here. */
529 			ret = readl(i2c->regs + MXS_I2C_STAT) &
530 				    MXS_I2C_STAT_GOT_A_NAK;
531 			if (ret) {
532 				ret = -ENXIO;
533 				goto cleanup;
534 			}
535 		}
536 	}
537 
538 	/* make sure we capture any occurred error into cmd_err */
539 	ret = mxs_i2c_pio_check_error_state(i2c);
540 
541 cleanup:
542 	/* Clear any dangling IRQs and re-enable interrupts. */
543 	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
544 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
545 
546 	/* Clear the PIO_MODE on i.MX23 */
547 	if (i2c->dev_type == MXS_I2C_V1)
548 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
549 
550 	return ret;
551 }
552 
553 /*
554  * Low level master read/write transaction.
555  */
556 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
557 				int stop)
558 {
559 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
560 	int ret;
561 	int flags;
562 	int use_pio = 0;
563 	unsigned long time_left;
564 
565 	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
566 
567 	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
568 		msg->addr, msg->len, msg->flags, stop);
569 
570 	/*
571 	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
572 	 * 4 bytes of length. The write transfer is not limited as it can use
573 	 * clock stretching to avoid FIFO underruns.
574 	 */
575 	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
576 		use_pio = 1;
577 	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
578 		use_pio = 1;
579 
580 	i2c->cmd_err = 0;
581 	if (use_pio) {
582 		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
583 		/* No need to reset the block if NAK was received. */
584 		if (ret && (ret != -ENXIO))
585 			mxs_i2c_reset(i2c);
586 	} else {
587 		reinit_completion(&i2c->cmd_complete);
588 		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
589 		if (ret)
590 			return ret;
591 
592 		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
593 						msecs_to_jiffies(1000));
594 		if (!time_left)
595 			goto timeout;
596 
597 		ret = i2c->cmd_err;
598 	}
599 
600 	if (ret == -ENXIO) {
601 		/*
602 		 * If the transfer fails with a NAK from the slave the
603 		 * controller halts until it gets told to return to idle state.
604 		 */
605 		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
606 		       i2c->regs + MXS_I2C_CTRL1_SET);
607 	}
608 
609 	/*
610 	 * WARNING!
611 	 * The i.MX23 is strange. After each and every operation, it's I2C IP
612 	 * block must be reset, otherwise the IP block will misbehave. This can
613 	 * be observed on the bus by the block sending out one single byte onto
614 	 * the bus. In case such an error happens, bit 27 will be set in the
615 	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
616 	 * and is marked as "TBD" instead. To reset this bit to a correct state,
617 	 * reset the whole block. Since the block reset does not take long, do
618 	 * reset the block after every transfer to play safe.
619 	 */
620 	if (i2c->dev_type == MXS_I2C_V1)
621 		mxs_i2c_reset(i2c);
622 
623 	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
624 
625 	return ret;
626 
627 timeout:
628 	dev_dbg(i2c->dev, "Timeout!\n");
629 	mxs_i2c_dma_finish(i2c);
630 	ret = mxs_i2c_reset(i2c);
631 	if (ret)
632 		return ret;
633 
634 	return -ETIMEDOUT;
635 }
636 
637 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
638 			int num)
639 {
640 	int i;
641 	int err;
642 
643 	for (i = 0; i < num; i++) {
644 		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
645 		if (err)
646 			return err;
647 	}
648 
649 	return num;
650 }
651 
652 static u32 mxs_i2c_func(struct i2c_adapter *adap)
653 {
654 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
655 }
656 
657 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
658 {
659 	struct mxs_i2c_dev *i2c = dev_id;
660 	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
661 
662 	if (!stat)
663 		return IRQ_NONE;
664 
665 	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
666 		i2c->cmd_err = -ENXIO;
667 	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
668 		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
669 		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
670 		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
671 		i2c->cmd_err = -EIO;
672 
673 	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
674 
675 	return IRQ_HANDLED;
676 }
677 
678 static const struct i2c_algorithm mxs_i2c_algo = {
679 	.master_xfer = mxs_i2c_xfer,
680 	.functionality = mxs_i2c_func,
681 };
682 
683 static const struct i2c_adapter_quirks mxs_i2c_quirks = {
684 	.flags = I2C_AQ_NO_ZERO_LEN,
685 };
686 
687 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
688 {
689 	/* The I2C block clock runs at 24MHz */
690 	const uint32_t clk = 24000000;
691 	uint32_t divider;
692 	uint16_t high_count, low_count, rcv_count, xmit_count;
693 	uint32_t bus_free, leadin;
694 	struct device *dev = i2c->dev;
695 
696 	divider = DIV_ROUND_UP(clk, speed);
697 
698 	if (divider < 25) {
699 		/*
700 		 * limit the divider, so that min(low_count, high_count)
701 		 * is >= 1
702 		 */
703 		divider = 25;
704 		dev_warn(dev,
705 			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
706 			speed / 1000, speed % 1000,
707 			clk / divider / 1000, clk / divider % 1000);
708 	} else if (divider > 1897) {
709 		/*
710 		 * limit the divider, so that max(low_count, high_count)
711 		 * cannot exceed 1023
712 		 */
713 		divider = 1897;
714 		dev_warn(dev,
715 			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
716 			speed / 1000, speed % 1000,
717 			clk / divider / 1000, clk / divider % 1000);
718 	}
719 
720 	/*
721 	 * The I2C spec specifies the following timing data:
722 	 *                          standard mode  fast mode Bitfield name
723 	 * tLOW (SCL LOW period)     4700 ns        1300 ns
724 	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
725 	 * tSU;DAT (data setup time)  250 ns         100 ns
726 	 * tHD;STA (START hold time) 4000 ns         600 ns
727 	 * tBUF (bus free time)      4700 ns        1300 ns
728 	 *
729 	 * The hardware (of the i.MX28 at least) seems to add 2 additional
730 	 * clock cycles to the low_count and 7 cycles to the high_count.
731 	 * This is compensated for by subtracting the respective constants
732 	 * from the values written to the timing registers.
733 	 */
734 	if (speed > 100000) {
735 		/* fast mode */
736 		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
737 		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
738 		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
739 		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
740 	} else {
741 		/* normal mode */
742 		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
743 		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
744 		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
745 		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
746 	}
747 	rcv_count = high_count * 3 / 8;
748 	xmit_count = low_count * 3 / 8;
749 
750 	dev_dbg(dev,
751 		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
752 		speed, clk / divider, divider, low_count, high_count,
753 		xmit_count, rcv_count, leadin, bus_free);
754 
755 	low_count -= 2;
756 	high_count -= 7;
757 	i2c->timing0 = (high_count << 16) | rcv_count;
758 	i2c->timing1 = (low_count << 16) | xmit_count;
759 	i2c->timing2 = (bus_free << 16 | leadin);
760 }
761 
762 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
763 {
764 	uint32_t speed;
765 	struct device *dev = i2c->dev;
766 	struct device_node *node = dev->of_node;
767 	int ret;
768 
769 	ret = of_property_read_u32(node, "clock-frequency", &speed);
770 	if (ret) {
771 		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
772 		speed = 100000;
773 	}
774 
775 	mxs_i2c_derive_timing(i2c, speed);
776 
777 	return 0;
778 }
779 
780 static const struct platform_device_id mxs_i2c_devtype[] = {
781 	{
782 		.name = "imx23-i2c",
783 		.driver_data = MXS_I2C_V1,
784 	}, {
785 		.name = "imx28-i2c",
786 		.driver_data = MXS_I2C_V2,
787 	}, { /* sentinel */ }
788 };
789 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);
790 
791 static const struct of_device_id mxs_i2c_dt_ids[] = {
792 	{ .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
793 	{ .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
794 	{ /* sentinel */ }
795 };
796 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797 
798 static int mxs_i2c_probe(struct platform_device *pdev)
799 {
800 	const struct of_device_id *of_id =
801 				of_match_device(mxs_i2c_dt_ids, &pdev->dev);
802 	struct device *dev = &pdev->dev;
803 	struct mxs_i2c_dev *i2c;
804 	struct i2c_adapter *adap;
805 	struct resource *res;
806 	int err, irq;
807 
808 	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
809 	if (!i2c)
810 		return -ENOMEM;
811 
812 	if (of_id) {
813 		const struct platform_device_id *device_id = of_id->data;
814 		i2c->dev_type = device_id->driver_data;
815 	}
816 
817 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
818 	i2c->regs = devm_ioremap_resource(&pdev->dev, res);
819 	if (IS_ERR(i2c->regs))
820 		return PTR_ERR(i2c->regs);
821 
822 	irq = platform_get_irq(pdev, 0);
823 	if (irq < 0)
824 		return irq;
825 
826 	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
827 	if (err)
828 		return err;
829 
830 	i2c->dev = dev;
831 
832 	init_completion(&i2c->cmd_complete);
833 
834 	if (dev->of_node) {
835 		err = mxs_i2c_get_ofdata(i2c);
836 		if (err)
837 			return err;
838 	}
839 
840 	/* Setup the DMA */
841 	i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
842 	if (!i2c->dmach) {
843 		dev_err(dev, "Failed to request dma\n");
844 		return -ENODEV;
845 	}
846 
847 	platform_set_drvdata(pdev, i2c);
848 
849 	/* Do reset to enforce correct startup after pinmuxing */
850 	err = mxs_i2c_reset(i2c);
851 	if (err)
852 		return err;
853 
854 	adap = &i2c->adapter;
855 	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
856 	adap->owner = THIS_MODULE;
857 	adap->algo = &mxs_i2c_algo;
858 	adap->quirks = &mxs_i2c_quirks;
859 	adap->dev.parent = dev;
860 	adap->nr = pdev->id;
861 	adap->dev.of_node = pdev->dev.of_node;
862 	i2c_set_adapdata(adap, i2c);
863 	err = i2c_add_numbered_adapter(adap);
864 	if (err) {
865 		writel(MXS_I2C_CTRL0_SFTRST,
866 				i2c->regs + MXS_I2C_CTRL0_SET);
867 		return err;
868 	}
869 
870 	return 0;
871 }
872 
873 static int mxs_i2c_remove(struct platform_device *pdev)
874 {
875 	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
876 
877 	i2c_del_adapter(&i2c->adapter);
878 
879 	if (i2c->dmach)
880 		dma_release_channel(i2c->dmach);
881 
882 	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
883 
884 	return 0;
885 }
886 
887 static struct platform_driver mxs_i2c_driver = {
888 	.driver = {
889 		   .name = DRIVER_NAME,
890 		   .of_match_table = mxs_i2c_dt_ids,
891 		   },
892 	.probe = mxs_i2c_probe,
893 	.remove = mxs_i2c_remove,
894 };
895 
896 static int __init mxs_i2c_init(void)
897 {
898 	return platform_driver_register(&mxs_i2c_driver);
899 }
900 subsys_initcall(mxs_i2c_init);
901 
902 static void __exit mxs_i2c_exit(void)
903 {
904 	platform_driver_unregister(&mxs_i2c_driver);
905 }
906 module_exit(mxs_i2c_exit);
907 
908 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
909 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
910 MODULE_DESCRIPTION("MXS I2C Bus Driver");
911 MODULE_LICENSE("GPL");
912 MODULE_ALIAS("platform:" DRIVER_NAME);
913