1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale MXS I2C bus driver
4 *
5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7 *
8 * based on a (non-working) driver which was:
9 *
10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/dma/mxs-dma.h>
28
29 #define DRIVER_NAME "mxs-i2c"
30
31 #define MXS_I2C_CTRL0 (0x00)
32 #define MXS_I2C_CTRL0_SET (0x04)
33 #define MXS_I2C_CTRL0_CLR (0x08)
34
35 #define MXS_I2C_CTRL0_SFTRST 0x80000000
36 #define MXS_I2C_CTRL0_RUN 0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION 0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF)
45
46 #define MXS_I2C_TIMING0 (0x10)
47 #define MXS_I2C_TIMING1 (0x20)
48 #define MXS_I2C_TIMING2 (0x30)
49
50 #define MXS_I2C_CTRL1 (0x40)
51 #define MXS_I2C_CTRL1_SET (0x44)
52 #define MXS_I2C_CTRL1_CLR (0x48)
53
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01
63
64 #define MXS_I2C_STAT (0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY 0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400
68
69 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
70
71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
72
73 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000
74
75 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80 MXS_I2C_CTRL1_SLAVE_IRQ)
81
82
83 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \
84 MXS_I2C_CTRL0_PRE_SEND_START | \
85 MXS_I2C_CTRL0_MASTER_MODE | \
86 MXS_I2C_CTRL0_DIRECTION | \
87 MXS_I2C_CTRL0_XFER_COUNT(1))
88
89 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \
90 MXS_I2C_CTRL0_MASTER_MODE | \
91 MXS_I2C_CTRL0_DIRECTION)
92
93 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94 MXS_I2C_CTRL0_MASTER_MODE)
95
96 enum mxs_i2c_devtype {
97 MXS_I2C_UNKNOWN = 0,
98 MXS_I2C_V1,
99 MXS_I2C_V2,
100 };
101
102 /**
103 * struct mxs_i2c_dev - per device, private MXS-I2C data
104 *
105 * @dev: driver model device node
106 * @dev_type: distinguish i.MX23/i.MX28 features
107 * @regs: IO registers pointer
108 * @cmd_complete: completion object for transaction wait
109 * @cmd_err: error code for last transaction
110 * @adapter: i2c subsystem adapter node
111 */
112 struct mxs_i2c_dev {
113 struct device *dev;
114 enum mxs_i2c_devtype dev_type;
115 void __iomem *regs;
116 struct completion cmd_complete;
117 int cmd_err;
118 struct i2c_adapter adapter;
119
120 uint32_t timing0;
121 uint32_t timing1;
122 uint32_t timing2;
123
124 /* DMA support components */
125 struct dma_chan *dmach;
126 uint32_t pio_data[2];
127 uint32_t addr_data;
128 struct scatterlist sg_io[2];
129 bool dma_read;
130 };
131
mxs_i2c_reset(struct mxs_i2c_dev * i2c)132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
133 {
134 int ret = stmp_reset_block(i2c->regs);
135 if (ret)
136 return ret;
137
138 /*
139 * Configure timing for the I2C block. The I2C TIMING2 register has to
140 * be programmed with this particular magic number. The rest is derived
141 * from the XTAL speed and requested I2C speed.
142 *
143 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
144 */
145 writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146 writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147 writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
148
149 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
150
151 return 0;
152 }
153
mxs_i2c_dma_finish(struct mxs_i2c_dev * i2c)154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
155 {
156 if (i2c->dma_read) {
157 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159 } else {
160 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
161 }
162 }
163
mxs_i2c_dma_irq_callback(void * param)164 static void mxs_i2c_dma_irq_callback(void *param)
165 {
166 struct mxs_i2c_dev *i2c = param;
167
168 complete(&i2c->cmd_complete);
169 mxs_i2c_dma_finish(i2c);
170 }
171
mxs_i2c_dma_setup_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,u8 * buf,uint32_t flags)172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173 struct i2c_msg *msg, u8 *buf, uint32_t flags)
174 {
175 struct dma_async_tx_descriptor *desc;
176 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
177
178 i2c->addr_data = i2c_8bit_addr_from_msg(msg);
179
180 if (msg->flags & I2C_M_RD) {
181 i2c->dma_read = true;
182
183 /*
184 * SELECT command.
185 */
186
187 /* Queue the PIO register write transfer. */
188 i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189 desc = dmaengine_prep_slave_sg(i2c->dmach,
190 (struct scatterlist *)&i2c->pio_data[0],
191 1, DMA_TRANS_NONE, 0);
192 if (!desc) {
193 dev_err(i2c->dev,
194 "Failed to get PIO reg. write descriptor.\n");
195 goto select_init_pio_fail;
196 }
197
198 /* Queue the DMA data transfer. */
199 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202 DMA_MEM_TO_DEV,
203 DMA_PREP_INTERRUPT |
204 MXS_DMA_CTRL_WAIT4END);
205 if (!desc) {
206 dev_err(i2c->dev,
207 "Failed to get DMA data write descriptor.\n");
208 goto select_init_dma_fail;
209 }
210
211 /*
212 * READ command.
213 */
214
215 /* Queue the PIO register write transfer. */
216 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
217 MXS_I2C_CTRL0_XFER_COUNT(msg->len);
218 desc = dmaengine_prep_slave_sg(i2c->dmach,
219 (struct scatterlist *)&i2c->pio_data[1],
220 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
221 if (!desc) {
222 dev_err(i2c->dev,
223 "Failed to get PIO reg. write descriptor.\n");
224 goto select_init_dma_fail;
225 }
226
227 /* Queue the DMA data transfer. */
228 sg_init_one(&i2c->sg_io[1], buf, msg->len);
229 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
230 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
231 DMA_DEV_TO_MEM,
232 DMA_PREP_INTERRUPT |
233 MXS_DMA_CTRL_WAIT4END);
234 if (!desc) {
235 dev_err(i2c->dev,
236 "Failed to get DMA data write descriptor.\n");
237 goto read_init_dma_fail;
238 }
239 } else {
240 i2c->dma_read = false;
241
242 /*
243 * WRITE command.
244 */
245
246 /* Queue the PIO register write transfer. */
247 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
248 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
249 desc = dmaengine_prep_slave_sg(i2c->dmach,
250 (struct scatterlist *)&i2c->pio_data[0],
251 1, DMA_TRANS_NONE, 0);
252 if (!desc) {
253 dev_err(i2c->dev,
254 "Failed to get PIO reg. write descriptor.\n");
255 goto write_init_pio_fail;
256 }
257
258 /* Queue the DMA data transfer. */
259 sg_init_table(i2c->sg_io, 2);
260 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
261 sg_set_buf(&i2c->sg_io[1], buf, msg->len);
262 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
263 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
264 DMA_MEM_TO_DEV,
265 DMA_PREP_INTERRUPT |
266 MXS_DMA_CTRL_WAIT4END);
267 if (!desc) {
268 dev_err(i2c->dev,
269 "Failed to get DMA data write descriptor.\n");
270 goto write_init_dma_fail;
271 }
272 }
273
274 /*
275 * The last descriptor must have this callback,
276 * to finish the DMA transaction.
277 */
278 desc->callback = mxs_i2c_dma_irq_callback;
279 desc->callback_param = i2c;
280
281 /* Start the transfer. */
282 dmaengine_submit(desc);
283 dma_async_issue_pending(i2c->dmach);
284 return 0;
285
286 /* Read failpath. */
287 read_init_dma_fail:
288 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
289 select_init_dma_fail:
290 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
291 select_init_pio_fail:
292 dmaengine_terminate_sync(i2c->dmach);
293 return -EINVAL;
294
295 /* Write failpath. */
296 write_init_dma_fail:
297 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
298 write_init_pio_fail:
299 dmaengine_terminate_sync(i2c->dmach);
300 return -EINVAL;
301 }
302
mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev * i2c)303 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
304 {
305 unsigned long timeout = jiffies + msecs_to_jiffies(1000);
306
307 while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
308 if (readl(i2c->regs + MXS_I2C_CTRL1) &
309 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
310 return -ENXIO;
311 if (time_after(jiffies, timeout))
312 return -ETIMEDOUT;
313 cond_resched();
314 }
315
316 return 0;
317 }
318
mxs_i2c_pio_check_error_state(struct mxs_i2c_dev * i2c)319 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
320 {
321 u32 state;
322
323 state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
324
325 if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
326 i2c->cmd_err = -ENXIO;
327 else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
328 MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
329 MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
330 MXS_I2C_CTRL1_SLAVE_IRQ))
331 i2c->cmd_err = -EIO;
332
333 return i2c->cmd_err;
334 }
335
mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev * i2c,u32 cmd)336 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
337 {
338 u32 reg;
339
340 writel(cmd, i2c->regs + MXS_I2C_CTRL0);
341
342 /* readback makes sure the write is latched into hardware */
343 reg = readl(i2c->regs + MXS_I2C_CTRL0);
344 reg |= MXS_I2C_CTRL0_RUN;
345 writel(reg, i2c->regs + MXS_I2C_CTRL0);
346 }
347
348 /*
349 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
350 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
351 * must be written during PIO mode operation. First, the CTRL0 register has
352 * to be programmed with all the necessary bits but the RUN bit. Then the
353 * payload has to be written into the DATA register. Finally, the transmission
354 * is executed by setting the RUN bit in CTRL0.
355 */
mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev * i2c,u32 cmd,u32 data)356 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
357 u32 data)
358 {
359 writel(cmd, i2c->regs + MXS_I2C_CTRL0);
360
361 if (i2c->dev_type == MXS_I2C_V1)
362 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
363
364 writel(data, i2c->regs + MXS_I2C_DATA(i2c));
365 writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
366 }
367
mxs_i2c_pio_setup_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,uint32_t flags)368 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
369 struct i2c_msg *msg, uint32_t flags)
370 {
371 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
372 uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
373 uint32_t data = 0;
374 int i, ret, xlen = 0, xmit = 0;
375 uint32_t start;
376
377 /* Mute IRQs coming from this block. */
378 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
379
380 /*
381 * MX23 idea:
382 * - Enable CTRL0::PIO_MODE (1 << 24)
383 * - Enable CTRL1::ACK_MODE (1 << 27)
384 *
385 * WARNING! The MX23 is broken in some way, even if it claims
386 * to support PIO, when we try to transfer any amount of data
387 * that is not aligned to 4 bytes, the DMA engine will have
388 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
389 * transfer. This in turn will mess up the next transfer as
390 * the block it emit one byte write onto the bus terminated
391 * with a NAK+STOP. A possible workaround is to reset the IP
392 * block after every PIO transmission, which might just work.
393 *
394 * NOTE: The CTRL0::PIO_MODE description is important, since
395 * it outlines how the PIO mode is really supposed to work.
396 */
397 if (msg->flags & I2C_M_RD) {
398 /*
399 * PIO READ transfer:
400 *
401 * This transfer MUST be limited to 4 bytes maximum. It is not
402 * possible to transfer more than four bytes via PIO, since we
403 * can not in any way make sure we can read the data from the
404 * DATA register fast enough. Besides, the RX FIFO is only four
405 * bytes deep, thus we can only really read up to four bytes at
406 * time. Finally, there is no bit indicating us that new data
407 * arrived at the FIFO and can thus be fetched from the DATA
408 * register.
409 */
410 BUG_ON(msg->len > 4);
411
412 /* SELECT command. */
413 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
414 addr_data);
415
416 ret = mxs_i2c_pio_wait_xfer_end(i2c);
417 if (ret) {
418 dev_dbg(i2c->dev,
419 "PIO: Failed to send SELECT command!\n");
420 goto cleanup;
421 }
422
423 /* READ command. */
424 mxs_i2c_pio_trigger_cmd(i2c,
425 MXS_CMD_I2C_READ | flags |
426 MXS_I2C_CTRL0_XFER_COUNT(msg->len));
427
428 ret = mxs_i2c_pio_wait_xfer_end(i2c);
429 if (ret) {
430 dev_dbg(i2c->dev,
431 "PIO: Failed to send READ command!\n");
432 goto cleanup;
433 }
434
435 data = readl(i2c->regs + MXS_I2C_DATA(i2c));
436 for (i = 0; i < msg->len; i++) {
437 msg->buf[i] = data & 0xff;
438 data >>= 8;
439 }
440 } else {
441 /*
442 * PIO WRITE transfer:
443 *
444 * The code below implements clock stretching to circumvent
445 * the possibility of kernel not being able to supply data
446 * fast enough. It is possible to transfer arbitrary amount
447 * of data using PIO write.
448 */
449
450 /*
451 * The LSB of data buffer is the first byte blasted across
452 * the bus. Higher order bytes follow. Thus the following
453 * filling schematic.
454 */
455
456 data = addr_data << 24;
457
458 /* Start the transfer with START condition. */
459 start = MXS_I2C_CTRL0_PRE_SEND_START;
460
461 /* If the transfer is long, use clock stretching. */
462 if (msg->len > 3)
463 start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
464
465 for (i = 0; i < msg->len; i++) {
466 data >>= 8;
467 data |= (msg->buf[i] << 24);
468
469 xmit = 0;
470
471 /* This is the last transfer of the message. */
472 if (i + 1 == msg->len) {
473 /* Add optional STOP flag. */
474 start |= flags;
475 /* Remove RETAIN_CLOCK bit. */
476 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
477 xmit = 1;
478 }
479
480 /* Four bytes are ready in the "data" variable. */
481 if ((i & 3) == 2)
482 xmit = 1;
483
484 /* Nothing interesting happened, continue stuffing. */
485 if (!xmit)
486 continue;
487
488 /*
489 * Compute the size of the transfer and shift the
490 * data accordingly.
491 *
492 * i = (4k + 0) .... xlen = 2
493 * i = (4k + 1) .... xlen = 3
494 * i = (4k + 2) .... xlen = 4
495 * i = (4k + 3) .... xlen = 1
496 */
497
498 if ((i % 4) == 3)
499 xlen = 1;
500 else
501 xlen = (i % 4) + 2;
502
503 data >>= (4 - xlen) * 8;
504
505 dev_dbg(i2c->dev,
506 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
507 xlen, i, msg->len,
508 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
509 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
510 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
511
512 writel(MXS_I2C_DEBUG0_DMAREQ,
513 i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
514
515 mxs_i2c_pio_trigger_write_cmd(i2c,
516 start | MXS_I2C_CTRL0_MASTER_MODE |
517 MXS_I2C_CTRL0_DIRECTION |
518 MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
519
520 /* The START condition is sent only once. */
521 start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
522
523 /* Wait for the end of the transfer. */
524 ret = mxs_i2c_pio_wait_xfer_end(i2c);
525 if (ret) {
526 dev_dbg(i2c->dev,
527 "PIO: Failed to finish WRITE cmd!\n");
528 break;
529 }
530
531 /* Check NAK here. */
532 ret = readl(i2c->regs + MXS_I2C_STAT) &
533 MXS_I2C_STAT_GOT_A_NAK;
534 if (ret) {
535 ret = -ENXIO;
536 goto cleanup;
537 }
538 }
539 }
540
541 /* make sure we capture any occurred error into cmd_err */
542 ret = mxs_i2c_pio_check_error_state(i2c);
543
544 cleanup:
545 /* Clear any dangling IRQs and re-enable interrupts. */
546 writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
547 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
548
549 /* Clear the PIO_MODE on i.MX23 */
550 if (i2c->dev_type == MXS_I2C_V1)
551 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
552
553 return ret;
554 }
555
556 /*
557 * Low level master read/write transaction.
558 */
mxs_i2c_xfer_msg(struct i2c_adapter * adap,struct i2c_msg * msg,int stop)559 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
560 int stop)
561 {
562 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
563 int ret;
564 int flags;
565 u8 *dma_buf;
566 int use_pio = 0;
567 unsigned long time_left;
568
569 flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570
571 dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572 msg->addr, msg->len, msg->flags, stop);
573
574 /*
575 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576 * 4 bytes of length. The write transfer is not limited as it can use
577 * clock stretching to avoid FIFO underruns.
578 */
579 if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
580 use_pio = 1;
581 if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
582 use_pio = 1;
583
584 i2c->cmd_err = 0;
585 if (use_pio) {
586 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
587 /* No need to reset the block if NAK was received. */
588 if (ret && (ret != -ENXIO))
589 mxs_i2c_reset(i2c);
590 } else {
591 dma_buf = i2c_get_dma_safe_msg_buf(msg, 1);
592 if (!dma_buf)
593 return -ENOMEM;
594
595 reinit_completion(&i2c->cmd_complete);
596 ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags);
597 if (ret) {
598 i2c_put_dma_safe_msg_buf(dma_buf, msg, false);
599 return ret;
600 }
601
602 time_left = wait_for_completion_timeout(&i2c->cmd_complete,
603 msecs_to_jiffies(1000));
604 i2c_put_dma_safe_msg_buf(dma_buf, msg, true);
605 if (!time_left)
606 goto timeout;
607
608 ret = i2c->cmd_err;
609 }
610
611 if (ret == -ENXIO) {
612 /*
613 * If the transfer fails with a NAK from the slave the
614 * controller halts until it gets told to return to idle state.
615 */
616 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
617 i2c->regs + MXS_I2C_CTRL1_SET);
618 }
619
620 /*
621 * WARNING!
622 * The i.MX23 is strange. After each and every operation, it's I2C IP
623 * block must be reset, otherwise the IP block will misbehave. This can
624 * be observed on the bus by the block sending out one single byte onto
625 * the bus. In case such an error happens, bit 27 will be set in the
626 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
627 * and is marked as "TBD" instead. To reset this bit to a correct state,
628 * reset the whole block. Since the block reset does not take long, do
629 * reset the block after every transfer to play safe.
630 */
631 if (i2c->dev_type == MXS_I2C_V1)
632 mxs_i2c_reset(i2c);
633
634 dev_dbg(i2c->dev, "Done with err=%d\n", ret);
635
636 return ret;
637
638 timeout:
639 dev_dbg(i2c->dev, "Timeout!\n");
640 mxs_i2c_dma_finish(i2c);
641 ret = mxs_i2c_reset(i2c);
642 if (ret)
643 return ret;
644
645 return -ETIMEDOUT;
646 }
647
mxs_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)648 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
649 int num)
650 {
651 int i;
652 int err;
653
654 for (i = 0; i < num; i++) {
655 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
656 if (err)
657 return err;
658 }
659
660 return num;
661 }
662
mxs_i2c_func(struct i2c_adapter * adap)663 static u32 mxs_i2c_func(struct i2c_adapter *adap)
664 {
665 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
666 }
667
mxs_i2c_isr(int this_irq,void * dev_id)668 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
669 {
670 struct mxs_i2c_dev *i2c = dev_id;
671 u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
672
673 if (!stat)
674 return IRQ_NONE;
675
676 if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
677 i2c->cmd_err = -ENXIO;
678 else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
679 MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
680 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
681 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
682 i2c->cmd_err = -EIO;
683
684 writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
685
686 return IRQ_HANDLED;
687 }
688
689 static const struct i2c_algorithm mxs_i2c_algo = {
690 .master_xfer = mxs_i2c_xfer,
691 .functionality = mxs_i2c_func,
692 };
693
694 static const struct i2c_adapter_quirks mxs_i2c_quirks = {
695 .flags = I2C_AQ_NO_ZERO_LEN,
696 };
697
mxs_i2c_derive_timing(struct mxs_i2c_dev * i2c,uint32_t speed)698 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
699 {
700 /* The I2C block clock runs at 24MHz */
701 const uint32_t clk = 24000000;
702 uint32_t divider;
703 uint16_t high_count, low_count, rcv_count, xmit_count;
704 uint32_t bus_free, leadin;
705 struct device *dev = i2c->dev;
706
707 divider = DIV_ROUND_UP(clk, speed);
708
709 if (divider < 25) {
710 /*
711 * limit the divider, so that min(low_count, high_count)
712 * is >= 1
713 */
714 divider = 25;
715 dev_warn(dev,
716 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
717 speed / 1000, speed % 1000,
718 clk / divider / 1000, clk / divider % 1000);
719 } else if (divider > 1897) {
720 /*
721 * limit the divider, so that max(low_count, high_count)
722 * cannot exceed 1023
723 */
724 divider = 1897;
725 dev_warn(dev,
726 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
727 speed / 1000, speed % 1000,
728 clk / divider / 1000, clk / divider % 1000);
729 }
730
731 /*
732 * The I2C spec specifies the following timing data:
733 * standard mode fast mode Bitfield name
734 * tLOW (SCL LOW period) 4700 ns 1300 ns
735 * tHIGH (SCL HIGH period) 4000 ns 600 ns
736 * tSU;DAT (data setup time) 250 ns 100 ns
737 * tHD;STA (START hold time) 4000 ns 600 ns
738 * tBUF (bus free time) 4700 ns 1300 ns
739 *
740 * The hardware (of the i.MX28 at least) seems to add 2 additional
741 * clock cycles to the low_count and 7 cycles to the high_count.
742 * This is compensated for by subtracting the respective constants
743 * from the values written to the timing registers.
744 */
745 if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
746 /* fast mode */
747 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
748 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
749 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
750 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
751 } else {
752 /* normal mode */
753 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
754 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
755 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
756 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
757 }
758 rcv_count = high_count * 3 / 8;
759 xmit_count = low_count * 3 / 8;
760
761 dev_dbg(dev,
762 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
763 speed, clk / divider, divider, low_count, high_count,
764 xmit_count, rcv_count, leadin, bus_free);
765
766 low_count -= 2;
767 high_count -= 7;
768 i2c->timing0 = (high_count << 16) | rcv_count;
769 i2c->timing1 = (low_count << 16) | xmit_count;
770 i2c->timing2 = (bus_free << 16 | leadin);
771 }
772
mxs_i2c_get_ofdata(struct mxs_i2c_dev * i2c)773 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
774 {
775 uint32_t speed;
776 struct device *dev = i2c->dev;
777 struct device_node *node = dev->of_node;
778 int ret;
779
780 ret = of_property_read_u32(node, "clock-frequency", &speed);
781 if (ret) {
782 dev_warn(dev, "No I2C speed selected, using 100kHz\n");
783 speed = I2C_MAX_STANDARD_MODE_FREQ;
784 }
785
786 mxs_i2c_derive_timing(i2c, speed);
787
788 return 0;
789 }
790
791 static const struct of_device_id mxs_i2c_dt_ids[] = {
792 { .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
793 { .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
794 { /* sentinel */ }
795 };
796 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797
mxs_i2c_probe(struct platform_device * pdev)798 static int mxs_i2c_probe(struct platform_device *pdev)
799 {
800 struct device *dev = &pdev->dev;
801 struct mxs_i2c_dev *i2c;
802 struct i2c_adapter *adap;
803 int err, irq;
804
805 i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
806 if (!i2c)
807 return -ENOMEM;
808
809 i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
810
811 i2c->regs = devm_platform_ioremap_resource(pdev, 0);
812 if (IS_ERR(i2c->regs))
813 return PTR_ERR(i2c->regs);
814
815 irq = platform_get_irq(pdev, 0);
816 if (irq < 0)
817 return irq;
818
819 err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
820 if (err)
821 return err;
822
823 i2c->dev = dev;
824
825 init_completion(&i2c->cmd_complete);
826
827 if (dev->of_node) {
828 err = mxs_i2c_get_ofdata(i2c);
829 if (err)
830 return err;
831 }
832
833 /* Setup the DMA */
834 i2c->dmach = dma_request_chan(dev, "rx-tx");
835 if (IS_ERR(i2c->dmach)) {
836 return dev_err_probe(dev, PTR_ERR(i2c->dmach),
837 "Failed to request dma\n");
838 }
839
840 platform_set_drvdata(pdev, i2c);
841
842 /* Do reset to enforce correct startup after pinmuxing */
843 err = mxs_i2c_reset(i2c);
844 if (err)
845 return err;
846
847 adap = &i2c->adapter;
848 strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
849 adap->owner = THIS_MODULE;
850 adap->algo = &mxs_i2c_algo;
851 adap->quirks = &mxs_i2c_quirks;
852 adap->dev.parent = dev;
853 adap->nr = pdev->id;
854 adap->dev.of_node = pdev->dev.of_node;
855 i2c_set_adapdata(adap, i2c);
856 err = i2c_add_numbered_adapter(adap);
857 if (err) {
858 writel(MXS_I2C_CTRL0_SFTRST,
859 i2c->regs + MXS_I2C_CTRL0_SET);
860 return err;
861 }
862
863 return 0;
864 }
865
mxs_i2c_remove(struct platform_device * pdev)866 static void mxs_i2c_remove(struct platform_device *pdev)
867 {
868 struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
869
870 i2c_del_adapter(&i2c->adapter);
871
872 if (i2c->dmach)
873 dma_release_channel(i2c->dmach);
874
875 writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
876 }
877
878 static struct platform_driver mxs_i2c_driver = {
879 .driver = {
880 .name = DRIVER_NAME,
881 .of_match_table = mxs_i2c_dt_ids,
882 },
883 .probe = mxs_i2c_probe,
884 .remove_new = mxs_i2c_remove,
885 };
886
mxs_i2c_init(void)887 static int __init mxs_i2c_init(void)
888 {
889 return platform_driver_register(&mxs_i2c_driver);
890 }
891 subsys_initcall(mxs_i2c_init);
892
mxs_i2c_exit(void)893 static void __exit mxs_i2c_exit(void)
894 {
895 platform_driver_unregister(&mxs_i2c_driver);
896 }
897 module_exit(mxs_i2c_exit);
898
899 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
900 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
901 MODULE_DESCRIPTION("MXS I2C Bus Driver");
902 MODULE_LICENSE("GPL");
903 MODULE_ALIAS("platform:" DRIVER_NAME);
904