1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale MXS I2C bus driver 4 * 5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de> 6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K. 7 * 8 * based on a (non-working) driver which was: 9 * 10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/device.h> 15 #include <linux/module.h> 16 #include <linux/i2c.h> 17 #include <linux/err.h> 18 #include <linux/interrupt.h> 19 #include <linux/completion.h> 20 #include <linux/platform_device.h> 21 #include <linux/jiffies.h> 22 #include <linux/io.h> 23 #include <linux/stmp_device.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmaengine.h> 28 #include <linux/dma/mxs-dma.h> 29 30 #define DRIVER_NAME "mxs-i2c" 31 32 #define MXS_I2C_CTRL0 (0x00) 33 #define MXS_I2C_CTRL0_SET (0x04) 34 #define MXS_I2C_CTRL0_CLR (0x08) 35 36 #define MXS_I2C_CTRL0_SFTRST 0x80000000 37 #define MXS_I2C_CTRL0_RUN 0x20000000 38 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000 39 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000 40 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000 41 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000 42 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000 43 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000 44 #define MXS_I2C_CTRL0_DIRECTION 0x00010000 45 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF) 46 47 #define MXS_I2C_TIMING0 (0x10) 48 #define MXS_I2C_TIMING1 (0x20) 49 #define MXS_I2C_TIMING2 (0x30) 50 51 #define MXS_I2C_CTRL1 (0x40) 52 #define MXS_I2C_CTRL1_SET (0x44) 53 #define MXS_I2C_CTRL1_CLR (0x48) 54 55 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000 56 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80 57 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40 58 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20 59 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10 60 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08 61 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04 62 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02 63 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01 64 65 #define MXS_I2C_STAT (0x50) 66 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000 67 #define MXS_I2C_STAT_BUS_BUSY 0x00000800 68 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400 69 70 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0) 71 72 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8) 73 74 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000 75 76 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \ 77 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \ 78 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \ 79 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \ 80 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \ 81 MXS_I2C_CTRL1_SLAVE_IRQ) 82 83 84 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \ 85 MXS_I2C_CTRL0_PRE_SEND_START | \ 86 MXS_I2C_CTRL0_MASTER_MODE | \ 87 MXS_I2C_CTRL0_DIRECTION | \ 88 MXS_I2C_CTRL0_XFER_COUNT(1)) 89 90 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \ 91 MXS_I2C_CTRL0_MASTER_MODE | \ 92 MXS_I2C_CTRL0_DIRECTION) 93 94 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \ 95 MXS_I2C_CTRL0_MASTER_MODE) 96 97 enum mxs_i2c_devtype { 98 MXS_I2C_UNKNOWN = 0, 99 MXS_I2C_V1, 100 MXS_I2C_V2, 101 }; 102 103 /** 104 * struct mxs_i2c_dev - per device, private MXS-I2C data 105 * 106 * @dev: driver model device node 107 * @dev_type: distinguish i.MX23/i.MX28 features 108 * @regs: IO registers pointer 109 * @cmd_complete: completion object for transaction wait 110 * @cmd_err: error code for last transaction 111 * @adapter: i2c subsystem adapter node 112 */ 113 struct mxs_i2c_dev { 114 struct device *dev; 115 enum mxs_i2c_devtype dev_type; 116 void __iomem *regs; 117 struct completion cmd_complete; 118 int cmd_err; 119 struct i2c_adapter adapter; 120 121 uint32_t timing0; 122 uint32_t timing1; 123 uint32_t timing2; 124 125 /* DMA support components */ 126 struct dma_chan *dmach; 127 uint32_t pio_data[2]; 128 uint32_t addr_data; 129 struct scatterlist sg_io[2]; 130 bool dma_read; 131 }; 132 133 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c) 134 { 135 int ret = stmp_reset_block(i2c->regs); 136 if (ret) 137 return ret; 138 139 /* 140 * Configure timing for the I2C block. The I2C TIMING2 register has to 141 * be programmed with this particular magic number. The rest is derived 142 * from the XTAL speed and requested I2C speed. 143 * 144 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4]. 145 */ 146 writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0); 147 writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1); 148 writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2); 149 150 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 151 152 return 0; 153 } 154 155 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c) 156 { 157 if (i2c->dma_read) { 158 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 159 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 160 } else { 161 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 162 } 163 } 164 165 static void mxs_i2c_dma_irq_callback(void *param) 166 { 167 struct mxs_i2c_dev *i2c = param; 168 169 complete(&i2c->cmd_complete); 170 mxs_i2c_dma_finish(i2c); 171 } 172 173 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap, 174 struct i2c_msg *msg, uint32_t flags) 175 { 176 struct dma_async_tx_descriptor *desc; 177 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 178 179 i2c->addr_data = i2c_8bit_addr_from_msg(msg); 180 181 if (msg->flags & I2C_M_RD) { 182 i2c->dma_read = true; 183 184 /* 185 * SELECT command. 186 */ 187 188 /* Queue the PIO register write transfer. */ 189 i2c->pio_data[0] = MXS_CMD_I2C_SELECT; 190 desc = dmaengine_prep_slave_sg(i2c->dmach, 191 (struct scatterlist *)&i2c->pio_data[0], 192 1, DMA_TRANS_NONE, 0); 193 if (!desc) { 194 dev_err(i2c->dev, 195 "Failed to get PIO reg. write descriptor.\n"); 196 goto select_init_pio_fail; 197 } 198 199 /* Queue the DMA data transfer. */ 200 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1); 201 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 202 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1, 203 DMA_MEM_TO_DEV, 204 DMA_PREP_INTERRUPT | 205 MXS_DMA_CTRL_WAIT4END); 206 if (!desc) { 207 dev_err(i2c->dev, 208 "Failed to get DMA data write descriptor.\n"); 209 goto select_init_dma_fail; 210 } 211 212 /* 213 * READ command. 214 */ 215 216 /* Queue the PIO register write transfer. */ 217 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ | 218 MXS_I2C_CTRL0_XFER_COUNT(msg->len); 219 desc = dmaengine_prep_slave_sg(i2c->dmach, 220 (struct scatterlist *)&i2c->pio_data[1], 221 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT); 222 if (!desc) { 223 dev_err(i2c->dev, 224 "Failed to get PIO reg. write descriptor.\n"); 225 goto select_init_dma_fail; 226 } 227 228 /* Queue the DMA data transfer. */ 229 sg_init_one(&i2c->sg_io[1], msg->buf, msg->len); 230 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 231 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1, 232 DMA_DEV_TO_MEM, 233 DMA_PREP_INTERRUPT | 234 MXS_DMA_CTRL_WAIT4END); 235 if (!desc) { 236 dev_err(i2c->dev, 237 "Failed to get DMA data write descriptor.\n"); 238 goto read_init_dma_fail; 239 } 240 } else { 241 i2c->dma_read = false; 242 243 /* 244 * WRITE command. 245 */ 246 247 /* Queue the PIO register write transfer. */ 248 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE | 249 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1); 250 desc = dmaengine_prep_slave_sg(i2c->dmach, 251 (struct scatterlist *)&i2c->pio_data[0], 252 1, DMA_TRANS_NONE, 0); 253 if (!desc) { 254 dev_err(i2c->dev, 255 "Failed to get PIO reg. write descriptor.\n"); 256 goto write_init_pio_fail; 257 } 258 259 /* Queue the DMA data transfer. */ 260 sg_init_table(i2c->sg_io, 2); 261 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1); 262 sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len); 263 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 264 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2, 265 DMA_MEM_TO_DEV, 266 DMA_PREP_INTERRUPT | 267 MXS_DMA_CTRL_WAIT4END); 268 if (!desc) { 269 dev_err(i2c->dev, 270 "Failed to get DMA data write descriptor.\n"); 271 goto write_init_dma_fail; 272 } 273 } 274 275 /* 276 * The last descriptor must have this callback, 277 * to finish the DMA transaction. 278 */ 279 desc->callback = mxs_i2c_dma_irq_callback; 280 desc->callback_param = i2c; 281 282 /* Start the transfer. */ 283 dmaengine_submit(desc); 284 dma_async_issue_pending(i2c->dmach); 285 return 0; 286 287 /* Read failpath. */ 288 read_init_dma_fail: 289 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 290 select_init_dma_fail: 291 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 292 select_init_pio_fail: 293 dmaengine_terminate_sync(i2c->dmach); 294 return -EINVAL; 295 296 /* Write failpath. */ 297 write_init_dma_fail: 298 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 299 write_init_pio_fail: 300 dmaengine_terminate_sync(i2c->dmach); 301 return -EINVAL; 302 } 303 304 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c) 305 { 306 unsigned long timeout = jiffies + msecs_to_jiffies(1000); 307 308 while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) { 309 if (readl(i2c->regs + MXS_I2C_CTRL1) & 310 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 311 return -ENXIO; 312 if (time_after(jiffies, timeout)) 313 return -ETIMEDOUT; 314 cond_resched(); 315 } 316 317 return 0; 318 } 319 320 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c) 321 { 322 u32 state; 323 324 state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK; 325 326 if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 327 i2c->cmd_err = -ENXIO; 328 else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 329 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 330 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | 331 MXS_I2C_CTRL1_SLAVE_IRQ)) 332 i2c->cmd_err = -EIO; 333 334 return i2c->cmd_err; 335 } 336 337 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd) 338 { 339 u32 reg; 340 341 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 342 343 /* readback makes sure the write is latched into hardware */ 344 reg = readl(i2c->regs + MXS_I2C_CTRL0); 345 reg |= MXS_I2C_CTRL0_RUN; 346 writel(reg, i2c->regs + MXS_I2C_CTRL0); 347 } 348 349 /* 350 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet, 351 * CTRL0::PIO_MODE bit description clarifies the order in which the registers 352 * must be written during PIO mode operation. First, the CTRL0 register has 353 * to be programmed with all the necessary bits but the RUN bit. Then the 354 * payload has to be written into the DATA register. Finally, the transmission 355 * is executed by setting the RUN bit in CTRL0. 356 */ 357 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd, 358 u32 data) 359 { 360 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 361 362 if (i2c->dev_type == MXS_I2C_V1) 363 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET); 364 365 writel(data, i2c->regs + MXS_I2C_DATA(i2c)); 366 writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET); 367 } 368 369 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap, 370 struct i2c_msg *msg, uint32_t flags) 371 { 372 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 373 uint32_t addr_data = i2c_8bit_addr_from_msg(msg); 374 uint32_t data = 0; 375 int i, ret, xlen = 0, xmit = 0; 376 uint32_t start; 377 378 /* Mute IRQs coming from this block. */ 379 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR); 380 381 /* 382 * MX23 idea: 383 * - Enable CTRL0::PIO_MODE (1 << 24) 384 * - Enable CTRL1::ACK_MODE (1 << 27) 385 * 386 * WARNING! The MX23 is broken in some way, even if it claims 387 * to support PIO, when we try to transfer any amount of data 388 * that is not aligned to 4 bytes, the DMA engine will have 389 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the 390 * transfer. This in turn will mess up the next transfer as 391 * the block it emit one byte write onto the bus terminated 392 * with a NAK+STOP. A possible workaround is to reset the IP 393 * block after every PIO transmission, which might just work. 394 * 395 * NOTE: The CTRL0::PIO_MODE description is important, since 396 * it outlines how the PIO mode is really supposed to work. 397 */ 398 if (msg->flags & I2C_M_RD) { 399 /* 400 * PIO READ transfer: 401 * 402 * This transfer MUST be limited to 4 bytes maximum. It is not 403 * possible to transfer more than four bytes via PIO, since we 404 * can not in any way make sure we can read the data from the 405 * DATA register fast enough. Besides, the RX FIFO is only four 406 * bytes deep, thus we can only really read up to four bytes at 407 * time. Finally, there is no bit indicating us that new data 408 * arrived at the FIFO and can thus be fetched from the DATA 409 * register. 410 */ 411 BUG_ON(msg->len > 4); 412 413 /* SELECT command. */ 414 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT, 415 addr_data); 416 417 ret = mxs_i2c_pio_wait_xfer_end(i2c); 418 if (ret) { 419 dev_dbg(i2c->dev, 420 "PIO: Failed to send SELECT command!\n"); 421 goto cleanup; 422 } 423 424 /* READ command. */ 425 mxs_i2c_pio_trigger_cmd(i2c, 426 MXS_CMD_I2C_READ | flags | 427 MXS_I2C_CTRL0_XFER_COUNT(msg->len)); 428 429 ret = mxs_i2c_pio_wait_xfer_end(i2c); 430 if (ret) { 431 dev_dbg(i2c->dev, 432 "PIO: Failed to send READ command!\n"); 433 goto cleanup; 434 } 435 436 data = readl(i2c->regs + MXS_I2C_DATA(i2c)); 437 for (i = 0; i < msg->len; i++) { 438 msg->buf[i] = data & 0xff; 439 data >>= 8; 440 } 441 } else { 442 /* 443 * PIO WRITE transfer: 444 * 445 * The code below implements clock stretching to circumvent 446 * the possibility of kernel not being able to supply data 447 * fast enough. It is possible to transfer arbitrary amount 448 * of data using PIO write. 449 */ 450 451 /* 452 * The LSB of data buffer is the first byte blasted across 453 * the bus. Higher order bytes follow. Thus the following 454 * filling schematic. 455 */ 456 457 data = addr_data << 24; 458 459 /* Start the transfer with START condition. */ 460 start = MXS_I2C_CTRL0_PRE_SEND_START; 461 462 /* If the transfer is long, use clock stretching. */ 463 if (msg->len > 3) 464 start |= MXS_I2C_CTRL0_RETAIN_CLOCK; 465 466 for (i = 0; i < msg->len; i++) { 467 data >>= 8; 468 data |= (msg->buf[i] << 24); 469 470 xmit = 0; 471 472 /* This is the last transfer of the message. */ 473 if (i + 1 == msg->len) { 474 /* Add optional STOP flag. */ 475 start |= flags; 476 /* Remove RETAIN_CLOCK bit. */ 477 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK; 478 xmit = 1; 479 } 480 481 /* Four bytes are ready in the "data" variable. */ 482 if ((i & 3) == 2) 483 xmit = 1; 484 485 /* Nothing interesting happened, continue stuffing. */ 486 if (!xmit) 487 continue; 488 489 /* 490 * Compute the size of the transfer and shift the 491 * data accordingly. 492 * 493 * i = (4k + 0) .... xlen = 2 494 * i = (4k + 1) .... xlen = 3 495 * i = (4k + 2) .... xlen = 4 496 * i = (4k + 3) .... xlen = 1 497 */ 498 499 if ((i % 4) == 3) 500 xlen = 1; 501 else 502 xlen = (i % 4) + 2; 503 504 data >>= (4 - xlen) * 8; 505 506 dev_dbg(i2c->dev, 507 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n", 508 xlen, i, msg->len, 509 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "", 510 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "", 511 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : ""); 512 513 writel(MXS_I2C_DEBUG0_DMAREQ, 514 i2c->regs + MXS_I2C_DEBUG0_CLR(i2c)); 515 516 mxs_i2c_pio_trigger_write_cmd(i2c, 517 start | MXS_I2C_CTRL0_MASTER_MODE | 518 MXS_I2C_CTRL0_DIRECTION | 519 MXS_I2C_CTRL0_XFER_COUNT(xlen), data); 520 521 /* The START condition is sent only once. */ 522 start &= ~MXS_I2C_CTRL0_PRE_SEND_START; 523 524 /* Wait for the end of the transfer. */ 525 ret = mxs_i2c_pio_wait_xfer_end(i2c); 526 if (ret) { 527 dev_dbg(i2c->dev, 528 "PIO: Failed to finish WRITE cmd!\n"); 529 break; 530 } 531 532 /* Check NAK here. */ 533 ret = readl(i2c->regs + MXS_I2C_STAT) & 534 MXS_I2C_STAT_GOT_A_NAK; 535 if (ret) { 536 ret = -ENXIO; 537 goto cleanup; 538 } 539 } 540 } 541 542 /* make sure we capture any occurred error into cmd_err */ 543 ret = mxs_i2c_pio_check_error_state(i2c); 544 545 cleanup: 546 /* Clear any dangling IRQs and re-enable interrupts. */ 547 writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR); 548 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 549 550 /* Clear the PIO_MODE on i.MX23 */ 551 if (i2c->dev_type == MXS_I2C_V1) 552 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR); 553 554 return ret; 555 } 556 557 /* 558 * Low level master read/write transaction. 559 */ 560 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, 561 int stop) 562 { 563 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 564 int ret; 565 int flags; 566 int use_pio = 0; 567 unsigned long time_left; 568 569 flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0; 570 571 dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", 572 msg->addr, msg->len, msg->flags, stop); 573 574 /* 575 * The MX28 I2C IP block can only do PIO READ for transfer of to up 576 * 4 bytes of length. The write transfer is not limited as it can use 577 * clock stretching to avoid FIFO underruns. 578 */ 579 if ((msg->flags & I2C_M_RD) && (msg->len <= 4)) 580 use_pio = 1; 581 if (!(msg->flags & I2C_M_RD) && (msg->len < 7)) 582 use_pio = 1; 583 584 i2c->cmd_err = 0; 585 if (use_pio) { 586 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags); 587 /* No need to reset the block if NAK was received. */ 588 if (ret && (ret != -ENXIO)) 589 mxs_i2c_reset(i2c); 590 } else { 591 reinit_completion(&i2c->cmd_complete); 592 ret = mxs_i2c_dma_setup_xfer(adap, msg, flags); 593 if (ret) 594 return ret; 595 596 time_left = wait_for_completion_timeout(&i2c->cmd_complete, 597 msecs_to_jiffies(1000)); 598 if (!time_left) 599 goto timeout; 600 601 ret = i2c->cmd_err; 602 } 603 604 if (ret == -ENXIO) { 605 /* 606 * If the transfer fails with a NAK from the slave the 607 * controller halts until it gets told to return to idle state. 608 */ 609 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK, 610 i2c->regs + MXS_I2C_CTRL1_SET); 611 } 612 613 /* 614 * WARNING! 615 * The i.MX23 is strange. After each and every operation, it's I2C IP 616 * block must be reset, otherwise the IP block will misbehave. This can 617 * be observed on the bus by the block sending out one single byte onto 618 * the bus. In case such an error happens, bit 27 will be set in the 619 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet 620 * and is marked as "TBD" instead. To reset this bit to a correct state, 621 * reset the whole block. Since the block reset does not take long, do 622 * reset the block after every transfer to play safe. 623 */ 624 if (i2c->dev_type == MXS_I2C_V1) 625 mxs_i2c_reset(i2c); 626 627 dev_dbg(i2c->dev, "Done with err=%d\n", ret); 628 629 return ret; 630 631 timeout: 632 dev_dbg(i2c->dev, "Timeout!\n"); 633 mxs_i2c_dma_finish(i2c); 634 ret = mxs_i2c_reset(i2c); 635 if (ret) 636 return ret; 637 638 return -ETIMEDOUT; 639 } 640 641 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], 642 int num) 643 { 644 int i; 645 int err; 646 647 for (i = 0; i < num; i++) { 648 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1)); 649 if (err) 650 return err; 651 } 652 653 return num; 654 } 655 656 static u32 mxs_i2c_func(struct i2c_adapter *adap) 657 { 658 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 659 } 660 661 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id) 662 { 663 struct mxs_i2c_dev *i2c = dev_id; 664 u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK; 665 666 if (!stat) 667 return IRQ_NONE; 668 669 if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 670 i2c->cmd_err = -ENXIO; 671 else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 672 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 673 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) 674 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */ 675 i2c->cmd_err = -EIO; 676 677 writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR); 678 679 return IRQ_HANDLED; 680 } 681 682 static const struct i2c_algorithm mxs_i2c_algo = { 683 .master_xfer = mxs_i2c_xfer, 684 .functionality = mxs_i2c_func, 685 }; 686 687 static const struct i2c_adapter_quirks mxs_i2c_quirks = { 688 .flags = I2C_AQ_NO_ZERO_LEN, 689 }; 690 691 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed) 692 { 693 /* The I2C block clock runs at 24MHz */ 694 const uint32_t clk = 24000000; 695 uint32_t divider; 696 uint16_t high_count, low_count, rcv_count, xmit_count; 697 uint32_t bus_free, leadin; 698 struct device *dev = i2c->dev; 699 700 divider = DIV_ROUND_UP(clk, speed); 701 702 if (divider < 25) { 703 /* 704 * limit the divider, so that min(low_count, high_count) 705 * is >= 1 706 */ 707 divider = 25; 708 dev_warn(dev, 709 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n", 710 speed / 1000, speed % 1000, 711 clk / divider / 1000, clk / divider % 1000); 712 } else if (divider > 1897) { 713 /* 714 * limit the divider, so that max(low_count, high_count) 715 * cannot exceed 1023 716 */ 717 divider = 1897; 718 dev_warn(dev, 719 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n", 720 speed / 1000, speed % 1000, 721 clk / divider / 1000, clk / divider % 1000); 722 } 723 724 /* 725 * The I2C spec specifies the following timing data: 726 * standard mode fast mode Bitfield name 727 * tLOW (SCL LOW period) 4700 ns 1300 ns 728 * tHIGH (SCL HIGH period) 4000 ns 600 ns 729 * tSU;DAT (data setup time) 250 ns 100 ns 730 * tHD;STA (START hold time) 4000 ns 600 ns 731 * tBUF (bus free time) 4700 ns 1300 ns 732 * 733 * The hardware (of the i.MX28 at least) seems to add 2 additional 734 * clock cycles to the low_count and 7 cycles to the high_count. 735 * This is compensated for by subtracting the respective constants 736 * from the values written to the timing registers. 737 */ 738 if (speed > I2C_MAX_STANDARD_MODE_FREQ) { 739 /* fast mode */ 740 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6)); 741 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6)); 742 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000); 743 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000); 744 } else { 745 /* normal mode */ 746 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40)); 747 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40)); 748 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 749 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 750 } 751 rcv_count = high_count * 3 / 8; 752 xmit_count = low_count * 3 / 8; 753 754 dev_dbg(dev, 755 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n", 756 speed, clk / divider, divider, low_count, high_count, 757 xmit_count, rcv_count, leadin, bus_free); 758 759 low_count -= 2; 760 high_count -= 7; 761 i2c->timing0 = (high_count << 16) | rcv_count; 762 i2c->timing1 = (low_count << 16) | xmit_count; 763 i2c->timing2 = (bus_free << 16 | leadin); 764 } 765 766 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c) 767 { 768 uint32_t speed; 769 struct device *dev = i2c->dev; 770 struct device_node *node = dev->of_node; 771 int ret; 772 773 ret = of_property_read_u32(node, "clock-frequency", &speed); 774 if (ret) { 775 dev_warn(dev, "No I2C speed selected, using 100kHz\n"); 776 speed = I2C_MAX_STANDARD_MODE_FREQ; 777 } 778 779 mxs_i2c_derive_timing(i2c, speed); 780 781 return 0; 782 } 783 784 static const struct of_device_id mxs_i2c_dt_ids[] = { 785 { .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, }, 786 { .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, }, 787 { /* sentinel */ } 788 }; 789 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids); 790 791 static int mxs_i2c_probe(struct platform_device *pdev) 792 { 793 struct device *dev = &pdev->dev; 794 struct mxs_i2c_dev *i2c; 795 struct i2c_adapter *adap; 796 int err, irq; 797 798 i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL); 799 if (!i2c) 800 return -ENOMEM; 801 802 i2c->dev_type = (enum mxs_i2c_devtype)of_device_get_match_data(&pdev->dev); 803 804 i2c->regs = devm_platform_ioremap_resource(pdev, 0); 805 if (IS_ERR(i2c->regs)) 806 return PTR_ERR(i2c->regs); 807 808 irq = platform_get_irq(pdev, 0); 809 if (irq < 0) 810 return irq; 811 812 err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c); 813 if (err) 814 return err; 815 816 i2c->dev = dev; 817 818 init_completion(&i2c->cmd_complete); 819 820 if (dev->of_node) { 821 err = mxs_i2c_get_ofdata(i2c); 822 if (err) 823 return err; 824 } 825 826 /* Setup the DMA */ 827 i2c->dmach = dma_request_chan(dev, "rx-tx"); 828 if (IS_ERR(i2c->dmach)) { 829 dev_err(dev, "Failed to request dma\n"); 830 return PTR_ERR(i2c->dmach); 831 } 832 833 platform_set_drvdata(pdev, i2c); 834 835 /* Do reset to enforce correct startup after pinmuxing */ 836 err = mxs_i2c_reset(i2c); 837 if (err) 838 return err; 839 840 adap = &i2c->adapter; 841 strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name)); 842 adap->owner = THIS_MODULE; 843 adap->algo = &mxs_i2c_algo; 844 adap->quirks = &mxs_i2c_quirks; 845 adap->dev.parent = dev; 846 adap->nr = pdev->id; 847 adap->dev.of_node = pdev->dev.of_node; 848 i2c_set_adapdata(adap, i2c); 849 err = i2c_add_numbered_adapter(adap); 850 if (err) { 851 writel(MXS_I2C_CTRL0_SFTRST, 852 i2c->regs + MXS_I2C_CTRL0_SET); 853 return err; 854 } 855 856 return 0; 857 } 858 859 static int mxs_i2c_remove(struct platform_device *pdev) 860 { 861 struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev); 862 863 i2c_del_adapter(&i2c->adapter); 864 865 if (i2c->dmach) 866 dma_release_channel(i2c->dmach); 867 868 writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); 869 870 return 0; 871 } 872 873 static struct platform_driver mxs_i2c_driver = { 874 .driver = { 875 .name = DRIVER_NAME, 876 .of_match_table = mxs_i2c_dt_ids, 877 }, 878 .probe = mxs_i2c_probe, 879 .remove = mxs_i2c_remove, 880 }; 881 882 static int __init mxs_i2c_init(void) 883 { 884 return platform_driver_register(&mxs_i2c_driver); 885 } 886 subsys_initcall(mxs_i2c_init); 887 888 static void __exit mxs_i2c_exit(void) 889 { 890 platform_driver_unregister(&mxs_i2c_driver); 891 } 892 module_exit(mxs_i2c_exit); 893 894 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 895 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>"); 896 MODULE_DESCRIPTION("MXS I2C Bus Driver"); 897 MODULE_LICENSE("GPL"); 898 MODULE_ALIAS("platform:" DRIVER_NAME); 899