1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale MXS I2C bus driver 4 * 5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de> 6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K. 7 * 8 * based on a (non-working) driver which was: 9 * 10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/device.h> 15 #include <linux/module.h> 16 #include <linux/i2c.h> 17 #include <linux/err.h> 18 #include <linux/interrupt.h> 19 #include <linux/completion.h> 20 #include <linux/platform_device.h> 21 #include <linux/jiffies.h> 22 #include <linux/io.h> 23 #include <linux/stmp_device.h> 24 #include <linux/of.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/dma/mxs-dma.h> 28 29 #define DRIVER_NAME "mxs-i2c" 30 31 #define MXS_I2C_CTRL0 (0x00) 32 #define MXS_I2C_CTRL0_SET (0x04) 33 #define MXS_I2C_CTRL0_CLR (0x08) 34 35 #define MXS_I2C_CTRL0_SFTRST 0x80000000 36 #define MXS_I2C_CTRL0_RUN 0x20000000 37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000 38 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000 39 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000 40 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000 41 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000 42 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000 43 #define MXS_I2C_CTRL0_DIRECTION 0x00010000 44 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF) 45 46 #define MXS_I2C_TIMING0 (0x10) 47 #define MXS_I2C_TIMING1 (0x20) 48 #define MXS_I2C_TIMING2 (0x30) 49 50 #define MXS_I2C_CTRL1 (0x40) 51 #define MXS_I2C_CTRL1_SET (0x44) 52 #define MXS_I2C_CTRL1_CLR (0x48) 53 54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000 55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80 56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40 57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20 58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10 59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08 60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04 61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02 62 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01 63 64 #define MXS_I2C_STAT (0x50) 65 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000 66 #define MXS_I2C_STAT_BUS_BUSY 0x00000800 67 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400 68 69 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0) 70 71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8) 72 73 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000 74 75 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \ 76 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \ 77 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \ 78 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \ 79 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \ 80 MXS_I2C_CTRL1_SLAVE_IRQ) 81 82 83 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \ 84 MXS_I2C_CTRL0_PRE_SEND_START | \ 85 MXS_I2C_CTRL0_MASTER_MODE | \ 86 MXS_I2C_CTRL0_DIRECTION | \ 87 MXS_I2C_CTRL0_XFER_COUNT(1)) 88 89 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \ 90 MXS_I2C_CTRL0_MASTER_MODE | \ 91 MXS_I2C_CTRL0_DIRECTION) 92 93 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \ 94 MXS_I2C_CTRL0_MASTER_MODE) 95 96 enum mxs_i2c_devtype { 97 MXS_I2C_UNKNOWN = 0, 98 MXS_I2C_V1, 99 MXS_I2C_V2, 100 }; 101 102 /** 103 * struct mxs_i2c_dev - per device, private MXS-I2C data 104 * 105 * @dev: driver model device node 106 * @dev_type: distinguish i.MX23/i.MX28 features 107 * @regs: IO registers pointer 108 * @cmd_complete: completion object for transaction wait 109 * @cmd_err: error code for last transaction 110 * @adapter: i2c subsystem adapter node 111 */ 112 struct mxs_i2c_dev { 113 struct device *dev; 114 enum mxs_i2c_devtype dev_type; 115 void __iomem *regs; 116 struct completion cmd_complete; 117 int cmd_err; 118 struct i2c_adapter adapter; 119 120 uint32_t timing0; 121 uint32_t timing1; 122 uint32_t timing2; 123 124 /* DMA support components */ 125 struct dma_chan *dmach; 126 uint32_t pio_data[2]; 127 uint32_t addr_data; 128 struct scatterlist sg_io[2]; 129 bool dma_read; 130 }; 131 132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c) 133 { 134 int ret = stmp_reset_block(i2c->regs); 135 if (ret) 136 return ret; 137 138 /* 139 * Configure timing for the I2C block. The I2C TIMING2 register has to 140 * be programmed with this particular magic number. The rest is derived 141 * from the XTAL speed and requested I2C speed. 142 * 143 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4]. 144 */ 145 writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0); 146 writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1); 147 writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2); 148 149 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 150 151 return 0; 152 } 153 154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c) 155 { 156 if (i2c->dma_read) { 157 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 158 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 159 } else { 160 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 161 } 162 } 163 164 static void mxs_i2c_dma_irq_callback(void *param) 165 { 166 struct mxs_i2c_dev *i2c = param; 167 168 complete(&i2c->cmd_complete); 169 mxs_i2c_dma_finish(i2c); 170 } 171 172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap, 173 struct i2c_msg *msg, u8 *buf, uint32_t flags) 174 { 175 struct dma_async_tx_descriptor *desc; 176 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 177 178 i2c->addr_data = i2c_8bit_addr_from_msg(msg); 179 180 if (msg->flags & I2C_M_RD) { 181 i2c->dma_read = true; 182 183 /* 184 * SELECT command. 185 */ 186 187 /* Queue the PIO register write transfer. */ 188 i2c->pio_data[0] = MXS_CMD_I2C_SELECT; 189 desc = dmaengine_prep_slave_sg(i2c->dmach, 190 (struct scatterlist *)&i2c->pio_data[0], 191 1, DMA_TRANS_NONE, 0); 192 if (!desc) { 193 dev_err(i2c->dev, 194 "Failed to get PIO reg. write descriptor.\n"); 195 goto select_init_pio_fail; 196 } 197 198 /* Queue the DMA data transfer. */ 199 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1); 200 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 201 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1, 202 DMA_MEM_TO_DEV, 203 DMA_PREP_INTERRUPT | 204 MXS_DMA_CTRL_WAIT4END); 205 if (!desc) { 206 dev_err(i2c->dev, 207 "Failed to get DMA data write descriptor.\n"); 208 goto select_init_dma_fail; 209 } 210 211 /* 212 * READ command. 213 */ 214 215 /* Queue the PIO register write transfer. */ 216 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ | 217 MXS_I2C_CTRL0_XFER_COUNT(msg->len); 218 desc = dmaengine_prep_slave_sg(i2c->dmach, 219 (struct scatterlist *)&i2c->pio_data[1], 220 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT); 221 if (!desc) { 222 dev_err(i2c->dev, 223 "Failed to get PIO reg. write descriptor.\n"); 224 goto select_init_dma_fail; 225 } 226 227 /* Queue the DMA data transfer. */ 228 sg_init_one(&i2c->sg_io[1], buf, msg->len); 229 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 230 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1, 231 DMA_DEV_TO_MEM, 232 DMA_PREP_INTERRUPT | 233 MXS_DMA_CTRL_WAIT4END); 234 if (!desc) { 235 dev_err(i2c->dev, 236 "Failed to get DMA data write descriptor.\n"); 237 goto read_init_dma_fail; 238 } 239 } else { 240 i2c->dma_read = false; 241 242 /* 243 * WRITE command. 244 */ 245 246 /* Queue the PIO register write transfer. */ 247 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE | 248 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1); 249 desc = dmaengine_prep_slave_sg(i2c->dmach, 250 (struct scatterlist *)&i2c->pio_data[0], 251 1, DMA_TRANS_NONE, 0); 252 if (!desc) { 253 dev_err(i2c->dev, 254 "Failed to get PIO reg. write descriptor.\n"); 255 goto write_init_pio_fail; 256 } 257 258 /* Queue the DMA data transfer. */ 259 sg_init_table(i2c->sg_io, 2); 260 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1); 261 sg_set_buf(&i2c->sg_io[1], buf, msg->len); 262 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 263 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2, 264 DMA_MEM_TO_DEV, 265 DMA_PREP_INTERRUPT | 266 MXS_DMA_CTRL_WAIT4END); 267 if (!desc) { 268 dev_err(i2c->dev, 269 "Failed to get DMA data write descriptor.\n"); 270 goto write_init_dma_fail; 271 } 272 } 273 274 /* 275 * The last descriptor must have this callback, 276 * to finish the DMA transaction. 277 */ 278 desc->callback = mxs_i2c_dma_irq_callback; 279 desc->callback_param = i2c; 280 281 /* Start the transfer. */ 282 dmaengine_submit(desc); 283 dma_async_issue_pending(i2c->dmach); 284 return 0; 285 286 /* Read failpath. */ 287 read_init_dma_fail: 288 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 289 select_init_dma_fail: 290 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 291 select_init_pio_fail: 292 dmaengine_terminate_sync(i2c->dmach); 293 return -EINVAL; 294 295 /* Write failpath. */ 296 write_init_dma_fail: 297 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 298 write_init_pio_fail: 299 dmaengine_terminate_sync(i2c->dmach); 300 return -EINVAL; 301 } 302 303 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c) 304 { 305 unsigned long timeout = jiffies + msecs_to_jiffies(1000); 306 307 while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) { 308 if (readl(i2c->regs + MXS_I2C_CTRL1) & 309 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 310 return -ENXIO; 311 if (time_after(jiffies, timeout)) 312 return -ETIMEDOUT; 313 cond_resched(); 314 } 315 316 return 0; 317 } 318 319 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c) 320 { 321 u32 state; 322 323 state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK; 324 325 if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 326 i2c->cmd_err = -ENXIO; 327 else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 328 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 329 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | 330 MXS_I2C_CTRL1_SLAVE_IRQ)) 331 i2c->cmd_err = -EIO; 332 333 return i2c->cmd_err; 334 } 335 336 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd) 337 { 338 u32 reg; 339 340 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 341 342 /* readback makes sure the write is latched into hardware */ 343 reg = readl(i2c->regs + MXS_I2C_CTRL0); 344 reg |= MXS_I2C_CTRL0_RUN; 345 writel(reg, i2c->regs + MXS_I2C_CTRL0); 346 } 347 348 /* 349 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet, 350 * CTRL0::PIO_MODE bit description clarifies the order in which the registers 351 * must be written during PIO mode operation. First, the CTRL0 register has 352 * to be programmed with all the necessary bits but the RUN bit. Then the 353 * payload has to be written into the DATA register. Finally, the transmission 354 * is executed by setting the RUN bit in CTRL0. 355 */ 356 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd, 357 u32 data) 358 { 359 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 360 361 if (i2c->dev_type == MXS_I2C_V1) 362 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET); 363 364 writel(data, i2c->regs + MXS_I2C_DATA(i2c)); 365 writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET); 366 } 367 368 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap, 369 struct i2c_msg *msg, uint32_t flags) 370 { 371 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 372 uint32_t addr_data = i2c_8bit_addr_from_msg(msg); 373 uint32_t data = 0; 374 int i, ret, xlen = 0, xmit = 0; 375 uint32_t start; 376 377 /* Mute IRQs coming from this block. */ 378 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR); 379 380 /* 381 * MX23 idea: 382 * - Enable CTRL0::PIO_MODE (1 << 24) 383 * - Enable CTRL1::ACK_MODE (1 << 27) 384 * 385 * WARNING! The MX23 is broken in some way, even if it claims 386 * to support PIO, when we try to transfer any amount of data 387 * that is not aligned to 4 bytes, the DMA engine will have 388 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the 389 * transfer. This in turn will mess up the next transfer as 390 * the block it emit one byte write onto the bus terminated 391 * with a NAK+STOP. A possible workaround is to reset the IP 392 * block after every PIO transmission, which might just work. 393 * 394 * NOTE: The CTRL0::PIO_MODE description is important, since 395 * it outlines how the PIO mode is really supposed to work. 396 */ 397 if (msg->flags & I2C_M_RD) { 398 /* 399 * PIO READ transfer: 400 * 401 * This transfer MUST be limited to 4 bytes maximum. It is not 402 * possible to transfer more than four bytes via PIO, since we 403 * can not in any way make sure we can read the data from the 404 * DATA register fast enough. Besides, the RX FIFO is only four 405 * bytes deep, thus we can only really read up to four bytes at 406 * time. Finally, there is no bit indicating us that new data 407 * arrived at the FIFO and can thus be fetched from the DATA 408 * register. 409 */ 410 BUG_ON(msg->len > 4); 411 412 /* SELECT command. */ 413 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT, 414 addr_data); 415 416 ret = mxs_i2c_pio_wait_xfer_end(i2c); 417 if (ret) { 418 dev_dbg(i2c->dev, 419 "PIO: Failed to send SELECT command!\n"); 420 goto cleanup; 421 } 422 423 /* READ command. */ 424 mxs_i2c_pio_trigger_cmd(i2c, 425 MXS_CMD_I2C_READ | flags | 426 MXS_I2C_CTRL0_XFER_COUNT(msg->len)); 427 428 ret = mxs_i2c_pio_wait_xfer_end(i2c); 429 if (ret) { 430 dev_dbg(i2c->dev, 431 "PIO: Failed to send READ command!\n"); 432 goto cleanup; 433 } 434 435 data = readl(i2c->regs + MXS_I2C_DATA(i2c)); 436 for (i = 0; i < msg->len; i++) { 437 msg->buf[i] = data & 0xff; 438 data >>= 8; 439 } 440 } else { 441 /* 442 * PIO WRITE transfer: 443 * 444 * The code below implements clock stretching to circumvent 445 * the possibility of kernel not being able to supply data 446 * fast enough. It is possible to transfer arbitrary amount 447 * of data using PIO write. 448 */ 449 450 /* 451 * The LSB of data buffer is the first byte blasted across 452 * the bus. Higher order bytes follow. Thus the following 453 * filling schematic. 454 */ 455 456 data = addr_data << 24; 457 458 /* Start the transfer with START condition. */ 459 start = MXS_I2C_CTRL0_PRE_SEND_START; 460 461 /* If the transfer is long, use clock stretching. */ 462 if (msg->len > 3) 463 start |= MXS_I2C_CTRL0_RETAIN_CLOCK; 464 465 for (i = 0; i < msg->len; i++) { 466 data >>= 8; 467 data |= (msg->buf[i] << 24); 468 469 xmit = 0; 470 471 /* This is the last transfer of the message. */ 472 if (i + 1 == msg->len) { 473 /* Add optional STOP flag. */ 474 start |= flags; 475 /* Remove RETAIN_CLOCK bit. */ 476 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK; 477 xmit = 1; 478 } 479 480 /* Four bytes are ready in the "data" variable. */ 481 if ((i & 3) == 2) 482 xmit = 1; 483 484 /* Nothing interesting happened, continue stuffing. */ 485 if (!xmit) 486 continue; 487 488 /* 489 * Compute the size of the transfer and shift the 490 * data accordingly. 491 * 492 * i = (4k + 0) .... xlen = 2 493 * i = (4k + 1) .... xlen = 3 494 * i = (4k + 2) .... xlen = 4 495 * i = (4k + 3) .... xlen = 1 496 */ 497 498 if ((i % 4) == 3) 499 xlen = 1; 500 else 501 xlen = (i % 4) + 2; 502 503 data >>= (4 - xlen) * 8; 504 505 dev_dbg(i2c->dev, 506 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n", 507 xlen, i, msg->len, 508 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "", 509 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "", 510 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : ""); 511 512 writel(MXS_I2C_DEBUG0_DMAREQ, 513 i2c->regs + MXS_I2C_DEBUG0_CLR(i2c)); 514 515 mxs_i2c_pio_trigger_write_cmd(i2c, 516 start | MXS_I2C_CTRL0_MASTER_MODE | 517 MXS_I2C_CTRL0_DIRECTION | 518 MXS_I2C_CTRL0_XFER_COUNT(xlen), data); 519 520 /* The START condition is sent only once. */ 521 start &= ~MXS_I2C_CTRL0_PRE_SEND_START; 522 523 /* Wait for the end of the transfer. */ 524 ret = mxs_i2c_pio_wait_xfer_end(i2c); 525 if (ret) { 526 dev_dbg(i2c->dev, 527 "PIO: Failed to finish WRITE cmd!\n"); 528 break; 529 } 530 531 /* Check NAK here. */ 532 ret = readl(i2c->regs + MXS_I2C_STAT) & 533 MXS_I2C_STAT_GOT_A_NAK; 534 if (ret) { 535 ret = -ENXIO; 536 goto cleanup; 537 } 538 } 539 } 540 541 /* make sure we capture any occurred error into cmd_err */ 542 ret = mxs_i2c_pio_check_error_state(i2c); 543 544 cleanup: 545 /* Clear any dangling IRQs and re-enable interrupts. */ 546 writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR); 547 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 548 549 /* Clear the PIO_MODE on i.MX23 */ 550 if (i2c->dev_type == MXS_I2C_V1) 551 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR); 552 553 return ret; 554 } 555 556 /* 557 * Low level master read/write transaction. 558 */ 559 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, 560 int stop) 561 { 562 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 563 int ret; 564 int flags; 565 u8 *dma_buf; 566 int use_pio = 0; 567 unsigned long time_left; 568 569 flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0; 570 571 dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", 572 msg->addr, msg->len, msg->flags, stop); 573 574 /* 575 * The MX28 I2C IP block can only do PIO READ for transfer of to up 576 * 4 bytes of length. The write transfer is not limited as it can use 577 * clock stretching to avoid FIFO underruns. 578 */ 579 if ((msg->flags & I2C_M_RD) && (msg->len <= 4)) 580 use_pio = 1; 581 if (!(msg->flags & I2C_M_RD) && (msg->len < 7)) 582 use_pio = 1; 583 584 i2c->cmd_err = 0; 585 if (use_pio) { 586 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags); 587 /* No need to reset the block if NAK was received. */ 588 if (ret && (ret != -ENXIO)) 589 mxs_i2c_reset(i2c); 590 } else { 591 dma_buf = i2c_get_dma_safe_msg_buf(msg, 1); 592 if (!dma_buf) 593 return -ENOMEM; 594 595 reinit_completion(&i2c->cmd_complete); 596 ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags); 597 if (ret) { 598 i2c_put_dma_safe_msg_buf(dma_buf, msg, false); 599 return ret; 600 } 601 602 time_left = wait_for_completion_timeout(&i2c->cmd_complete, 603 msecs_to_jiffies(1000)); 604 i2c_put_dma_safe_msg_buf(dma_buf, msg, true); 605 if (!time_left) 606 goto timeout; 607 608 ret = i2c->cmd_err; 609 } 610 611 if (ret == -ENXIO) { 612 /* 613 * If the transfer fails with a NAK from the slave the 614 * controller halts until it gets told to return to idle state. 615 */ 616 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK, 617 i2c->regs + MXS_I2C_CTRL1_SET); 618 } 619 620 /* 621 * WARNING! 622 * The i.MX23 is strange. After each and every operation, it's I2C IP 623 * block must be reset, otherwise the IP block will misbehave. This can 624 * be observed on the bus by the block sending out one single byte onto 625 * the bus. In case such an error happens, bit 27 will be set in the 626 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet 627 * and is marked as "TBD" instead. To reset this bit to a correct state, 628 * reset the whole block. Since the block reset does not take long, do 629 * reset the block after every transfer to play safe. 630 */ 631 if (i2c->dev_type == MXS_I2C_V1) 632 mxs_i2c_reset(i2c); 633 634 dev_dbg(i2c->dev, "Done with err=%d\n", ret); 635 636 return ret; 637 638 timeout: 639 dev_dbg(i2c->dev, "Timeout!\n"); 640 mxs_i2c_dma_finish(i2c); 641 ret = mxs_i2c_reset(i2c); 642 if (ret) 643 return ret; 644 645 return -ETIMEDOUT; 646 } 647 648 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], 649 int num) 650 { 651 int i; 652 int err; 653 654 for (i = 0; i < num; i++) { 655 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1)); 656 if (err) 657 return err; 658 } 659 660 return num; 661 } 662 663 static u32 mxs_i2c_func(struct i2c_adapter *adap) 664 { 665 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 666 } 667 668 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id) 669 { 670 struct mxs_i2c_dev *i2c = dev_id; 671 u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK; 672 673 if (!stat) 674 return IRQ_NONE; 675 676 if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 677 i2c->cmd_err = -ENXIO; 678 else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 679 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 680 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) 681 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */ 682 i2c->cmd_err = -EIO; 683 684 writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR); 685 686 return IRQ_HANDLED; 687 } 688 689 static const struct i2c_algorithm mxs_i2c_algo = { 690 .master_xfer = mxs_i2c_xfer, 691 .functionality = mxs_i2c_func, 692 }; 693 694 static const struct i2c_adapter_quirks mxs_i2c_quirks = { 695 .flags = I2C_AQ_NO_ZERO_LEN, 696 }; 697 698 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed) 699 { 700 /* The I2C block clock runs at 24MHz */ 701 const uint32_t clk = 24000000; 702 uint32_t divider; 703 uint16_t high_count, low_count, rcv_count, xmit_count; 704 uint32_t bus_free, leadin; 705 struct device *dev = i2c->dev; 706 707 divider = DIV_ROUND_UP(clk, speed); 708 709 if (divider < 25) { 710 /* 711 * limit the divider, so that min(low_count, high_count) 712 * is >= 1 713 */ 714 divider = 25; 715 dev_warn(dev, 716 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n", 717 speed / 1000, speed % 1000, 718 clk / divider / 1000, clk / divider % 1000); 719 } else if (divider > 1897) { 720 /* 721 * limit the divider, so that max(low_count, high_count) 722 * cannot exceed 1023 723 */ 724 divider = 1897; 725 dev_warn(dev, 726 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n", 727 speed / 1000, speed % 1000, 728 clk / divider / 1000, clk / divider % 1000); 729 } 730 731 /* 732 * The I2C spec specifies the following timing data: 733 * standard mode fast mode Bitfield name 734 * tLOW (SCL LOW period) 4700 ns 1300 ns 735 * tHIGH (SCL HIGH period) 4000 ns 600 ns 736 * tSU;DAT (data setup time) 250 ns 100 ns 737 * tHD;STA (START hold time) 4000 ns 600 ns 738 * tBUF (bus free time) 4700 ns 1300 ns 739 * 740 * The hardware (of the i.MX28 at least) seems to add 2 additional 741 * clock cycles to the low_count and 7 cycles to the high_count. 742 * This is compensated for by subtracting the respective constants 743 * from the values written to the timing registers. 744 */ 745 if (speed > I2C_MAX_STANDARD_MODE_FREQ) { 746 /* fast mode */ 747 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6)); 748 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6)); 749 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000); 750 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000); 751 } else { 752 /* normal mode */ 753 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40)); 754 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40)); 755 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 756 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 757 } 758 rcv_count = high_count * 3 / 8; 759 xmit_count = low_count * 3 / 8; 760 761 dev_dbg(dev, 762 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n", 763 speed, clk / divider, divider, low_count, high_count, 764 xmit_count, rcv_count, leadin, bus_free); 765 766 low_count -= 2; 767 high_count -= 7; 768 i2c->timing0 = (high_count << 16) | rcv_count; 769 i2c->timing1 = (low_count << 16) | xmit_count; 770 i2c->timing2 = (bus_free << 16 | leadin); 771 } 772 773 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c) 774 { 775 uint32_t speed; 776 struct device *dev = i2c->dev; 777 struct device_node *node = dev->of_node; 778 int ret; 779 780 ret = of_property_read_u32(node, "clock-frequency", &speed); 781 if (ret) { 782 dev_warn(dev, "No I2C speed selected, using 100kHz\n"); 783 speed = I2C_MAX_STANDARD_MODE_FREQ; 784 } 785 786 mxs_i2c_derive_timing(i2c, speed); 787 788 return 0; 789 } 790 791 static const struct of_device_id mxs_i2c_dt_ids[] = { 792 { .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, }, 793 { .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, }, 794 { /* sentinel */ } 795 }; 796 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids); 797 798 static int mxs_i2c_probe(struct platform_device *pdev) 799 { 800 struct device *dev = &pdev->dev; 801 struct mxs_i2c_dev *i2c; 802 struct i2c_adapter *adap; 803 int err, irq; 804 805 i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL); 806 if (!i2c) 807 return -ENOMEM; 808 809 i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev); 810 811 i2c->regs = devm_platform_ioremap_resource(pdev, 0); 812 if (IS_ERR(i2c->regs)) 813 return PTR_ERR(i2c->regs); 814 815 irq = platform_get_irq(pdev, 0); 816 if (irq < 0) 817 return irq; 818 819 err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c); 820 if (err) 821 return err; 822 823 i2c->dev = dev; 824 825 init_completion(&i2c->cmd_complete); 826 827 if (dev->of_node) { 828 err = mxs_i2c_get_ofdata(i2c); 829 if (err) 830 return err; 831 } 832 833 /* Setup the DMA */ 834 i2c->dmach = dma_request_chan(dev, "rx-tx"); 835 if (IS_ERR(i2c->dmach)) { 836 return dev_err_probe(dev, PTR_ERR(i2c->dmach), 837 "Failed to request dma\n"); 838 } 839 840 platform_set_drvdata(pdev, i2c); 841 842 /* Do reset to enforce correct startup after pinmuxing */ 843 err = mxs_i2c_reset(i2c); 844 if (err) 845 return err; 846 847 adap = &i2c->adapter; 848 strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name)); 849 adap->owner = THIS_MODULE; 850 adap->algo = &mxs_i2c_algo; 851 adap->quirks = &mxs_i2c_quirks; 852 adap->dev.parent = dev; 853 adap->nr = pdev->id; 854 adap->dev.of_node = pdev->dev.of_node; 855 i2c_set_adapdata(adap, i2c); 856 err = i2c_add_numbered_adapter(adap); 857 if (err) { 858 writel(MXS_I2C_CTRL0_SFTRST, 859 i2c->regs + MXS_I2C_CTRL0_SET); 860 return err; 861 } 862 863 return 0; 864 } 865 866 static void mxs_i2c_remove(struct platform_device *pdev) 867 { 868 struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev); 869 870 i2c_del_adapter(&i2c->adapter); 871 872 if (i2c->dmach) 873 dma_release_channel(i2c->dmach); 874 875 writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); 876 } 877 878 static struct platform_driver mxs_i2c_driver = { 879 .driver = { 880 .name = DRIVER_NAME, 881 .of_match_table = mxs_i2c_dt_ids, 882 }, 883 .probe = mxs_i2c_probe, 884 .remove_new = mxs_i2c_remove, 885 }; 886 887 static int __init mxs_i2c_init(void) 888 { 889 return platform_driver_register(&mxs_i2c_driver); 890 } 891 subsys_initcall(mxs_i2c_init); 892 893 static void __exit mxs_i2c_exit(void) 894 { 895 platform_driver_unregister(&mxs_i2c_driver); 896 } 897 module_exit(mxs_i2c_exit); 898 899 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 900 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>"); 901 MODULE_DESCRIPTION("MXS I2C Bus Driver"); 902 MODULE_LICENSE("GPL"); 903 MODULE_ALIAS("platform:" DRIVER_NAME); 904