xref: /openbmc/linux/drivers/i2c/busses/i2c-mxs.c (revision 48c926cd)
1 /*
2  * Freescale MXS I2C bus driver
3  *
4  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
5  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
6  *
7  * based on a (non-working) driver which was:
8  *
9  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  */
17 
18 #include <linux/slab.h>
19 #include <linux/device.h>
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/completion.h>
25 #include <linux/platform_device.h>
26 #include <linux/jiffies.h>
27 #include <linux/io.h>
28 #include <linux/stmp_device.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/dmaengine.h>
33 
34 #define DRIVER_NAME "mxs-i2c"
35 
36 #define MXS_I2C_CTRL0		(0x00)
37 #define MXS_I2C_CTRL0_SET	(0x04)
38 #define MXS_I2C_CTRL0_CLR	(0x08)
39 
40 #define MXS_I2C_CTRL0_SFTRST			0x80000000
41 #define MXS_I2C_CTRL0_RUN			0x20000000
42 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
43 #define MXS_I2C_CTRL0_PIO_MODE			0x01000000
44 #define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
45 #define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
46 #define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
47 #define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
48 #define MXS_I2C_CTRL0_DIRECTION			0x00010000
49 #define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
50 
51 #define MXS_I2C_TIMING0		(0x10)
52 #define MXS_I2C_TIMING1		(0x20)
53 #define MXS_I2C_TIMING2		(0x30)
54 
55 #define MXS_I2C_CTRL1		(0x40)
56 #define MXS_I2C_CTRL1_SET	(0x44)
57 #define MXS_I2C_CTRL1_CLR	(0x48)
58 
59 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
60 #define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
61 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
62 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
63 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
64 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
65 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
66 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
67 #define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
68 
69 #define MXS_I2C_STAT		(0x50)
70 #define MXS_I2C_STAT_GOT_A_NAK			0x10000000
71 #define MXS_I2C_STAT_BUS_BUSY			0x00000800
72 #define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
73 
74 #define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
75 
76 #define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
77 
78 #define MXS_I2C_DEBUG0_DMAREQ	0x80000000
79 
80 #define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
81 				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
82 				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
83 				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
84 				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
85 				 MXS_I2C_CTRL1_SLAVE_IRQ)
86 
87 
88 #define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
89 				 MXS_I2C_CTRL0_PRE_SEND_START |	\
90 				 MXS_I2C_CTRL0_MASTER_MODE |	\
91 				 MXS_I2C_CTRL0_DIRECTION |	\
92 				 MXS_I2C_CTRL0_XFER_COUNT(1))
93 
94 #define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
95 				 MXS_I2C_CTRL0_MASTER_MODE |	\
96 				 MXS_I2C_CTRL0_DIRECTION)
97 
98 #define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
99 				 MXS_I2C_CTRL0_MASTER_MODE)
100 
101 enum mxs_i2c_devtype {
102 	MXS_I2C_UNKNOWN = 0,
103 	MXS_I2C_V1,
104 	MXS_I2C_V2,
105 };
106 
107 /**
108  * struct mxs_i2c_dev - per device, private MXS-I2C data
109  *
110  * @dev: driver model device node
111  * @dev_type: distinguish i.MX23/i.MX28 features
112  * @regs: IO registers pointer
113  * @cmd_complete: completion object for transaction wait
114  * @cmd_err: error code for last transaction
115  * @adapter: i2c subsystem adapter node
116  */
117 struct mxs_i2c_dev {
118 	struct device *dev;
119 	enum mxs_i2c_devtype dev_type;
120 	void __iomem *regs;
121 	struct completion cmd_complete;
122 	int cmd_err;
123 	struct i2c_adapter adapter;
124 
125 	uint32_t timing0;
126 	uint32_t timing1;
127 	uint32_t timing2;
128 
129 	/* DMA support components */
130 	struct dma_chan			*dmach;
131 	uint32_t			pio_data[2];
132 	uint32_t			addr_data;
133 	struct scatterlist		sg_io[2];
134 	bool				dma_read;
135 };
136 
137 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
138 {
139 	int ret = stmp_reset_block(i2c->regs);
140 	if (ret)
141 		return ret;
142 
143 	/*
144 	 * Configure timing for the I2C block. The I2C TIMING2 register has to
145 	 * be programmed with this particular magic number. The rest is derived
146 	 * from the XTAL speed and requested I2C speed.
147 	 *
148 	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
149 	 */
150 	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
151 	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
152 	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
153 
154 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
155 
156 	return 0;
157 }
158 
159 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
160 {
161 	if (i2c->dma_read) {
162 		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
163 		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
164 	} else {
165 		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
166 	}
167 }
168 
169 static void mxs_i2c_dma_irq_callback(void *param)
170 {
171 	struct mxs_i2c_dev *i2c = param;
172 
173 	complete(&i2c->cmd_complete);
174 	mxs_i2c_dma_finish(i2c);
175 }
176 
177 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
178 			struct i2c_msg *msg, uint32_t flags)
179 {
180 	struct dma_async_tx_descriptor *desc;
181 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
182 
183 	if (msg->flags & I2C_M_RD) {
184 		i2c->dma_read = 1;
185 		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;
186 
187 		/*
188 		 * SELECT command.
189 		 */
190 
191 		/* Queue the PIO register write transfer. */
192 		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
193 		desc = dmaengine_prep_slave_sg(i2c->dmach,
194 					(struct scatterlist *)&i2c->pio_data[0],
195 					1, DMA_TRANS_NONE, 0);
196 		if (!desc) {
197 			dev_err(i2c->dev,
198 				"Failed to get PIO reg. write descriptor.\n");
199 			goto select_init_pio_fail;
200 		}
201 
202 		/* Queue the DMA data transfer. */
203 		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
204 		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
205 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
206 					DMA_MEM_TO_DEV,
207 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
208 		if (!desc) {
209 			dev_err(i2c->dev,
210 				"Failed to get DMA data write descriptor.\n");
211 			goto select_init_dma_fail;
212 		}
213 
214 		/*
215 		 * READ command.
216 		 */
217 
218 		/* Queue the PIO register write transfer. */
219 		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
220 				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
221 		desc = dmaengine_prep_slave_sg(i2c->dmach,
222 					(struct scatterlist *)&i2c->pio_data[1],
223 					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
224 		if (!desc) {
225 			dev_err(i2c->dev,
226 				"Failed to get PIO reg. write descriptor.\n");
227 			goto select_init_dma_fail;
228 		}
229 
230 		/* Queue the DMA data transfer. */
231 		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
232 		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
233 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
234 					DMA_DEV_TO_MEM,
235 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
236 		if (!desc) {
237 			dev_err(i2c->dev,
238 				"Failed to get DMA data write descriptor.\n");
239 			goto read_init_dma_fail;
240 		}
241 	} else {
242 		i2c->dma_read = 0;
243 		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;
244 
245 		/*
246 		 * WRITE command.
247 		 */
248 
249 		/* Queue the PIO register write transfer. */
250 		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
251 				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
252 		desc = dmaengine_prep_slave_sg(i2c->dmach,
253 					(struct scatterlist *)&i2c->pio_data[0],
254 					1, DMA_TRANS_NONE, 0);
255 		if (!desc) {
256 			dev_err(i2c->dev,
257 				"Failed to get PIO reg. write descriptor.\n");
258 			goto write_init_pio_fail;
259 		}
260 
261 		/* Queue the DMA data transfer. */
262 		sg_init_table(i2c->sg_io, 2);
263 		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
264 		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
265 		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
266 		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
267 					DMA_MEM_TO_DEV,
268 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
269 		if (!desc) {
270 			dev_err(i2c->dev,
271 				"Failed to get DMA data write descriptor.\n");
272 			goto write_init_dma_fail;
273 		}
274 	}
275 
276 	/*
277 	 * The last descriptor must have this callback,
278 	 * to finish the DMA transaction.
279 	 */
280 	desc->callback = mxs_i2c_dma_irq_callback;
281 	desc->callback_param = i2c;
282 
283 	/* Start the transfer. */
284 	dmaengine_submit(desc);
285 	dma_async_issue_pending(i2c->dmach);
286 	return 0;
287 
288 /* Read failpath. */
289 read_init_dma_fail:
290 	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
291 select_init_dma_fail:
292 	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
293 select_init_pio_fail:
294 	dmaengine_terminate_all(i2c->dmach);
295 	return -EINVAL;
296 
297 /* Write failpath. */
298 write_init_dma_fail:
299 	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
300 write_init_pio_fail:
301 	dmaengine_terminate_all(i2c->dmach);
302 	return -EINVAL;
303 }
304 
305 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
306 {
307 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
308 
309 	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
310 		if (readl(i2c->regs + MXS_I2C_CTRL1) &
311 				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
312 			return -ENXIO;
313 		if (time_after(jiffies, timeout))
314 			return -ETIMEDOUT;
315 		cond_resched();
316 	}
317 
318 	return 0;
319 }
320 
321 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
322 {
323 	u32 state;
324 
325 	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
326 
327 	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
328 		i2c->cmd_err = -ENXIO;
329 	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
330 			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
331 			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
332 			  MXS_I2C_CTRL1_SLAVE_IRQ))
333 		i2c->cmd_err = -EIO;
334 
335 	return i2c->cmd_err;
336 }
337 
338 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
339 {
340 	u32 reg;
341 
342 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
343 
344 	/* readback makes sure the write is latched into hardware */
345 	reg = readl(i2c->regs + MXS_I2C_CTRL0);
346 	reg |= MXS_I2C_CTRL0_RUN;
347 	writel(reg, i2c->regs + MXS_I2C_CTRL0);
348 }
349 
350 /*
351  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
352  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
353  * must be written during PIO mode operation. First, the CTRL0 register has
354  * to be programmed with all the necessary bits but the RUN bit. Then the
355  * payload has to be written into the DATA register. Finally, the transmission
356  * is executed by setting the RUN bit in CTRL0.
357  */
358 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
359 					  u32 data)
360 {
361 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
362 
363 	if (i2c->dev_type == MXS_I2C_V1)
364 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
365 
366 	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
367 	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
368 }
369 
370 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
371 			struct i2c_msg *msg, uint32_t flags)
372 {
373 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
374 	uint32_t addr_data = msg->addr << 1;
375 	uint32_t data = 0;
376 	int i, ret, xlen = 0, xmit = 0;
377 	uint32_t start;
378 
379 	/* Mute IRQs coming from this block. */
380 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
381 
382 	/*
383 	 * MX23 idea:
384 	 * - Enable CTRL0::PIO_MODE (1 << 24)
385 	 * - Enable CTRL1::ACK_MODE (1 << 27)
386 	 *
387 	 * WARNING! The MX23 is broken in some way, even if it claims
388 	 * to support PIO, when we try to transfer any amount of data
389 	 * that is not aligned to 4 bytes, the DMA engine will have
390 	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
391 	 * transfer. This in turn will mess up the next transfer as
392 	 * the block it emit one byte write onto the bus terminated
393 	 * with a NAK+STOP. A possible workaround is to reset the IP
394 	 * block after every PIO transmission, which might just work.
395 	 *
396 	 * NOTE: The CTRL0::PIO_MODE description is important, since
397 	 * it outlines how the PIO mode is really supposed to work.
398 	 */
399 	if (msg->flags & I2C_M_RD) {
400 		/*
401 		 * PIO READ transfer:
402 		 *
403 		 * This transfer MUST be limited to 4 bytes maximum. It is not
404 		 * possible to transfer more than four bytes via PIO, since we
405 		 * can not in any way make sure we can read the data from the
406 		 * DATA register fast enough. Besides, the RX FIFO is only four
407 		 * bytes deep, thus we can only really read up to four bytes at
408 		 * time. Finally, there is no bit indicating us that new data
409 		 * arrived at the FIFO and can thus be fetched from the DATA
410 		 * register.
411 		 */
412 		BUG_ON(msg->len > 4);
413 
414 		addr_data |= I2C_SMBUS_READ;
415 
416 		/* SELECT command. */
417 		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
418 					      addr_data);
419 
420 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
421 		if (ret) {
422 			dev_dbg(i2c->dev,
423 				"PIO: Failed to send SELECT command!\n");
424 			goto cleanup;
425 		}
426 
427 		/* READ command. */
428 		mxs_i2c_pio_trigger_cmd(i2c,
429 					MXS_CMD_I2C_READ | flags |
430 					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
431 
432 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
433 		if (ret) {
434 			dev_dbg(i2c->dev,
435 				"PIO: Failed to send READ command!\n");
436 			goto cleanup;
437 		}
438 
439 		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
440 		for (i = 0; i < msg->len; i++) {
441 			msg->buf[i] = data & 0xff;
442 			data >>= 8;
443 		}
444 	} else {
445 		/*
446 		 * PIO WRITE transfer:
447 		 *
448 		 * The code below implements clock stretching to circumvent
449 		 * the possibility of kernel not being able to supply data
450 		 * fast enough. It is possible to transfer arbitrary amount
451 		 * of data using PIO write.
452 		 */
453 		addr_data |= I2C_SMBUS_WRITE;
454 
455 		/*
456 		 * The LSB of data buffer is the first byte blasted across
457 		 * the bus. Higher order bytes follow. Thus the following
458 		 * filling schematic.
459 		 */
460 
461 		data = addr_data << 24;
462 
463 		/* Start the transfer with START condition. */
464 		start = MXS_I2C_CTRL0_PRE_SEND_START;
465 
466 		/* If the transfer is long, use clock stretching. */
467 		if (msg->len > 3)
468 			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
469 
470 		for (i = 0; i < msg->len; i++) {
471 			data >>= 8;
472 			data |= (msg->buf[i] << 24);
473 
474 			xmit = 0;
475 
476 			/* This is the last transfer of the message. */
477 			if (i + 1 == msg->len) {
478 				/* Add optional STOP flag. */
479 				start |= flags;
480 				/* Remove RETAIN_CLOCK bit. */
481 				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
482 				xmit = 1;
483 			}
484 
485 			/* Four bytes are ready in the "data" variable. */
486 			if ((i & 3) == 2)
487 				xmit = 1;
488 
489 			/* Nothing interesting happened, continue stuffing. */
490 			if (!xmit)
491 				continue;
492 
493 			/*
494 			 * Compute the size of the transfer and shift the
495 			 * data accordingly.
496 			 *
497 			 * i = (4k + 0) .... xlen = 2
498 			 * i = (4k + 1) .... xlen = 3
499 			 * i = (4k + 2) .... xlen = 4
500 			 * i = (4k + 3) .... xlen = 1
501 			 */
502 
503 			if ((i % 4) == 3)
504 				xlen = 1;
505 			else
506 				xlen = (i % 4) + 2;
507 
508 			data >>= (4 - xlen) * 8;
509 
510 			dev_dbg(i2c->dev,
511 				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
512 				xlen, i, msg->len,
513 				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
514 				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
515 				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
516 
517 			writel(MXS_I2C_DEBUG0_DMAREQ,
518 			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
519 
520 			mxs_i2c_pio_trigger_write_cmd(i2c,
521 				start | MXS_I2C_CTRL0_MASTER_MODE |
522 				MXS_I2C_CTRL0_DIRECTION |
523 				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
524 
525 			/* The START condition is sent only once. */
526 			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
527 
528 			/* Wait for the end of the transfer. */
529 			ret = mxs_i2c_pio_wait_xfer_end(i2c);
530 			if (ret) {
531 				dev_dbg(i2c->dev,
532 					"PIO: Failed to finish WRITE cmd!\n");
533 				break;
534 			}
535 
536 			/* Check NAK here. */
537 			ret = readl(i2c->regs + MXS_I2C_STAT) &
538 				    MXS_I2C_STAT_GOT_A_NAK;
539 			if (ret) {
540 				ret = -ENXIO;
541 				goto cleanup;
542 			}
543 		}
544 	}
545 
546 	/* make sure we capture any occurred error into cmd_err */
547 	ret = mxs_i2c_pio_check_error_state(i2c);
548 
549 cleanup:
550 	/* Clear any dangling IRQs and re-enable interrupts. */
551 	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
552 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
553 
554 	/* Clear the PIO_MODE on i.MX23 */
555 	if (i2c->dev_type == MXS_I2C_V1)
556 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
557 
558 	return ret;
559 }
560 
561 /*
562  * Low level master read/write transaction.
563  */
564 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
565 				int stop)
566 {
567 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
568 	int ret;
569 	int flags;
570 	int use_pio = 0;
571 	unsigned long time_left;
572 
573 	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
574 
575 	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
576 		msg->addr, msg->len, msg->flags, stop);
577 
578 	if (msg->len == 0)
579 		return -EINVAL;
580 
581 	/*
582 	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
583 	 * 4 bytes of length. The write transfer is not limited as it can use
584 	 * clock stretching to avoid FIFO underruns.
585 	 */
586 	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
587 		use_pio = 1;
588 	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
589 		use_pio = 1;
590 
591 	i2c->cmd_err = 0;
592 	if (use_pio) {
593 		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
594 		/* No need to reset the block if NAK was received. */
595 		if (ret && (ret != -ENXIO))
596 			mxs_i2c_reset(i2c);
597 	} else {
598 		reinit_completion(&i2c->cmd_complete);
599 		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
600 		if (ret)
601 			return ret;
602 
603 		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
604 						msecs_to_jiffies(1000));
605 		if (!time_left)
606 			goto timeout;
607 
608 		ret = i2c->cmd_err;
609 	}
610 
611 	if (ret == -ENXIO) {
612 		/*
613 		 * If the transfer fails with a NAK from the slave the
614 		 * controller halts until it gets told to return to idle state.
615 		 */
616 		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
617 		       i2c->regs + MXS_I2C_CTRL1_SET);
618 	}
619 
620 	/*
621 	 * WARNING!
622 	 * The i.MX23 is strange. After each and every operation, it's I2C IP
623 	 * block must be reset, otherwise the IP block will misbehave. This can
624 	 * be observed on the bus by the block sending out one single byte onto
625 	 * the bus. In case such an error happens, bit 27 will be set in the
626 	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
627 	 * and is marked as "TBD" instead. To reset this bit to a correct state,
628 	 * reset the whole block. Since the block reset does not take long, do
629 	 * reset the block after every transfer to play safe.
630 	 */
631 	if (i2c->dev_type == MXS_I2C_V1)
632 		mxs_i2c_reset(i2c);
633 
634 	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
635 
636 	return ret;
637 
638 timeout:
639 	dev_dbg(i2c->dev, "Timeout!\n");
640 	mxs_i2c_dma_finish(i2c);
641 	ret = mxs_i2c_reset(i2c);
642 	if (ret)
643 		return ret;
644 
645 	return -ETIMEDOUT;
646 }
647 
648 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
649 			int num)
650 {
651 	int i;
652 	int err;
653 
654 	for (i = 0; i < num; i++) {
655 		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
656 		if (err)
657 			return err;
658 	}
659 
660 	return num;
661 }
662 
663 static u32 mxs_i2c_func(struct i2c_adapter *adap)
664 {
665 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
666 }
667 
668 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
669 {
670 	struct mxs_i2c_dev *i2c = dev_id;
671 	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
672 
673 	if (!stat)
674 		return IRQ_NONE;
675 
676 	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
677 		i2c->cmd_err = -ENXIO;
678 	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
679 		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
680 		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
681 		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
682 		i2c->cmd_err = -EIO;
683 
684 	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
685 
686 	return IRQ_HANDLED;
687 }
688 
689 static const struct i2c_algorithm mxs_i2c_algo = {
690 	.master_xfer = mxs_i2c_xfer,
691 	.functionality = mxs_i2c_func,
692 };
693 
694 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
695 {
696 	/* The I2C block clock runs at 24MHz */
697 	const uint32_t clk = 24000000;
698 	uint32_t divider;
699 	uint16_t high_count, low_count, rcv_count, xmit_count;
700 	uint32_t bus_free, leadin;
701 	struct device *dev = i2c->dev;
702 
703 	divider = DIV_ROUND_UP(clk, speed);
704 
705 	if (divider < 25) {
706 		/*
707 		 * limit the divider, so that min(low_count, high_count)
708 		 * is >= 1
709 		 */
710 		divider = 25;
711 		dev_warn(dev,
712 			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
713 			speed / 1000, speed % 1000,
714 			clk / divider / 1000, clk / divider % 1000);
715 	} else if (divider > 1897) {
716 		/*
717 		 * limit the divider, so that max(low_count, high_count)
718 		 * cannot exceed 1023
719 		 */
720 		divider = 1897;
721 		dev_warn(dev,
722 			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
723 			speed / 1000, speed % 1000,
724 			clk / divider / 1000, clk / divider % 1000);
725 	}
726 
727 	/*
728 	 * The I2C spec specifies the following timing data:
729 	 *                          standard mode  fast mode Bitfield name
730 	 * tLOW (SCL LOW period)     4700 ns        1300 ns
731 	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
732 	 * tSU;DAT (data setup time)  250 ns         100 ns
733 	 * tHD;STA (START hold time) 4000 ns         600 ns
734 	 * tBUF (bus free time)      4700 ns        1300 ns
735 	 *
736 	 * The hardware (of the i.MX28 at least) seems to add 2 additional
737 	 * clock cycles to the low_count and 7 cycles to the high_count.
738 	 * This is compensated for by subtracting the respective constants
739 	 * from the values written to the timing registers.
740 	 */
741 	if (speed > 100000) {
742 		/* fast mode */
743 		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
744 		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
745 		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
746 		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
747 	} else {
748 		/* normal mode */
749 		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
750 		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
751 		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
752 		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
753 	}
754 	rcv_count = high_count * 3 / 8;
755 	xmit_count = low_count * 3 / 8;
756 
757 	dev_dbg(dev,
758 		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
759 		speed, clk / divider, divider, low_count, high_count,
760 		xmit_count, rcv_count, leadin, bus_free);
761 
762 	low_count -= 2;
763 	high_count -= 7;
764 	i2c->timing0 = (high_count << 16) | rcv_count;
765 	i2c->timing1 = (low_count << 16) | xmit_count;
766 	i2c->timing2 = (bus_free << 16 | leadin);
767 }
768 
769 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
770 {
771 	uint32_t speed;
772 	struct device *dev = i2c->dev;
773 	struct device_node *node = dev->of_node;
774 	int ret;
775 
776 	ret = of_property_read_u32(node, "clock-frequency", &speed);
777 	if (ret) {
778 		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
779 		speed = 100000;
780 	}
781 
782 	mxs_i2c_derive_timing(i2c, speed);
783 
784 	return 0;
785 }
786 
787 static const struct platform_device_id mxs_i2c_devtype[] = {
788 	{
789 		.name = "imx23-i2c",
790 		.driver_data = MXS_I2C_V1,
791 	}, {
792 		.name = "imx28-i2c",
793 		.driver_data = MXS_I2C_V2,
794 	}, { /* sentinel */ }
795 };
796 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);
797 
798 static const struct of_device_id mxs_i2c_dt_ids[] = {
799 	{ .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
800 	{ .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
801 	{ /* sentinel */ }
802 };
803 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
804 
805 static int mxs_i2c_probe(struct platform_device *pdev)
806 {
807 	const struct of_device_id *of_id =
808 				of_match_device(mxs_i2c_dt_ids, &pdev->dev);
809 	struct device *dev = &pdev->dev;
810 	struct mxs_i2c_dev *i2c;
811 	struct i2c_adapter *adap;
812 	struct resource *res;
813 	int err, irq;
814 
815 	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
816 	if (!i2c)
817 		return -ENOMEM;
818 
819 	if (of_id) {
820 		const struct platform_device_id *device_id = of_id->data;
821 		i2c->dev_type = device_id->driver_data;
822 	}
823 
824 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
825 	i2c->regs = devm_ioremap_resource(&pdev->dev, res);
826 	if (IS_ERR(i2c->regs))
827 		return PTR_ERR(i2c->regs);
828 
829 	irq = platform_get_irq(pdev, 0);
830 	if (irq < 0)
831 		return irq;
832 
833 	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
834 	if (err)
835 		return err;
836 
837 	i2c->dev = dev;
838 
839 	init_completion(&i2c->cmd_complete);
840 
841 	if (dev->of_node) {
842 		err = mxs_i2c_get_ofdata(i2c);
843 		if (err)
844 			return err;
845 	}
846 
847 	/* Setup the DMA */
848 	i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
849 	if (!i2c->dmach) {
850 		dev_err(dev, "Failed to request dma\n");
851 		return -ENODEV;
852 	}
853 
854 	platform_set_drvdata(pdev, i2c);
855 
856 	/* Do reset to enforce correct startup after pinmuxing */
857 	err = mxs_i2c_reset(i2c);
858 	if (err)
859 		return err;
860 
861 	adap = &i2c->adapter;
862 	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
863 	adap->owner = THIS_MODULE;
864 	adap->algo = &mxs_i2c_algo;
865 	adap->dev.parent = dev;
866 	adap->nr = pdev->id;
867 	adap->dev.of_node = pdev->dev.of_node;
868 	i2c_set_adapdata(adap, i2c);
869 	err = i2c_add_numbered_adapter(adap);
870 	if (err) {
871 		writel(MXS_I2C_CTRL0_SFTRST,
872 				i2c->regs + MXS_I2C_CTRL0_SET);
873 		return err;
874 	}
875 
876 	return 0;
877 }
878 
879 static int mxs_i2c_remove(struct platform_device *pdev)
880 {
881 	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
882 
883 	i2c_del_adapter(&i2c->adapter);
884 
885 	if (i2c->dmach)
886 		dma_release_channel(i2c->dmach);
887 
888 	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
889 
890 	return 0;
891 }
892 
893 static struct platform_driver mxs_i2c_driver = {
894 	.driver = {
895 		   .name = DRIVER_NAME,
896 		   .of_match_table = mxs_i2c_dt_ids,
897 		   },
898 	.probe = mxs_i2c_probe,
899 	.remove = mxs_i2c_remove,
900 };
901 
902 static int __init mxs_i2c_init(void)
903 {
904 	return platform_driver_register(&mxs_i2c_driver);
905 }
906 subsys_initcall(mxs_i2c_init);
907 
908 static void __exit mxs_i2c_exit(void)
909 {
910 	platform_driver_unregister(&mxs_i2c_driver);
911 }
912 module_exit(mxs_i2c_exit);
913 
914 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
915 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
916 MODULE_DESCRIPTION("MXS I2C Bus Driver");
917 MODULE_LICENSE("GPL");
918 MODULE_ALIAS("platform:" DRIVER_NAME);
919