xref: /openbmc/linux/drivers/i2c/busses/i2c-mxs.c (revision e23feb16)
1 /*
2  * Freescale MXS I2C bus driver
3  *
4  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
5  *
6  * based on a (non-working) driver which was:
7  *
8  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  */
16 
17 #include <linux/slab.h>
18 #include <linux/device.h>
19 #include <linux/module.h>
20 #include <linux/i2c.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/completion.h>
24 #include <linux/platform_device.h>
25 #include <linux/jiffies.h>
26 #include <linux/io.h>
27 #include <linux/stmp_device.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dmaengine.h>
32 
33 #define DRIVER_NAME "mxs-i2c"
34 
35 #define MXS_I2C_CTRL0		(0x00)
36 #define MXS_I2C_CTRL0_SET	(0x04)
37 
38 #define MXS_I2C_CTRL0_SFTRST			0x80000000
39 #define MXS_I2C_CTRL0_RUN			0x20000000
40 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
41 #define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
42 #define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
43 #define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
44 #define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
45 #define MXS_I2C_CTRL0_DIRECTION			0x00010000
46 #define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
47 
48 #define MXS_I2C_TIMING0		(0x10)
49 #define MXS_I2C_TIMING1		(0x20)
50 #define MXS_I2C_TIMING2		(0x30)
51 
52 #define MXS_I2C_CTRL1		(0x40)
53 #define MXS_I2C_CTRL1_SET	(0x44)
54 #define MXS_I2C_CTRL1_CLR	(0x48)
55 
56 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
57 #define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
58 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
59 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
60 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
61 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
62 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
63 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
64 #define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
65 
66 #define MXS_I2C_STAT		(0x50)
67 #define MXS_I2C_STAT_BUS_BUSY			0x00000800
68 #define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
69 
70 #define MXS_I2C_DATA		(0xa0)
71 
72 #define MXS_I2C_DEBUG0		(0xb0)
73 #define MXS_I2C_DEBUG0_CLR	(0xb8)
74 
75 #define MXS_I2C_DEBUG0_DMAREQ	0x80000000
76 
77 #define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
78 				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
79 				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
80 				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
81 				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
82 				 MXS_I2C_CTRL1_SLAVE_IRQ)
83 
84 
85 #define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
86 				 MXS_I2C_CTRL0_PRE_SEND_START |	\
87 				 MXS_I2C_CTRL0_MASTER_MODE |	\
88 				 MXS_I2C_CTRL0_DIRECTION |	\
89 				 MXS_I2C_CTRL0_XFER_COUNT(1))
90 
91 #define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
92 				 MXS_I2C_CTRL0_MASTER_MODE |	\
93 				 MXS_I2C_CTRL0_DIRECTION)
94 
95 #define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
96 				 MXS_I2C_CTRL0_MASTER_MODE)
97 
98 /**
99  * struct mxs_i2c_dev - per device, private MXS-I2C data
100  *
101  * @dev: driver model device node
102  * @regs: IO registers pointer
103  * @cmd_complete: completion object for transaction wait
104  * @cmd_err: error code for last transaction
105  * @adapter: i2c subsystem adapter node
106  */
107 struct mxs_i2c_dev {
108 	struct device *dev;
109 	void __iomem *regs;
110 	struct completion cmd_complete;
111 	int cmd_err;
112 	struct i2c_adapter adapter;
113 
114 	uint32_t timing0;
115 	uint32_t timing1;
116 	uint32_t timing2;
117 
118 	/* DMA support components */
119 	struct dma_chan			*dmach;
120 	uint32_t			pio_data[2];
121 	uint32_t			addr_data;
122 	struct scatterlist		sg_io[2];
123 	bool				dma_read;
124 };
125 
126 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
127 {
128 	int ret = stmp_reset_block(i2c->regs);
129 	if (ret)
130 		return ret;
131 
132 	/*
133 	 * Configure timing for the I2C block. The I2C TIMING2 register has to
134 	 * be programmed with this particular magic number. The rest is derived
135 	 * from the XTAL speed and requested I2C speed.
136 	 *
137 	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
138 	 */
139 	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
140 	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
141 	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
142 
143 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
144 
145 	return 0;
146 }
147 
148 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
149 {
150 	if (i2c->dma_read) {
151 		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
152 		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
153 	} else {
154 		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
155 	}
156 }
157 
158 static void mxs_i2c_dma_irq_callback(void *param)
159 {
160 	struct mxs_i2c_dev *i2c = param;
161 
162 	complete(&i2c->cmd_complete);
163 	mxs_i2c_dma_finish(i2c);
164 }
165 
166 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
167 			struct i2c_msg *msg, uint32_t flags)
168 {
169 	struct dma_async_tx_descriptor *desc;
170 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
171 
172 	if (msg->flags & I2C_M_RD) {
173 		i2c->dma_read = 1;
174 		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;
175 
176 		/*
177 		 * SELECT command.
178 		 */
179 
180 		/* Queue the PIO register write transfer. */
181 		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
182 		desc = dmaengine_prep_slave_sg(i2c->dmach,
183 					(struct scatterlist *)&i2c->pio_data[0],
184 					1, DMA_TRANS_NONE, 0);
185 		if (!desc) {
186 			dev_err(i2c->dev,
187 				"Failed to get PIO reg. write descriptor.\n");
188 			goto select_init_pio_fail;
189 		}
190 
191 		/* Queue the DMA data transfer. */
192 		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
193 		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
194 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
195 					DMA_MEM_TO_DEV,
196 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
197 		if (!desc) {
198 			dev_err(i2c->dev,
199 				"Failed to get DMA data write descriptor.\n");
200 			goto select_init_dma_fail;
201 		}
202 
203 		/*
204 		 * READ command.
205 		 */
206 
207 		/* Queue the PIO register write transfer. */
208 		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
209 				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
210 		desc = dmaengine_prep_slave_sg(i2c->dmach,
211 					(struct scatterlist *)&i2c->pio_data[1],
212 					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
213 		if (!desc) {
214 			dev_err(i2c->dev,
215 				"Failed to get PIO reg. write descriptor.\n");
216 			goto select_init_dma_fail;
217 		}
218 
219 		/* Queue the DMA data transfer. */
220 		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
221 		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
222 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
223 					DMA_DEV_TO_MEM,
224 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
225 		if (!desc) {
226 			dev_err(i2c->dev,
227 				"Failed to get DMA data write descriptor.\n");
228 			goto read_init_dma_fail;
229 		}
230 	} else {
231 		i2c->dma_read = 0;
232 		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;
233 
234 		/*
235 		 * WRITE command.
236 		 */
237 
238 		/* Queue the PIO register write transfer. */
239 		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
240 				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
241 		desc = dmaengine_prep_slave_sg(i2c->dmach,
242 					(struct scatterlist *)&i2c->pio_data[0],
243 					1, DMA_TRANS_NONE, 0);
244 		if (!desc) {
245 			dev_err(i2c->dev,
246 				"Failed to get PIO reg. write descriptor.\n");
247 			goto write_init_pio_fail;
248 		}
249 
250 		/* Queue the DMA data transfer. */
251 		sg_init_table(i2c->sg_io, 2);
252 		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
253 		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
254 		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
255 		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
256 					DMA_MEM_TO_DEV,
257 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
258 		if (!desc) {
259 			dev_err(i2c->dev,
260 				"Failed to get DMA data write descriptor.\n");
261 			goto write_init_dma_fail;
262 		}
263 	}
264 
265 	/*
266 	 * The last descriptor must have this callback,
267 	 * to finish the DMA transaction.
268 	 */
269 	desc->callback = mxs_i2c_dma_irq_callback;
270 	desc->callback_param = i2c;
271 
272 	/* Start the transfer. */
273 	dmaengine_submit(desc);
274 	dma_async_issue_pending(i2c->dmach);
275 	return 0;
276 
277 /* Read failpath. */
278 read_init_dma_fail:
279 	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
280 select_init_dma_fail:
281 	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
282 select_init_pio_fail:
283 	dmaengine_terminate_all(i2c->dmach);
284 	return -EINVAL;
285 
286 /* Write failpath. */
287 write_init_dma_fail:
288 	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
289 write_init_pio_fail:
290 	dmaengine_terminate_all(i2c->dmach);
291 	return -EINVAL;
292 }
293 
294 static int mxs_i2c_pio_wait_dmareq(struct mxs_i2c_dev *i2c)
295 {
296 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
297 
298 	while (!(readl(i2c->regs + MXS_I2C_DEBUG0) &
299 		MXS_I2C_DEBUG0_DMAREQ)) {
300 		if (time_after(jiffies, timeout))
301 			return -ETIMEDOUT;
302 		cond_resched();
303 	}
304 
305 	return 0;
306 }
307 
308 static int mxs_i2c_pio_wait_cplt(struct mxs_i2c_dev *i2c, int last)
309 {
310 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
311 
312 	/*
313 	 * We do not use interrupts in the PIO mode. Due to the
314 	 * maximum transfer length being 8 bytes in PIO mode, the
315 	 * overhead of interrupt would be too large and this would
316 	 * neglect the gain from using the PIO mode.
317 	 */
318 
319 	while (!(readl(i2c->regs + MXS_I2C_CTRL1) &
320 		MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ)) {
321 		if (time_after(jiffies, timeout))
322 			return -ETIMEDOUT;
323 		cond_resched();
324 	}
325 
326 	writel(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ,
327 		i2c->regs + MXS_I2C_CTRL1_CLR);
328 
329 	/*
330 	 * When ending a transfer with a stop, we have to wait for the bus to
331 	 * go idle before we report the transfer as completed. Otherwise the
332 	 * start of the next transfer may race with the end of the current one.
333 	 */
334 	while (last && (readl(i2c->regs + MXS_I2C_STAT) &
335 			(MXS_I2C_STAT_BUS_BUSY | MXS_I2C_STAT_CLK_GEN_BUSY))) {
336 		if (time_after(jiffies, timeout))
337 			return -ETIMEDOUT;
338 		cond_resched();
339 	}
340 
341 	return 0;
342 }
343 
344 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
345 {
346 	u32 state;
347 
348 	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
349 
350 	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
351 		i2c->cmd_err = -ENXIO;
352 	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
353 			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
354 			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
355 			  MXS_I2C_CTRL1_SLAVE_IRQ))
356 		i2c->cmd_err = -EIO;
357 
358 	return i2c->cmd_err;
359 }
360 
361 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
362 {
363 	u32 reg;
364 
365 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
366 
367 	/* readback makes sure the write is latched into hardware */
368 	reg = readl(i2c->regs + MXS_I2C_CTRL0);
369 	reg |= MXS_I2C_CTRL0_RUN;
370 	writel(reg, i2c->regs + MXS_I2C_CTRL0);
371 }
372 
373 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
374 			struct i2c_msg *msg, uint32_t flags)
375 {
376 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
377 	uint32_t addr_data = msg->addr << 1;
378 	uint32_t data = 0;
379 	int i, shifts_left, ret;
380 
381 	/* Mute IRQs coming from this block. */
382 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
383 
384 	if (msg->flags & I2C_M_RD) {
385 		addr_data |= I2C_SMBUS_READ;
386 
387 		/* SELECT command. */
388 		mxs_i2c_pio_trigger_cmd(i2c, MXS_CMD_I2C_SELECT);
389 
390 		ret = mxs_i2c_pio_wait_dmareq(i2c);
391 		if (ret)
392 			return ret;
393 
394 		writel(addr_data, i2c->regs + MXS_I2C_DATA);
395 		writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR);
396 
397 		ret = mxs_i2c_pio_wait_cplt(i2c, 0);
398 		if (ret)
399 			return ret;
400 
401 		if (mxs_i2c_pio_check_error_state(i2c))
402 			goto cleanup;
403 
404 		/* READ command. */
405 		mxs_i2c_pio_trigger_cmd(i2c,
406 					MXS_CMD_I2C_READ | flags |
407 					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
408 
409 		for (i = 0; i < msg->len; i++) {
410 			if ((i & 3) == 0) {
411 				ret = mxs_i2c_pio_wait_dmareq(i2c);
412 				if (ret)
413 					return ret;
414 				data = readl(i2c->regs + MXS_I2C_DATA);
415 				writel(MXS_I2C_DEBUG0_DMAREQ,
416 				       i2c->regs + MXS_I2C_DEBUG0_CLR);
417 			}
418 			msg->buf[i] = data & 0xff;
419 			data >>= 8;
420 		}
421 	} else {
422 		addr_data |= I2C_SMBUS_WRITE;
423 
424 		/* WRITE command. */
425 		mxs_i2c_pio_trigger_cmd(i2c,
426 					MXS_CMD_I2C_WRITE | flags |
427 					MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1));
428 
429 		/*
430 		 * The LSB of data buffer is the first byte blasted across
431 		 * the bus. Higher order bytes follow. Thus the following
432 		 * filling schematic.
433 		 */
434 		data = addr_data << 24;
435 		for (i = 0; i < msg->len; i++) {
436 			data >>= 8;
437 			data |= (msg->buf[i] << 24);
438 			if ((i & 3) == 2) {
439 				ret = mxs_i2c_pio_wait_dmareq(i2c);
440 				if (ret)
441 					return ret;
442 				writel(data, i2c->regs + MXS_I2C_DATA);
443 				writel(MXS_I2C_DEBUG0_DMAREQ,
444 				       i2c->regs + MXS_I2C_DEBUG0_CLR);
445 			}
446 		}
447 
448 		shifts_left = 24 - (i & 3) * 8;
449 		if (shifts_left) {
450 			data >>= shifts_left;
451 			ret = mxs_i2c_pio_wait_dmareq(i2c);
452 			if (ret)
453 				return ret;
454 			writel(data, i2c->regs + MXS_I2C_DATA);
455 			writel(MXS_I2C_DEBUG0_DMAREQ,
456 			       i2c->regs + MXS_I2C_DEBUG0_CLR);
457 		}
458 	}
459 
460 	ret = mxs_i2c_pio_wait_cplt(i2c, flags & MXS_I2C_CTRL0_POST_SEND_STOP);
461 	if (ret)
462 		return ret;
463 
464 	/* make sure we capture any occurred error into cmd_err */
465 	mxs_i2c_pio_check_error_state(i2c);
466 
467 cleanup:
468 	/* Clear any dangling IRQs and re-enable interrupts. */
469 	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
470 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
471 
472 	return 0;
473 }
474 
475 /*
476  * Low level master read/write transaction.
477  */
478 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
479 				int stop)
480 {
481 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
482 	int ret, err;
483 	int flags;
484 
485 	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
486 
487 	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
488 		msg->addr, msg->len, msg->flags, stop);
489 
490 	if (msg->len == 0)
491 		return -EINVAL;
492 
493 	/*
494 	 * The current boundary to select between PIO/DMA transfer method
495 	 * is set to 8 bytes, transfers shorter than 8 bytes are transfered
496 	 * using PIO mode while longer transfers use DMA. The 8 byte border is
497 	 * based on this empirical measurement and a lot of previous frobbing.
498 	 */
499 	i2c->cmd_err = 0;
500 	if (0) {	/* disable PIO mode until a proper fix is made */
501 		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
502 		if (ret) {
503 			err = mxs_i2c_reset(i2c);
504 			if (err)
505 				return err;
506 		}
507 	} else {
508 		INIT_COMPLETION(i2c->cmd_complete);
509 		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
510 		if (ret)
511 			return ret;
512 
513 		ret = wait_for_completion_timeout(&i2c->cmd_complete,
514 						msecs_to_jiffies(1000));
515 		if (ret == 0)
516 			goto timeout;
517 	}
518 
519 	if (i2c->cmd_err == -ENXIO) {
520 		/*
521 		 * If the transfer fails with a NAK from the slave the
522 		 * controller halts until it gets told to return to idle state.
523 		 */
524 		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
525 		       i2c->regs + MXS_I2C_CTRL1_SET);
526 	}
527 
528 	ret = i2c->cmd_err;
529 
530 	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
531 
532 	return ret;
533 
534 timeout:
535 	dev_dbg(i2c->dev, "Timeout!\n");
536 	mxs_i2c_dma_finish(i2c);
537 	ret = mxs_i2c_reset(i2c);
538 	if (ret)
539 		return ret;
540 
541 	return -ETIMEDOUT;
542 }
543 
544 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
545 			int num)
546 {
547 	int i;
548 	int err;
549 
550 	for (i = 0; i < num; i++) {
551 		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
552 		if (err)
553 			return err;
554 	}
555 
556 	return num;
557 }
558 
559 static u32 mxs_i2c_func(struct i2c_adapter *adap)
560 {
561 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
562 }
563 
564 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
565 {
566 	struct mxs_i2c_dev *i2c = dev_id;
567 	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
568 
569 	if (!stat)
570 		return IRQ_NONE;
571 
572 	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
573 		i2c->cmd_err = -ENXIO;
574 	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
575 		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
576 		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
577 		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
578 		i2c->cmd_err = -EIO;
579 
580 	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
581 
582 	return IRQ_HANDLED;
583 }
584 
585 static const struct i2c_algorithm mxs_i2c_algo = {
586 	.master_xfer = mxs_i2c_xfer,
587 	.functionality = mxs_i2c_func,
588 };
589 
590 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
591 {
592 	/* The I2C block clock runs at 24MHz */
593 	const uint32_t clk = 24000000;
594 	uint32_t divider;
595 	uint16_t high_count, low_count, rcv_count, xmit_count;
596 	uint32_t bus_free, leadin;
597 	struct device *dev = i2c->dev;
598 
599 	divider = DIV_ROUND_UP(clk, speed);
600 
601 	if (divider < 25) {
602 		/*
603 		 * limit the divider, so that min(low_count, high_count)
604 		 * is >= 1
605 		 */
606 		divider = 25;
607 		dev_warn(dev,
608 			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
609 			speed / 1000, speed % 1000,
610 			clk / divider / 1000, clk / divider % 1000);
611 	} else if (divider > 1897) {
612 		/*
613 		 * limit the divider, so that max(low_count, high_count)
614 		 * cannot exceed 1023
615 		 */
616 		divider = 1897;
617 		dev_warn(dev,
618 			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
619 			speed / 1000, speed % 1000,
620 			clk / divider / 1000, clk / divider % 1000);
621 	}
622 
623 	/*
624 	 * The I2C spec specifies the following timing data:
625 	 *                          standard mode  fast mode Bitfield name
626 	 * tLOW (SCL LOW period)     4700 ns        1300 ns
627 	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
628 	 * tSU;DAT (data setup time)  250 ns         100 ns
629 	 * tHD;STA (START hold time) 4000 ns         600 ns
630 	 * tBUF (bus free time)      4700 ns        1300 ns
631 	 *
632 	 * The hardware (of the i.MX28 at least) seems to add 2 additional
633 	 * clock cycles to the low_count and 7 cycles to the high_count.
634 	 * This is compensated for by subtracting the respective constants
635 	 * from the values written to the timing registers.
636 	 */
637 	if (speed > 100000) {
638 		/* fast mode */
639 		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
640 		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
641 		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
642 		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
643 	} else {
644 		/* normal mode */
645 		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
646 		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
647 		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
648 		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
649 	}
650 	rcv_count = high_count * 3 / 8;
651 	xmit_count = low_count * 3 / 8;
652 
653 	dev_dbg(dev,
654 		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
655 		speed, clk / divider, divider, low_count, high_count,
656 		xmit_count, rcv_count, leadin, bus_free);
657 
658 	low_count -= 2;
659 	high_count -= 7;
660 	i2c->timing0 = (high_count << 16) | rcv_count;
661 	i2c->timing1 = (low_count << 16) | xmit_count;
662 	i2c->timing2 = (bus_free << 16 | leadin);
663 }
664 
665 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
666 {
667 	uint32_t speed;
668 	struct device *dev = i2c->dev;
669 	struct device_node *node = dev->of_node;
670 	int ret;
671 
672 	ret = of_property_read_u32(node, "clock-frequency", &speed);
673 	if (ret) {
674 		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
675 		speed = 100000;
676 	}
677 
678 	mxs_i2c_derive_timing(i2c, speed);
679 
680 	return 0;
681 }
682 
683 static int mxs_i2c_probe(struct platform_device *pdev)
684 {
685 	struct device *dev = &pdev->dev;
686 	struct mxs_i2c_dev *i2c;
687 	struct i2c_adapter *adap;
688 	struct resource *res;
689 	resource_size_t res_size;
690 	int err, irq;
691 
692 	i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL);
693 	if (!i2c)
694 		return -ENOMEM;
695 
696 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
697 	irq = platform_get_irq(pdev, 0);
698 
699 	if (!res || irq < 0)
700 		return -ENOENT;
701 
702 	res_size = resource_size(res);
703 	if (!devm_request_mem_region(dev, res->start, res_size, res->name))
704 		return -EBUSY;
705 
706 	i2c->regs = devm_ioremap_nocache(dev, res->start, res_size);
707 	if (!i2c->regs)
708 		return -EBUSY;
709 
710 	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
711 	if (err)
712 		return err;
713 
714 	i2c->dev = dev;
715 
716 	init_completion(&i2c->cmd_complete);
717 
718 	if (dev->of_node) {
719 		err = mxs_i2c_get_ofdata(i2c);
720 		if (err)
721 			return err;
722 	}
723 
724 	/* Setup the DMA */
725 	i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
726 	if (!i2c->dmach) {
727 		dev_err(dev, "Failed to request dma\n");
728 		return -ENODEV;
729 	}
730 
731 	platform_set_drvdata(pdev, i2c);
732 
733 	/* Do reset to enforce correct startup after pinmuxing */
734 	err = mxs_i2c_reset(i2c);
735 	if (err)
736 		return err;
737 
738 	adap = &i2c->adapter;
739 	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
740 	adap->owner = THIS_MODULE;
741 	adap->algo = &mxs_i2c_algo;
742 	adap->dev.parent = dev;
743 	adap->nr = pdev->id;
744 	adap->dev.of_node = pdev->dev.of_node;
745 	i2c_set_adapdata(adap, i2c);
746 	err = i2c_add_numbered_adapter(adap);
747 	if (err) {
748 		dev_err(dev, "Failed to add adapter (%d)\n", err);
749 		writel(MXS_I2C_CTRL0_SFTRST,
750 				i2c->regs + MXS_I2C_CTRL0_SET);
751 		return err;
752 	}
753 
754 	return 0;
755 }
756 
757 static int mxs_i2c_remove(struct platform_device *pdev)
758 {
759 	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
760 
761 	i2c_del_adapter(&i2c->adapter);
762 
763 	if (i2c->dmach)
764 		dma_release_channel(i2c->dmach);
765 
766 	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
767 
768 	return 0;
769 }
770 
771 static const struct of_device_id mxs_i2c_dt_ids[] = {
772 	{ .compatible = "fsl,imx28-i2c", },
773 	{ /* sentinel */ }
774 };
775 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
776 
777 static struct platform_driver mxs_i2c_driver = {
778 	.driver = {
779 		   .name = DRIVER_NAME,
780 		   .owner = THIS_MODULE,
781 		   .of_match_table = mxs_i2c_dt_ids,
782 		   },
783 	.probe = mxs_i2c_probe,
784 	.remove = mxs_i2c_remove,
785 };
786 
787 static int __init mxs_i2c_init(void)
788 {
789 	return platform_driver_register(&mxs_i2c_driver);
790 }
791 subsys_initcall(mxs_i2c_init);
792 
793 static void __exit mxs_i2c_exit(void)
794 {
795 	platform_driver_unregister(&mxs_i2c_driver);
796 }
797 module_exit(mxs_i2c_exit);
798 
799 MODULE_AUTHOR("Wolfram Sang <w.sang@pengutronix.de>");
800 MODULE_DESCRIPTION("MXS I2C Bus Driver");
801 MODULE_LICENSE("GPL");
802 MODULE_ALIAS("platform:" DRIVER_NAME);
803