1 /* 2 * Freescale MXS I2C bus driver 3 * 4 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de> 5 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K. 6 * 7 * based on a (non-working) driver which was: 8 * 9 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 */ 17 18 #include <linux/slab.h> 19 #include <linux/device.h> 20 #include <linux/module.h> 21 #include <linux/i2c.h> 22 #include <linux/err.h> 23 #include <linux/interrupt.h> 24 #include <linux/completion.h> 25 #include <linux/platform_device.h> 26 #include <linux/jiffies.h> 27 #include <linux/io.h> 28 #include <linux/stmp_device.h> 29 #include <linux/of.h> 30 #include <linux/of_device.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/dmaengine.h> 33 34 #define DRIVER_NAME "mxs-i2c" 35 36 #define MXS_I2C_CTRL0 (0x00) 37 #define MXS_I2C_CTRL0_SET (0x04) 38 #define MXS_I2C_CTRL0_CLR (0x08) 39 40 #define MXS_I2C_CTRL0_SFTRST 0x80000000 41 #define MXS_I2C_CTRL0_RUN 0x20000000 42 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000 43 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000 44 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000 45 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000 46 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000 47 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000 48 #define MXS_I2C_CTRL0_DIRECTION 0x00010000 49 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF) 50 51 #define MXS_I2C_TIMING0 (0x10) 52 #define MXS_I2C_TIMING1 (0x20) 53 #define MXS_I2C_TIMING2 (0x30) 54 55 #define MXS_I2C_CTRL1 (0x40) 56 #define MXS_I2C_CTRL1_SET (0x44) 57 #define MXS_I2C_CTRL1_CLR (0x48) 58 59 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000 60 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80 61 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40 62 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20 63 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10 64 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08 65 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04 66 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02 67 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01 68 69 #define MXS_I2C_STAT (0x50) 70 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000 71 #define MXS_I2C_STAT_BUS_BUSY 0x00000800 72 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400 73 74 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0) 75 76 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8) 77 78 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000 79 80 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \ 81 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \ 82 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \ 83 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \ 84 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \ 85 MXS_I2C_CTRL1_SLAVE_IRQ) 86 87 88 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \ 89 MXS_I2C_CTRL0_PRE_SEND_START | \ 90 MXS_I2C_CTRL0_MASTER_MODE | \ 91 MXS_I2C_CTRL0_DIRECTION | \ 92 MXS_I2C_CTRL0_XFER_COUNT(1)) 93 94 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \ 95 MXS_I2C_CTRL0_MASTER_MODE | \ 96 MXS_I2C_CTRL0_DIRECTION) 97 98 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \ 99 MXS_I2C_CTRL0_MASTER_MODE) 100 101 enum mxs_i2c_devtype { 102 MXS_I2C_UNKNOWN = 0, 103 MXS_I2C_V1, 104 MXS_I2C_V2, 105 }; 106 107 /** 108 * struct mxs_i2c_dev - per device, private MXS-I2C data 109 * 110 * @dev: driver model device node 111 * @dev_type: distinguish i.MX23/i.MX28 features 112 * @regs: IO registers pointer 113 * @cmd_complete: completion object for transaction wait 114 * @cmd_err: error code for last transaction 115 * @adapter: i2c subsystem adapter node 116 */ 117 struct mxs_i2c_dev { 118 struct device *dev; 119 enum mxs_i2c_devtype dev_type; 120 void __iomem *regs; 121 struct completion cmd_complete; 122 int cmd_err; 123 struct i2c_adapter adapter; 124 125 uint32_t timing0; 126 uint32_t timing1; 127 uint32_t timing2; 128 129 /* DMA support components */ 130 struct dma_chan *dmach; 131 uint32_t pio_data[2]; 132 uint32_t addr_data; 133 struct scatterlist sg_io[2]; 134 bool dma_read; 135 }; 136 137 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c) 138 { 139 int ret = stmp_reset_block(i2c->regs); 140 if (ret) 141 return ret; 142 143 /* 144 * Configure timing for the I2C block. The I2C TIMING2 register has to 145 * be programmed with this particular magic number. The rest is derived 146 * from the XTAL speed and requested I2C speed. 147 * 148 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4]. 149 */ 150 writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0); 151 writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1); 152 writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2); 153 154 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 155 156 return 0; 157 } 158 159 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c) 160 { 161 if (i2c->dma_read) { 162 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 163 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 164 } else { 165 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 166 } 167 } 168 169 static void mxs_i2c_dma_irq_callback(void *param) 170 { 171 struct mxs_i2c_dev *i2c = param; 172 173 complete(&i2c->cmd_complete); 174 mxs_i2c_dma_finish(i2c); 175 } 176 177 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap, 178 struct i2c_msg *msg, uint32_t flags) 179 { 180 struct dma_async_tx_descriptor *desc; 181 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 182 183 if (msg->flags & I2C_M_RD) { 184 i2c->dma_read = 1; 185 i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ; 186 187 /* 188 * SELECT command. 189 */ 190 191 /* Queue the PIO register write transfer. */ 192 i2c->pio_data[0] = MXS_CMD_I2C_SELECT; 193 desc = dmaengine_prep_slave_sg(i2c->dmach, 194 (struct scatterlist *)&i2c->pio_data[0], 195 1, DMA_TRANS_NONE, 0); 196 if (!desc) { 197 dev_err(i2c->dev, 198 "Failed to get PIO reg. write descriptor.\n"); 199 goto select_init_pio_fail; 200 } 201 202 /* Queue the DMA data transfer. */ 203 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1); 204 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 205 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1, 206 DMA_MEM_TO_DEV, 207 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 208 if (!desc) { 209 dev_err(i2c->dev, 210 "Failed to get DMA data write descriptor.\n"); 211 goto select_init_dma_fail; 212 } 213 214 /* 215 * READ command. 216 */ 217 218 /* Queue the PIO register write transfer. */ 219 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ | 220 MXS_I2C_CTRL0_XFER_COUNT(msg->len); 221 desc = dmaengine_prep_slave_sg(i2c->dmach, 222 (struct scatterlist *)&i2c->pio_data[1], 223 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT); 224 if (!desc) { 225 dev_err(i2c->dev, 226 "Failed to get PIO reg. write descriptor.\n"); 227 goto select_init_dma_fail; 228 } 229 230 /* Queue the DMA data transfer. */ 231 sg_init_one(&i2c->sg_io[1], msg->buf, msg->len); 232 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 233 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1, 234 DMA_DEV_TO_MEM, 235 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 236 if (!desc) { 237 dev_err(i2c->dev, 238 "Failed to get DMA data write descriptor.\n"); 239 goto read_init_dma_fail; 240 } 241 } else { 242 i2c->dma_read = 0; 243 i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE; 244 245 /* 246 * WRITE command. 247 */ 248 249 /* Queue the PIO register write transfer. */ 250 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE | 251 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1); 252 desc = dmaengine_prep_slave_sg(i2c->dmach, 253 (struct scatterlist *)&i2c->pio_data[0], 254 1, DMA_TRANS_NONE, 0); 255 if (!desc) { 256 dev_err(i2c->dev, 257 "Failed to get PIO reg. write descriptor.\n"); 258 goto write_init_pio_fail; 259 } 260 261 /* Queue the DMA data transfer. */ 262 sg_init_table(i2c->sg_io, 2); 263 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1); 264 sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len); 265 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 266 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2, 267 DMA_MEM_TO_DEV, 268 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 269 if (!desc) { 270 dev_err(i2c->dev, 271 "Failed to get DMA data write descriptor.\n"); 272 goto write_init_dma_fail; 273 } 274 } 275 276 /* 277 * The last descriptor must have this callback, 278 * to finish the DMA transaction. 279 */ 280 desc->callback = mxs_i2c_dma_irq_callback; 281 desc->callback_param = i2c; 282 283 /* Start the transfer. */ 284 dmaengine_submit(desc); 285 dma_async_issue_pending(i2c->dmach); 286 return 0; 287 288 /* Read failpath. */ 289 read_init_dma_fail: 290 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 291 select_init_dma_fail: 292 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 293 select_init_pio_fail: 294 dmaengine_terminate_all(i2c->dmach); 295 return -EINVAL; 296 297 /* Write failpath. */ 298 write_init_dma_fail: 299 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 300 write_init_pio_fail: 301 dmaengine_terminate_all(i2c->dmach); 302 return -EINVAL; 303 } 304 305 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c) 306 { 307 unsigned long timeout = jiffies + msecs_to_jiffies(1000); 308 309 while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) { 310 if (time_after(jiffies, timeout)) 311 return -ETIMEDOUT; 312 cond_resched(); 313 } 314 315 return 0; 316 } 317 318 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c) 319 { 320 u32 state; 321 322 state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK; 323 324 if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 325 i2c->cmd_err = -ENXIO; 326 else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 327 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 328 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | 329 MXS_I2C_CTRL1_SLAVE_IRQ)) 330 i2c->cmd_err = -EIO; 331 332 return i2c->cmd_err; 333 } 334 335 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd) 336 { 337 u32 reg; 338 339 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 340 341 /* readback makes sure the write is latched into hardware */ 342 reg = readl(i2c->regs + MXS_I2C_CTRL0); 343 reg |= MXS_I2C_CTRL0_RUN; 344 writel(reg, i2c->regs + MXS_I2C_CTRL0); 345 } 346 347 /* 348 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet, 349 * CTRL0::PIO_MODE bit description clarifies the order in which the registers 350 * must be written during PIO mode operation. First, the CTRL0 register has 351 * to be programmed with all the necessary bits but the RUN bit. Then the 352 * payload has to be written into the DATA register. Finally, the transmission 353 * is executed by setting the RUN bit in CTRL0. 354 */ 355 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd, 356 u32 data) 357 { 358 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 359 360 if (i2c->dev_type == MXS_I2C_V1) 361 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET); 362 363 writel(data, i2c->regs + MXS_I2C_DATA(i2c)); 364 writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET); 365 } 366 367 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap, 368 struct i2c_msg *msg, uint32_t flags) 369 { 370 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 371 uint32_t addr_data = msg->addr << 1; 372 uint32_t data = 0; 373 int i, ret, xlen = 0, xmit = 0; 374 uint32_t start; 375 376 /* Mute IRQs coming from this block. */ 377 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR); 378 379 /* 380 * MX23 idea: 381 * - Enable CTRL0::PIO_MODE (1 << 24) 382 * - Enable CTRL1::ACK_MODE (1 << 27) 383 * 384 * WARNING! The MX23 is broken in some way, even if it claims 385 * to support PIO, when we try to transfer any amount of data 386 * that is not aligned to 4 bytes, the DMA engine will have 387 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the 388 * transfer. This in turn will mess up the next transfer as 389 * the block it emit one byte write onto the bus terminated 390 * with a NAK+STOP. A possible workaround is to reset the IP 391 * block after every PIO transmission, which might just work. 392 * 393 * NOTE: The CTRL0::PIO_MODE description is important, since 394 * it outlines how the PIO mode is really supposed to work. 395 */ 396 if (msg->flags & I2C_M_RD) { 397 /* 398 * PIO READ transfer: 399 * 400 * This transfer MUST be limited to 4 bytes maximum. It is not 401 * possible to transfer more than four bytes via PIO, since we 402 * can not in any way make sure we can read the data from the 403 * DATA register fast enough. Besides, the RX FIFO is only four 404 * bytes deep, thus we can only really read up to four bytes at 405 * time. Finally, there is no bit indicating us that new data 406 * arrived at the FIFO and can thus be fetched from the DATA 407 * register. 408 */ 409 BUG_ON(msg->len > 4); 410 411 addr_data |= I2C_SMBUS_READ; 412 413 /* SELECT command. */ 414 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT, 415 addr_data); 416 417 ret = mxs_i2c_pio_wait_xfer_end(i2c); 418 if (ret) { 419 dev_err(i2c->dev, 420 "PIO: Failed to send SELECT command!\n"); 421 goto cleanup; 422 } 423 424 /* READ command. */ 425 mxs_i2c_pio_trigger_cmd(i2c, 426 MXS_CMD_I2C_READ | flags | 427 MXS_I2C_CTRL0_XFER_COUNT(msg->len)); 428 429 ret = mxs_i2c_pio_wait_xfer_end(i2c); 430 if (ret) { 431 dev_err(i2c->dev, 432 "PIO: Failed to send SELECT command!\n"); 433 goto cleanup; 434 } 435 436 data = readl(i2c->regs + MXS_I2C_DATA(i2c)); 437 for (i = 0; i < msg->len; i++) { 438 msg->buf[i] = data & 0xff; 439 data >>= 8; 440 } 441 } else { 442 /* 443 * PIO WRITE transfer: 444 * 445 * The code below implements clock stretching to circumvent 446 * the possibility of kernel not being able to supply data 447 * fast enough. It is possible to transfer arbitrary amount 448 * of data using PIO write. 449 */ 450 addr_data |= I2C_SMBUS_WRITE; 451 452 /* 453 * The LSB of data buffer is the first byte blasted across 454 * the bus. Higher order bytes follow. Thus the following 455 * filling schematic. 456 */ 457 458 data = addr_data << 24; 459 460 /* Start the transfer with START condition. */ 461 start = MXS_I2C_CTRL0_PRE_SEND_START; 462 463 /* If the transfer is long, use clock stretching. */ 464 if (msg->len > 3) 465 start |= MXS_I2C_CTRL0_RETAIN_CLOCK; 466 467 for (i = 0; i < msg->len; i++) { 468 data >>= 8; 469 data |= (msg->buf[i] << 24); 470 471 xmit = 0; 472 473 /* This is the last transfer of the message. */ 474 if (i + 1 == msg->len) { 475 /* Add optional STOP flag. */ 476 start |= flags; 477 /* Remove RETAIN_CLOCK bit. */ 478 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK; 479 xmit = 1; 480 } 481 482 /* Four bytes are ready in the "data" variable. */ 483 if ((i & 3) == 2) 484 xmit = 1; 485 486 /* Nothing interesting happened, continue stuffing. */ 487 if (!xmit) 488 continue; 489 490 /* 491 * Compute the size of the transfer and shift the 492 * data accordingly. 493 * 494 * i = (4k + 0) .... xlen = 2 495 * i = (4k + 1) .... xlen = 3 496 * i = (4k + 2) .... xlen = 4 497 * i = (4k + 3) .... xlen = 1 498 */ 499 500 if ((i % 4) == 3) 501 xlen = 1; 502 else 503 xlen = (i % 4) + 2; 504 505 data >>= (4 - xlen) * 8; 506 507 dev_dbg(i2c->dev, 508 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n", 509 xlen, i, msg->len, 510 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "", 511 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "", 512 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : ""); 513 514 writel(MXS_I2C_DEBUG0_DMAREQ, 515 i2c->regs + MXS_I2C_DEBUG0_CLR(i2c)); 516 517 mxs_i2c_pio_trigger_write_cmd(i2c, 518 start | MXS_I2C_CTRL0_MASTER_MODE | 519 MXS_I2C_CTRL0_DIRECTION | 520 MXS_I2C_CTRL0_XFER_COUNT(xlen), data); 521 522 /* The START condition is sent only once. */ 523 start &= ~MXS_I2C_CTRL0_PRE_SEND_START; 524 525 /* Wait for the end of the transfer. */ 526 ret = mxs_i2c_pio_wait_xfer_end(i2c); 527 if (ret) { 528 dev_err(i2c->dev, 529 "PIO: Failed to finish WRITE cmd!\n"); 530 break; 531 } 532 533 /* Check NAK here. */ 534 ret = readl(i2c->regs + MXS_I2C_STAT) & 535 MXS_I2C_STAT_GOT_A_NAK; 536 if (ret) { 537 ret = -ENXIO; 538 goto cleanup; 539 } 540 } 541 } 542 543 /* make sure we capture any occurred error into cmd_err */ 544 ret = mxs_i2c_pio_check_error_state(i2c); 545 546 cleanup: 547 /* Clear any dangling IRQs and re-enable interrupts. */ 548 writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR); 549 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 550 551 /* Clear the PIO_MODE on i.MX23 */ 552 if (i2c->dev_type == MXS_I2C_V1) 553 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR); 554 555 return ret; 556 } 557 558 /* 559 * Low level master read/write transaction. 560 */ 561 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, 562 int stop) 563 { 564 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 565 int ret; 566 int flags; 567 int use_pio = 0; 568 569 flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0; 570 571 dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", 572 msg->addr, msg->len, msg->flags, stop); 573 574 if (msg->len == 0) 575 return -EINVAL; 576 577 /* 578 * The MX28 I2C IP block can only do PIO READ for transfer of to up 579 * 4 bytes of length. The write transfer is not limited as it can use 580 * clock stretching to avoid FIFO underruns. 581 */ 582 if ((msg->flags & I2C_M_RD) && (msg->len <= 4)) 583 use_pio = 1; 584 if (!(msg->flags & I2C_M_RD) && (msg->len < 7)) 585 use_pio = 1; 586 587 i2c->cmd_err = 0; 588 if (use_pio) { 589 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags); 590 /* No need to reset the block if NAK was received. */ 591 if (ret && (ret != -ENXIO)) 592 mxs_i2c_reset(i2c); 593 } else { 594 reinit_completion(&i2c->cmd_complete); 595 ret = mxs_i2c_dma_setup_xfer(adap, msg, flags); 596 if (ret) 597 return ret; 598 599 ret = wait_for_completion_timeout(&i2c->cmd_complete, 600 msecs_to_jiffies(1000)); 601 if (ret == 0) 602 goto timeout; 603 604 ret = i2c->cmd_err; 605 } 606 607 if (ret == -ENXIO) { 608 /* 609 * If the transfer fails with a NAK from the slave the 610 * controller halts until it gets told to return to idle state. 611 */ 612 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK, 613 i2c->regs + MXS_I2C_CTRL1_SET); 614 } 615 616 /* 617 * WARNING! 618 * The i.MX23 is strange. After each and every operation, it's I2C IP 619 * block must be reset, otherwise the IP block will misbehave. This can 620 * be observed on the bus by the block sending out one single byte onto 621 * the bus. In case such an error happens, bit 27 will be set in the 622 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet 623 * and is marked as "TBD" instead. To reset this bit to a correct state, 624 * reset the whole block. Since the block reset does not take long, do 625 * reset the block after every transfer to play safe. 626 */ 627 if (i2c->dev_type == MXS_I2C_V1) 628 mxs_i2c_reset(i2c); 629 630 dev_dbg(i2c->dev, "Done with err=%d\n", ret); 631 632 return ret; 633 634 timeout: 635 dev_dbg(i2c->dev, "Timeout!\n"); 636 mxs_i2c_dma_finish(i2c); 637 ret = mxs_i2c_reset(i2c); 638 if (ret) 639 return ret; 640 641 return -ETIMEDOUT; 642 } 643 644 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], 645 int num) 646 { 647 int i; 648 int err; 649 650 for (i = 0; i < num; i++) { 651 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1)); 652 if (err) 653 return err; 654 } 655 656 return num; 657 } 658 659 static u32 mxs_i2c_func(struct i2c_adapter *adap) 660 { 661 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 662 } 663 664 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id) 665 { 666 struct mxs_i2c_dev *i2c = dev_id; 667 u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK; 668 669 if (!stat) 670 return IRQ_NONE; 671 672 if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 673 i2c->cmd_err = -ENXIO; 674 else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 675 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 676 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) 677 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */ 678 i2c->cmd_err = -EIO; 679 680 writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR); 681 682 return IRQ_HANDLED; 683 } 684 685 static const struct i2c_algorithm mxs_i2c_algo = { 686 .master_xfer = mxs_i2c_xfer, 687 .functionality = mxs_i2c_func, 688 }; 689 690 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed) 691 { 692 /* The I2C block clock runs at 24MHz */ 693 const uint32_t clk = 24000000; 694 uint32_t divider; 695 uint16_t high_count, low_count, rcv_count, xmit_count; 696 uint32_t bus_free, leadin; 697 struct device *dev = i2c->dev; 698 699 divider = DIV_ROUND_UP(clk, speed); 700 701 if (divider < 25) { 702 /* 703 * limit the divider, so that min(low_count, high_count) 704 * is >= 1 705 */ 706 divider = 25; 707 dev_warn(dev, 708 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n", 709 speed / 1000, speed % 1000, 710 clk / divider / 1000, clk / divider % 1000); 711 } else if (divider > 1897) { 712 /* 713 * limit the divider, so that max(low_count, high_count) 714 * cannot exceed 1023 715 */ 716 divider = 1897; 717 dev_warn(dev, 718 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n", 719 speed / 1000, speed % 1000, 720 clk / divider / 1000, clk / divider % 1000); 721 } 722 723 /* 724 * The I2C spec specifies the following timing data: 725 * standard mode fast mode Bitfield name 726 * tLOW (SCL LOW period) 4700 ns 1300 ns 727 * tHIGH (SCL HIGH period) 4000 ns 600 ns 728 * tSU;DAT (data setup time) 250 ns 100 ns 729 * tHD;STA (START hold time) 4000 ns 600 ns 730 * tBUF (bus free time) 4700 ns 1300 ns 731 * 732 * The hardware (of the i.MX28 at least) seems to add 2 additional 733 * clock cycles to the low_count and 7 cycles to the high_count. 734 * This is compensated for by subtracting the respective constants 735 * from the values written to the timing registers. 736 */ 737 if (speed > 100000) { 738 /* fast mode */ 739 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6)); 740 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6)); 741 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000); 742 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000); 743 } else { 744 /* normal mode */ 745 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40)); 746 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40)); 747 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 748 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 749 } 750 rcv_count = high_count * 3 / 8; 751 xmit_count = low_count * 3 / 8; 752 753 dev_dbg(dev, 754 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n", 755 speed, clk / divider, divider, low_count, high_count, 756 xmit_count, rcv_count, leadin, bus_free); 757 758 low_count -= 2; 759 high_count -= 7; 760 i2c->timing0 = (high_count << 16) | rcv_count; 761 i2c->timing1 = (low_count << 16) | xmit_count; 762 i2c->timing2 = (bus_free << 16 | leadin); 763 } 764 765 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c) 766 { 767 uint32_t speed; 768 struct device *dev = i2c->dev; 769 struct device_node *node = dev->of_node; 770 int ret; 771 772 ret = of_property_read_u32(node, "clock-frequency", &speed); 773 if (ret) { 774 dev_warn(dev, "No I2C speed selected, using 100kHz\n"); 775 speed = 100000; 776 } 777 778 mxs_i2c_derive_timing(i2c, speed); 779 780 return 0; 781 } 782 783 static struct platform_device_id mxs_i2c_devtype[] = { 784 { 785 .name = "imx23-i2c", 786 .driver_data = MXS_I2C_V1, 787 }, { 788 .name = "imx28-i2c", 789 .driver_data = MXS_I2C_V2, 790 }, { /* sentinel */ } 791 }; 792 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype); 793 794 static const struct of_device_id mxs_i2c_dt_ids[] = { 795 { .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], }, 796 { .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], }, 797 { /* sentinel */ } 798 }; 799 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids); 800 801 static int mxs_i2c_probe(struct platform_device *pdev) 802 { 803 const struct of_device_id *of_id = 804 of_match_device(mxs_i2c_dt_ids, &pdev->dev); 805 struct device *dev = &pdev->dev; 806 struct mxs_i2c_dev *i2c; 807 struct i2c_adapter *adap; 808 struct resource *res; 809 resource_size_t res_size; 810 int err, irq; 811 812 i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL); 813 if (!i2c) 814 return -ENOMEM; 815 816 if (of_id) { 817 const struct platform_device_id *device_id = of_id->data; 818 i2c->dev_type = device_id->driver_data; 819 } 820 821 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 822 irq = platform_get_irq(pdev, 0); 823 824 if (!res || irq < 0) 825 return -ENOENT; 826 827 res_size = resource_size(res); 828 if (!devm_request_mem_region(dev, res->start, res_size, res->name)) 829 return -EBUSY; 830 831 i2c->regs = devm_ioremap_nocache(dev, res->start, res_size); 832 if (!i2c->regs) 833 return -EBUSY; 834 835 err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c); 836 if (err) 837 return err; 838 839 i2c->dev = dev; 840 841 init_completion(&i2c->cmd_complete); 842 843 if (dev->of_node) { 844 err = mxs_i2c_get_ofdata(i2c); 845 if (err) 846 return err; 847 } 848 849 /* Setup the DMA */ 850 i2c->dmach = dma_request_slave_channel(dev, "rx-tx"); 851 if (!i2c->dmach) { 852 dev_err(dev, "Failed to request dma\n"); 853 return -ENODEV; 854 } 855 856 platform_set_drvdata(pdev, i2c); 857 858 /* Do reset to enforce correct startup after pinmuxing */ 859 err = mxs_i2c_reset(i2c); 860 if (err) 861 return err; 862 863 adap = &i2c->adapter; 864 strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name)); 865 adap->owner = THIS_MODULE; 866 adap->algo = &mxs_i2c_algo; 867 adap->dev.parent = dev; 868 adap->nr = pdev->id; 869 adap->dev.of_node = pdev->dev.of_node; 870 i2c_set_adapdata(adap, i2c); 871 err = i2c_add_numbered_adapter(adap); 872 if (err) { 873 dev_err(dev, "Failed to add adapter (%d)\n", err); 874 writel(MXS_I2C_CTRL0_SFTRST, 875 i2c->regs + MXS_I2C_CTRL0_SET); 876 return err; 877 } 878 879 return 0; 880 } 881 882 static int mxs_i2c_remove(struct platform_device *pdev) 883 { 884 struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev); 885 886 i2c_del_adapter(&i2c->adapter); 887 888 if (i2c->dmach) 889 dma_release_channel(i2c->dmach); 890 891 writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); 892 893 return 0; 894 } 895 896 static struct platform_driver mxs_i2c_driver = { 897 .driver = { 898 .name = DRIVER_NAME, 899 .owner = THIS_MODULE, 900 .of_match_table = mxs_i2c_dt_ids, 901 }, 902 .probe = mxs_i2c_probe, 903 .remove = mxs_i2c_remove, 904 }; 905 906 static int __init mxs_i2c_init(void) 907 { 908 return platform_driver_register(&mxs_i2c_driver); 909 } 910 subsys_initcall(mxs_i2c_init); 911 912 static void __exit mxs_i2c_exit(void) 913 { 914 platform_driver_unregister(&mxs_i2c_driver); 915 } 916 module_exit(mxs_i2c_exit); 917 918 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 919 MODULE_AUTHOR("Wolfram Sang <w.sang@pengutronix.de>"); 920 MODULE_DESCRIPTION("MXS I2C Bus Driver"); 921 MODULE_LICENSE("GPL"); 922 MODULE_ALIAS("platform:" DRIVER_NAME); 923