xref: /openbmc/linux/drivers/i2c/busses/i2c-mxs.c (revision 275876e2)
1 /*
2  * Freescale MXS I2C bus driver
3  *
4  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
5  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
6  *
7  * based on a (non-working) driver which was:
8  *
9  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  */
17 
18 #include <linux/slab.h>
19 #include <linux/device.h>
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/completion.h>
25 #include <linux/platform_device.h>
26 #include <linux/jiffies.h>
27 #include <linux/io.h>
28 #include <linux/stmp_device.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/dmaengine.h>
33 
34 #define DRIVER_NAME "mxs-i2c"
35 
36 #define MXS_I2C_CTRL0		(0x00)
37 #define MXS_I2C_CTRL0_SET	(0x04)
38 #define MXS_I2C_CTRL0_CLR	(0x08)
39 
40 #define MXS_I2C_CTRL0_SFTRST			0x80000000
41 #define MXS_I2C_CTRL0_RUN			0x20000000
42 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
43 #define MXS_I2C_CTRL0_PIO_MODE			0x01000000
44 #define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
45 #define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
46 #define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
47 #define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
48 #define MXS_I2C_CTRL0_DIRECTION			0x00010000
49 #define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
50 
51 #define MXS_I2C_TIMING0		(0x10)
52 #define MXS_I2C_TIMING1		(0x20)
53 #define MXS_I2C_TIMING2		(0x30)
54 
55 #define MXS_I2C_CTRL1		(0x40)
56 #define MXS_I2C_CTRL1_SET	(0x44)
57 #define MXS_I2C_CTRL1_CLR	(0x48)
58 
59 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
60 #define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
61 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
62 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
63 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
64 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
65 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
66 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
67 #define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
68 
69 #define MXS_I2C_STAT		(0x50)
70 #define MXS_I2C_STAT_GOT_A_NAK			0x10000000
71 #define MXS_I2C_STAT_BUS_BUSY			0x00000800
72 #define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
73 
74 #define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
75 
76 #define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
77 
78 #define MXS_I2C_DEBUG0_DMAREQ	0x80000000
79 
80 #define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
81 				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
82 				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
83 				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
84 				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
85 				 MXS_I2C_CTRL1_SLAVE_IRQ)
86 
87 
88 #define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
89 				 MXS_I2C_CTRL0_PRE_SEND_START |	\
90 				 MXS_I2C_CTRL0_MASTER_MODE |	\
91 				 MXS_I2C_CTRL0_DIRECTION |	\
92 				 MXS_I2C_CTRL0_XFER_COUNT(1))
93 
94 #define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
95 				 MXS_I2C_CTRL0_MASTER_MODE |	\
96 				 MXS_I2C_CTRL0_DIRECTION)
97 
98 #define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
99 				 MXS_I2C_CTRL0_MASTER_MODE)
100 
101 enum mxs_i2c_devtype {
102 	MXS_I2C_UNKNOWN = 0,
103 	MXS_I2C_V1,
104 	MXS_I2C_V2,
105 };
106 
107 /**
108  * struct mxs_i2c_dev - per device, private MXS-I2C data
109  *
110  * @dev: driver model device node
111  * @dev_type: distinguish i.MX23/i.MX28 features
112  * @regs: IO registers pointer
113  * @cmd_complete: completion object for transaction wait
114  * @cmd_err: error code for last transaction
115  * @adapter: i2c subsystem adapter node
116  */
117 struct mxs_i2c_dev {
118 	struct device *dev;
119 	enum mxs_i2c_devtype dev_type;
120 	void __iomem *regs;
121 	struct completion cmd_complete;
122 	int cmd_err;
123 	struct i2c_adapter adapter;
124 
125 	uint32_t timing0;
126 	uint32_t timing1;
127 	uint32_t timing2;
128 
129 	/* DMA support components */
130 	struct dma_chan			*dmach;
131 	uint32_t			pio_data[2];
132 	uint32_t			addr_data;
133 	struct scatterlist		sg_io[2];
134 	bool				dma_read;
135 };
136 
137 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
138 {
139 	int ret = stmp_reset_block(i2c->regs);
140 	if (ret)
141 		return ret;
142 
143 	/*
144 	 * Configure timing for the I2C block. The I2C TIMING2 register has to
145 	 * be programmed with this particular magic number. The rest is derived
146 	 * from the XTAL speed and requested I2C speed.
147 	 *
148 	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
149 	 */
150 	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
151 	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
152 	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
153 
154 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
155 
156 	return 0;
157 }
158 
159 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
160 {
161 	if (i2c->dma_read) {
162 		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
163 		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
164 	} else {
165 		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
166 	}
167 }
168 
169 static void mxs_i2c_dma_irq_callback(void *param)
170 {
171 	struct mxs_i2c_dev *i2c = param;
172 
173 	complete(&i2c->cmd_complete);
174 	mxs_i2c_dma_finish(i2c);
175 }
176 
177 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
178 			struct i2c_msg *msg, uint32_t flags)
179 {
180 	struct dma_async_tx_descriptor *desc;
181 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
182 
183 	if (msg->flags & I2C_M_RD) {
184 		i2c->dma_read = 1;
185 		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;
186 
187 		/*
188 		 * SELECT command.
189 		 */
190 
191 		/* Queue the PIO register write transfer. */
192 		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
193 		desc = dmaengine_prep_slave_sg(i2c->dmach,
194 					(struct scatterlist *)&i2c->pio_data[0],
195 					1, DMA_TRANS_NONE, 0);
196 		if (!desc) {
197 			dev_err(i2c->dev,
198 				"Failed to get PIO reg. write descriptor.\n");
199 			goto select_init_pio_fail;
200 		}
201 
202 		/* Queue the DMA data transfer. */
203 		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
204 		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
205 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
206 					DMA_MEM_TO_DEV,
207 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
208 		if (!desc) {
209 			dev_err(i2c->dev,
210 				"Failed to get DMA data write descriptor.\n");
211 			goto select_init_dma_fail;
212 		}
213 
214 		/*
215 		 * READ command.
216 		 */
217 
218 		/* Queue the PIO register write transfer. */
219 		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
220 				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
221 		desc = dmaengine_prep_slave_sg(i2c->dmach,
222 					(struct scatterlist *)&i2c->pio_data[1],
223 					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
224 		if (!desc) {
225 			dev_err(i2c->dev,
226 				"Failed to get PIO reg. write descriptor.\n");
227 			goto select_init_dma_fail;
228 		}
229 
230 		/* Queue the DMA data transfer. */
231 		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
232 		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
233 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
234 					DMA_DEV_TO_MEM,
235 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
236 		if (!desc) {
237 			dev_err(i2c->dev,
238 				"Failed to get DMA data write descriptor.\n");
239 			goto read_init_dma_fail;
240 		}
241 	} else {
242 		i2c->dma_read = 0;
243 		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;
244 
245 		/*
246 		 * WRITE command.
247 		 */
248 
249 		/* Queue the PIO register write transfer. */
250 		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
251 				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
252 		desc = dmaengine_prep_slave_sg(i2c->dmach,
253 					(struct scatterlist *)&i2c->pio_data[0],
254 					1, DMA_TRANS_NONE, 0);
255 		if (!desc) {
256 			dev_err(i2c->dev,
257 				"Failed to get PIO reg. write descriptor.\n");
258 			goto write_init_pio_fail;
259 		}
260 
261 		/* Queue the DMA data transfer. */
262 		sg_init_table(i2c->sg_io, 2);
263 		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
264 		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
265 		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
266 		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
267 					DMA_MEM_TO_DEV,
268 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
269 		if (!desc) {
270 			dev_err(i2c->dev,
271 				"Failed to get DMA data write descriptor.\n");
272 			goto write_init_dma_fail;
273 		}
274 	}
275 
276 	/*
277 	 * The last descriptor must have this callback,
278 	 * to finish the DMA transaction.
279 	 */
280 	desc->callback = mxs_i2c_dma_irq_callback;
281 	desc->callback_param = i2c;
282 
283 	/* Start the transfer. */
284 	dmaengine_submit(desc);
285 	dma_async_issue_pending(i2c->dmach);
286 	return 0;
287 
288 /* Read failpath. */
289 read_init_dma_fail:
290 	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
291 select_init_dma_fail:
292 	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
293 select_init_pio_fail:
294 	dmaengine_terminate_all(i2c->dmach);
295 	return -EINVAL;
296 
297 /* Write failpath. */
298 write_init_dma_fail:
299 	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
300 write_init_pio_fail:
301 	dmaengine_terminate_all(i2c->dmach);
302 	return -EINVAL;
303 }
304 
305 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
306 {
307 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
308 
309 	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
310 		if (time_after(jiffies, timeout))
311 			return -ETIMEDOUT;
312 		cond_resched();
313 	}
314 
315 	return 0;
316 }
317 
318 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
319 {
320 	u32 state;
321 
322 	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
323 
324 	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
325 		i2c->cmd_err = -ENXIO;
326 	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
327 			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
328 			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
329 			  MXS_I2C_CTRL1_SLAVE_IRQ))
330 		i2c->cmd_err = -EIO;
331 
332 	return i2c->cmd_err;
333 }
334 
335 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
336 {
337 	u32 reg;
338 
339 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
340 
341 	/* readback makes sure the write is latched into hardware */
342 	reg = readl(i2c->regs + MXS_I2C_CTRL0);
343 	reg |= MXS_I2C_CTRL0_RUN;
344 	writel(reg, i2c->regs + MXS_I2C_CTRL0);
345 }
346 
347 /*
348  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
349  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
350  * must be written during PIO mode operation. First, the CTRL0 register has
351  * to be programmed with all the necessary bits but the RUN bit. Then the
352  * payload has to be written into the DATA register. Finally, the transmission
353  * is executed by setting the RUN bit in CTRL0.
354  */
355 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
356 					  u32 data)
357 {
358 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
359 
360 	if (i2c->dev_type == MXS_I2C_V1)
361 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
362 
363 	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
364 	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
365 }
366 
367 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
368 			struct i2c_msg *msg, uint32_t flags)
369 {
370 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
371 	uint32_t addr_data = msg->addr << 1;
372 	uint32_t data = 0;
373 	int i, ret, xlen = 0, xmit = 0;
374 	uint32_t start;
375 
376 	/* Mute IRQs coming from this block. */
377 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
378 
379 	/*
380 	 * MX23 idea:
381 	 * - Enable CTRL0::PIO_MODE (1 << 24)
382 	 * - Enable CTRL1::ACK_MODE (1 << 27)
383 	 *
384 	 * WARNING! The MX23 is broken in some way, even if it claims
385 	 * to support PIO, when we try to transfer any amount of data
386 	 * that is not aligned to 4 bytes, the DMA engine will have
387 	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
388 	 * transfer. This in turn will mess up the next transfer as
389 	 * the block it emit one byte write onto the bus terminated
390 	 * with a NAK+STOP. A possible workaround is to reset the IP
391 	 * block after every PIO transmission, which might just work.
392 	 *
393 	 * NOTE: The CTRL0::PIO_MODE description is important, since
394 	 * it outlines how the PIO mode is really supposed to work.
395 	 */
396 	if (msg->flags & I2C_M_RD) {
397 		/*
398 		 * PIO READ transfer:
399 		 *
400 		 * This transfer MUST be limited to 4 bytes maximum. It is not
401 		 * possible to transfer more than four bytes via PIO, since we
402 		 * can not in any way make sure we can read the data from the
403 		 * DATA register fast enough. Besides, the RX FIFO is only four
404 		 * bytes deep, thus we can only really read up to four bytes at
405 		 * time. Finally, there is no bit indicating us that new data
406 		 * arrived at the FIFO and can thus be fetched from the DATA
407 		 * register.
408 		 */
409 		BUG_ON(msg->len > 4);
410 
411 		addr_data |= I2C_SMBUS_READ;
412 
413 		/* SELECT command. */
414 		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
415 					      addr_data);
416 
417 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
418 		if (ret) {
419 			dev_err(i2c->dev,
420 				"PIO: Failed to send SELECT command!\n");
421 			goto cleanup;
422 		}
423 
424 		/* READ command. */
425 		mxs_i2c_pio_trigger_cmd(i2c,
426 					MXS_CMD_I2C_READ | flags |
427 					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
428 
429 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
430 		if (ret) {
431 			dev_err(i2c->dev,
432 				"PIO: Failed to send SELECT command!\n");
433 			goto cleanup;
434 		}
435 
436 		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
437 		for (i = 0; i < msg->len; i++) {
438 			msg->buf[i] = data & 0xff;
439 			data >>= 8;
440 		}
441 	} else {
442 		/*
443 		 * PIO WRITE transfer:
444 		 *
445 		 * The code below implements clock stretching to circumvent
446 		 * the possibility of kernel not being able to supply data
447 		 * fast enough. It is possible to transfer arbitrary amount
448 		 * of data using PIO write.
449 		 */
450 		addr_data |= I2C_SMBUS_WRITE;
451 
452 		/*
453 		 * The LSB of data buffer is the first byte blasted across
454 		 * the bus. Higher order bytes follow. Thus the following
455 		 * filling schematic.
456 		 */
457 
458 		data = addr_data << 24;
459 
460 		/* Start the transfer with START condition. */
461 		start = MXS_I2C_CTRL0_PRE_SEND_START;
462 
463 		/* If the transfer is long, use clock stretching. */
464 		if (msg->len > 3)
465 			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
466 
467 		for (i = 0; i < msg->len; i++) {
468 			data >>= 8;
469 			data |= (msg->buf[i] << 24);
470 
471 			xmit = 0;
472 
473 			/* This is the last transfer of the message. */
474 			if (i + 1 == msg->len) {
475 				/* Add optional STOP flag. */
476 				start |= flags;
477 				/* Remove RETAIN_CLOCK bit. */
478 				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
479 				xmit = 1;
480 			}
481 
482 			/* Four bytes are ready in the "data" variable. */
483 			if ((i & 3) == 2)
484 				xmit = 1;
485 
486 			/* Nothing interesting happened, continue stuffing. */
487 			if (!xmit)
488 				continue;
489 
490 			/*
491 			 * Compute the size of the transfer and shift the
492 			 * data accordingly.
493 			 *
494 			 * i = (4k + 0) .... xlen = 2
495 			 * i = (4k + 1) .... xlen = 3
496 			 * i = (4k + 2) .... xlen = 4
497 			 * i = (4k + 3) .... xlen = 1
498 			 */
499 
500 			if ((i % 4) == 3)
501 				xlen = 1;
502 			else
503 				xlen = (i % 4) + 2;
504 
505 			data >>= (4 - xlen) * 8;
506 
507 			dev_dbg(i2c->dev,
508 				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
509 				xlen, i, msg->len,
510 				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
511 				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
512 				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
513 
514 			writel(MXS_I2C_DEBUG0_DMAREQ,
515 			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
516 
517 			mxs_i2c_pio_trigger_write_cmd(i2c,
518 				start | MXS_I2C_CTRL0_MASTER_MODE |
519 				MXS_I2C_CTRL0_DIRECTION |
520 				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
521 
522 			/* The START condition is sent only once. */
523 			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
524 
525 			/* Wait for the end of the transfer. */
526 			ret = mxs_i2c_pio_wait_xfer_end(i2c);
527 			if (ret) {
528 				dev_err(i2c->dev,
529 					"PIO: Failed to finish WRITE cmd!\n");
530 				break;
531 			}
532 
533 			/* Check NAK here. */
534 			ret = readl(i2c->regs + MXS_I2C_STAT) &
535 				    MXS_I2C_STAT_GOT_A_NAK;
536 			if (ret) {
537 				ret = -ENXIO;
538 				goto cleanup;
539 			}
540 		}
541 	}
542 
543 	/* make sure we capture any occurred error into cmd_err */
544 	ret = mxs_i2c_pio_check_error_state(i2c);
545 
546 cleanup:
547 	/* Clear any dangling IRQs and re-enable interrupts. */
548 	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
549 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
550 
551 	/* Clear the PIO_MODE on i.MX23 */
552 	if (i2c->dev_type == MXS_I2C_V1)
553 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
554 
555 	return ret;
556 }
557 
558 /*
559  * Low level master read/write transaction.
560  */
561 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
562 				int stop)
563 {
564 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
565 	int ret;
566 	int flags;
567 	int use_pio = 0;
568 
569 	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570 
571 	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572 		msg->addr, msg->len, msg->flags, stop);
573 
574 	if (msg->len == 0)
575 		return -EINVAL;
576 
577 	/*
578 	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
579 	 * 4 bytes of length. The write transfer is not limited as it can use
580 	 * clock stretching to avoid FIFO underruns.
581 	 */
582 	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
583 		use_pio = 1;
584 	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
585 		use_pio = 1;
586 
587 	i2c->cmd_err = 0;
588 	if (use_pio) {
589 		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
590 		/* No need to reset the block if NAK was received. */
591 		if (ret && (ret != -ENXIO))
592 			mxs_i2c_reset(i2c);
593 	} else {
594 		reinit_completion(&i2c->cmd_complete);
595 		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
596 		if (ret)
597 			return ret;
598 
599 		ret = wait_for_completion_timeout(&i2c->cmd_complete,
600 						msecs_to_jiffies(1000));
601 		if (ret == 0)
602 			goto timeout;
603 
604 		ret = i2c->cmd_err;
605 	}
606 
607 	if (ret == -ENXIO) {
608 		/*
609 		 * If the transfer fails with a NAK from the slave the
610 		 * controller halts until it gets told to return to idle state.
611 		 */
612 		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
613 		       i2c->regs + MXS_I2C_CTRL1_SET);
614 	}
615 
616 	/*
617 	 * WARNING!
618 	 * The i.MX23 is strange. After each and every operation, it's I2C IP
619 	 * block must be reset, otherwise the IP block will misbehave. This can
620 	 * be observed on the bus by the block sending out one single byte onto
621 	 * the bus. In case such an error happens, bit 27 will be set in the
622 	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
623 	 * and is marked as "TBD" instead. To reset this bit to a correct state,
624 	 * reset the whole block. Since the block reset does not take long, do
625 	 * reset the block after every transfer to play safe.
626 	 */
627 	if (i2c->dev_type == MXS_I2C_V1)
628 		mxs_i2c_reset(i2c);
629 
630 	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
631 
632 	return ret;
633 
634 timeout:
635 	dev_dbg(i2c->dev, "Timeout!\n");
636 	mxs_i2c_dma_finish(i2c);
637 	ret = mxs_i2c_reset(i2c);
638 	if (ret)
639 		return ret;
640 
641 	return -ETIMEDOUT;
642 }
643 
644 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
645 			int num)
646 {
647 	int i;
648 	int err;
649 
650 	for (i = 0; i < num; i++) {
651 		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
652 		if (err)
653 			return err;
654 	}
655 
656 	return num;
657 }
658 
659 static u32 mxs_i2c_func(struct i2c_adapter *adap)
660 {
661 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
662 }
663 
664 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
665 {
666 	struct mxs_i2c_dev *i2c = dev_id;
667 	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
668 
669 	if (!stat)
670 		return IRQ_NONE;
671 
672 	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
673 		i2c->cmd_err = -ENXIO;
674 	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
675 		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
676 		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
677 		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
678 		i2c->cmd_err = -EIO;
679 
680 	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
681 
682 	return IRQ_HANDLED;
683 }
684 
685 static const struct i2c_algorithm mxs_i2c_algo = {
686 	.master_xfer = mxs_i2c_xfer,
687 	.functionality = mxs_i2c_func,
688 };
689 
690 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
691 {
692 	/* The I2C block clock runs at 24MHz */
693 	const uint32_t clk = 24000000;
694 	uint32_t divider;
695 	uint16_t high_count, low_count, rcv_count, xmit_count;
696 	uint32_t bus_free, leadin;
697 	struct device *dev = i2c->dev;
698 
699 	divider = DIV_ROUND_UP(clk, speed);
700 
701 	if (divider < 25) {
702 		/*
703 		 * limit the divider, so that min(low_count, high_count)
704 		 * is >= 1
705 		 */
706 		divider = 25;
707 		dev_warn(dev,
708 			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
709 			speed / 1000, speed % 1000,
710 			clk / divider / 1000, clk / divider % 1000);
711 	} else if (divider > 1897) {
712 		/*
713 		 * limit the divider, so that max(low_count, high_count)
714 		 * cannot exceed 1023
715 		 */
716 		divider = 1897;
717 		dev_warn(dev,
718 			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
719 			speed / 1000, speed % 1000,
720 			clk / divider / 1000, clk / divider % 1000);
721 	}
722 
723 	/*
724 	 * The I2C spec specifies the following timing data:
725 	 *                          standard mode  fast mode Bitfield name
726 	 * tLOW (SCL LOW period)     4700 ns        1300 ns
727 	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
728 	 * tSU;DAT (data setup time)  250 ns         100 ns
729 	 * tHD;STA (START hold time) 4000 ns         600 ns
730 	 * tBUF (bus free time)      4700 ns        1300 ns
731 	 *
732 	 * The hardware (of the i.MX28 at least) seems to add 2 additional
733 	 * clock cycles to the low_count and 7 cycles to the high_count.
734 	 * This is compensated for by subtracting the respective constants
735 	 * from the values written to the timing registers.
736 	 */
737 	if (speed > 100000) {
738 		/* fast mode */
739 		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
740 		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
741 		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
742 		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
743 	} else {
744 		/* normal mode */
745 		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
746 		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
747 		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
748 		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
749 	}
750 	rcv_count = high_count * 3 / 8;
751 	xmit_count = low_count * 3 / 8;
752 
753 	dev_dbg(dev,
754 		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
755 		speed, clk / divider, divider, low_count, high_count,
756 		xmit_count, rcv_count, leadin, bus_free);
757 
758 	low_count -= 2;
759 	high_count -= 7;
760 	i2c->timing0 = (high_count << 16) | rcv_count;
761 	i2c->timing1 = (low_count << 16) | xmit_count;
762 	i2c->timing2 = (bus_free << 16 | leadin);
763 }
764 
765 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
766 {
767 	uint32_t speed;
768 	struct device *dev = i2c->dev;
769 	struct device_node *node = dev->of_node;
770 	int ret;
771 
772 	ret = of_property_read_u32(node, "clock-frequency", &speed);
773 	if (ret) {
774 		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
775 		speed = 100000;
776 	}
777 
778 	mxs_i2c_derive_timing(i2c, speed);
779 
780 	return 0;
781 }
782 
783 static struct platform_device_id mxs_i2c_devtype[] = {
784 	{
785 		.name = "imx23-i2c",
786 		.driver_data = MXS_I2C_V1,
787 	}, {
788 		.name = "imx28-i2c",
789 		.driver_data = MXS_I2C_V2,
790 	}, { /* sentinel */ }
791 };
792 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);
793 
794 static const struct of_device_id mxs_i2c_dt_ids[] = {
795 	{ .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
796 	{ .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
797 	{ /* sentinel */ }
798 };
799 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
800 
801 static int mxs_i2c_probe(struct platform_device *pdev)
802 {
803 	const struct of_device_id *of_id =
804 				of_match_device(mxs_i2c_dt_ids, &pdev->dev);
805 	struct device *dev = &pdev->dev;
806 	struct mxs_i2c_dev *i2c;
807 	struct i2c_adapter *adap;
808 	struct resource *res;
809 	int err, irq;
810 
811 	i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL);
812 	if (!i2c)
813 		return -ENOMEM;
814 
815 	if (of_id) {
816 		const struct platform_device_id *device_id = of_id->data;
817 		i2c->dev_type = device_id->driver_data;
818 	}
819 
820 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
821 	i2c->regs = devm_ioremap_resource(&pdev->dev, res);
822 	if (IS_ERR(i2c->regs))
823 		return PTR_ERR(i2c->regs);
824 
825 	irq = platform_get_irq(pdev, 0);
826 	if (irq < 0)
827 		return irq;
828 
829 	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
830 	if (err)
831 		return err;
832 
833 	i2c->dev = dev;
834 
835 	init_completion(&i2c->cmd_complete);
836 
837 	if (dev->of_node) {
838 		err = mxs_i2c_get_ofdata(i2c);
839 		if (err)
840 			return err;
841 	}
842 
843 	/* Setup the DMA */
844 	i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
845 	if (!i2c->dmach) {
846 		dev_err(dev, "Failed to request dma\n");
847 		return -ENODEV;
848 	}
849 
850 	platform_set_drvdata(pdev, i2c);
851 
852 	/* Do reset to enforce correct startup after pinmuxing */
853 	err = mxs_i2c_reset(i2c);
854 	if (err)
855 		return err;
856 
857 	adap = &i2c->adapter;
858 	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
859 	adap->owner = THIS_MODULE;
860 	adap->algo = &mxs_i2c_algo;
861 	adap->dev.parent = dev;
862 	adap->nr = pdev->id;
863 	adap->dev.of_node = pdev->dev.of_node;
864 	i2c_set_adapdata(adap, i2c);
865 	err = i2c_add_numbered_adapter(adap);
866 	if (err) {
867 		dev_err(dev, "Failed to add adapter (%d)\n", err);
868 		writel(MXS_I2C_CTRL0_SFTRST,
869 				i2c->regs + MXS_I2C_CTRL0_SET);
870 		return err;
871 	}
872 
873 	return 0;
874 }
875 
876 static int mxs_i2c_remove(struct platform_device *pdev)
877 {
878 	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
879 
880 	i2c_del_adapter(&i2c->adapter);
881 
882 	if (i2c->dmach)
883 		dma_release_channel(i2c->dmach);
884 
885 	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
886 
887 	return 0;
888 }
889 
890 static struct platform_driver mxs_i2c_driver = {
891 	.driver = {
892 		   .name = DRIVER_NAME,
893 		   .owner = THIS_MODULE,
894 		   .of_match_table = mxs_i2c_dt_ids,
895 		   },
896 	.probe = mxs_i2c_probe,
897 	.remove = mxs_i2c_remove,
898 };
899 
900 static int __init mxs_i2c_init(void)
901 {
902 	return platform_driver_register(&mxs_i2c_driver);
903 }
904 subsys_initcall(mxs_i2c_init);
905 
906 static void __exit mxs_i2c_exit(void)
907 {
908 	platform_driver_unregister(&mxs_i2c_driver);
909 }
910 module_exit(mxs_i2c_exit);
911 
912 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
913 MODULE_AUTHOR("Wolfram Sang <w.sang@pengutronix.de>");
914 MODULE_DESCRIPTION("MXS I2C Bus Driver");
915 MODULE_LICENSE("GPL");
916 MODULE_ALIAS("platform:" DRIVER_NAME);
917