xref: /openbmc/linux/drivers/i2c/busses/i2c-mlxbf.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Mellanox BlueField I2C bus driver
4  *
5  *  Copyright (C) 2020 Mellanox Technologies, Ltd.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/i2c.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/string.h>
20 
21 /* Defines what functionality is present. */
22 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
23 	(I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
24 
25 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
26 	(I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
27 	 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
28 	 I2C_FUNC_SMBUS_PROC_CALL)
29 
30 #define MLXBF_I2C_FUNC_ALL \
31 	(MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
32 	 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
33 
34 #define MLXBF_I2C_SMBUS_MAX        3
35 
36 /* Shared resources info in BlueField platforms. */
37 
38 #define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
39 #define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
40 
41 #define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
42 #define MLXBF_I2C_GPIO_TYU_SIZE        0x100
43 
44 #define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
45 #define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
46 
47 #define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
48 #define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
49 
50 #define MLXBF_I2C_SHARED_RES_MAX       3
51 
52 /*
53  * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
54  * refer to their respective offsets relative to the corresponding
55  * memory-mapped region whose addresses are specified in either the DT or
56  * the ACPI tables or above.
57  */
58 
59 /*
60  * SMBus Master core clock frequency. Timing configurations are
61  * strongly dependent on the core clock frequency of the SMBus
62  * Master. Default value is set to 400MHz.
63  */
64 #define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
65 /* Reference clock for Bluefield 1 - 156 MHz. */
66 #define MLXBF_I2C_TYU_PLL_IN_FREQ   (156 * 1000 * 1000)
67 /* Reference clock for BlueField 2 - 200 MHz. */
68 #define MLXBF_I2C_YU_PLL_IN_FREQ    (200 * 1000 * 1000)
69 
70 /* Constant used to determine the PLL frequency. */
71 #define MLNXBF_I2C_COREPLL_CONST    16384
72 
73 /* PLL registers. */
74 #define MLXBF_I2C_CORE_PLL_REG0         0x0
75 #define MLXBF_I2C_CORE_PLL_REG1         0x4
76 #define MLXBF_I2C_CORE_PLL_REG2         0x8
77 
78 /* OR cause register. */
79 #define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
80 #define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
81 
82 /* Arbiter Cause Register. */
83 #define MLXBF_I2C_CAUSE_ARBITER      0x1c
84 
85 /*
86  * Cause Status flags. Note that those bits might be considered
87  * as interrupt enabled bits.
88  */
89 
90 /* Transaction ended with STOP. */
91 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
92 /* Master arbitration lost. */
93 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
94 /* Unexpected start detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
96 /* Unexpected stop detected. */
97 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
98 /* Wait for transfer continuation. */
99 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
100 /* Failed to generate STOP. */
101 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
102 /* Failed to generate START. */
103 #define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
104 /* Clock toggle completed. */
105 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
106 /* Transfer timeout occurred. */
107 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
108 /* Master busy bit reset. */
109 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
110 
111 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
112 
113 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
114 	(MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
115 	 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
116 	 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
117 	 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
118 	 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
119 	 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
120 	 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
121 
122 /*
123  * Slave cause status flags. Note that those bits might be considered
124  * as interrupt enabled bits.
125  */
126 
127 /* Write transaction received successfully. */
128 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
129 /* Read transaction received, waiting for response. */
130 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
131 /* Slave busy bit reset. */
132 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
133 
134 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK     GENMASK(20, 0)
135 
136 /* Cause coalesce registers. */
137 #define MLXBF_I2C_CAUSE_COALESCE_0        0x00
138 #define MLXBF_I2C_CAUSE_COALESCE_1        0x04
139 #define MLXBF_I2C_CAUSE_COALESCE_2        0x08
140 
141 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   MLXBF_I2C_SMBUS_MAX
142 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
143 
144 /* Functional enable register. */
145 #define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
146 /* Force OE enable register. */
147 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
148 /*
149  * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
150  * SDA/SCL lines:
151  *
152  *  SMBUS GW0 -> bits[26:25]
153  *  SMBUS GW1 -> bits[28:27]
154  *  SMBUS GW2 -> bits[30:29]
155  */
156 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
157 
158 /* Note that gw_id can be 0,1 or 2. */
159 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
160 	(0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
161 
162 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
163 	((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
164 
165 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
166 	((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
167 
168 /* SMBus timing parameters. */
169 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
170 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
171 #define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
172 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
173 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
174 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
175 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
176 
177 enum {
178 	MLXBF_I2C_TIMING_100KHZ = 100000,
179 	MLXBF_I2C_TIMING_400KHZ = 400000,
180 	MLXBF_I2C_TIMING_1000KHZ = 1000000,
181 };
182 
183 /*
184  * Defines SMBus operating frequency and core clock frequency.
185  * According to ADB files, default values are compliant to 100KHz SMBus
186  * @ 400MHz core clock. The driver should be able to calculate core
187  * frequency based on PLL parameters.
188  */
189 #define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
190 
191 /* Core PLL TYU configuration. */
192 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(12, 0)
193 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(3, 0)
194 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(5, 0)
195 
196 #define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT  3
197 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16
198 #define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT  20
199 
200 /* Core PLL YU configuration. */
201 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
202 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
203 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(5, 0)
204 
205 #define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT   0
206 #define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT  1
207 #define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT   26
208 
209 /* Core PLL frequency. */
210 static u64 mlxbf_i2c_corepll_frequency;
211 
212 /* SMBus Master GW. */
213 #define MLXBF_I2C_SMBUS_MASTER_GW     0x200
214 /* Number of bytes received and sent. */
215 #define MLXBF_I2C_SMBUS_RS_BYTES      0x300
216 /* Packet error check (PEC) value. */
217 #define MLXBF_I2C_SMBUS_MASTER_PEC    0x304
218 /* Status bits (ACK/NACK/FW Timeout). */
219 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
220 /* SMbus Master Finite State Machine. */
221 #define MLXBF_I2C_SMBUS_MASTER_FSM    0x310
222 
223 /*
224  * When enabled, the master will issue a stop condition in case of
225  * timeout while waiting for FW response.
226  */
227 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
228 
229 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
230 #define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
231 #define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
232 #define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
233 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
234 #define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
235 #define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
236 
237 #define MLXBF_I2C_MASTER_ENABLE \
238 	(MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
239 	 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
240 
241 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
242 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
243 
244 #define MLXBF_I2C_MASTER_ENABLE_READ \
245 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
246 
247 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address shift. */
248 #define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes shift. */
249 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte shift. */
250 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Parse expected bytes shift. */
251 #define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes shift. */
252 
253 /* SMBus master GW Data descriptor. */
254 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x280
255 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
256 
257 /* Maximum bytes to read/write per SMBus transaction. */
258 #define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
259 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
260 
261 /* All bytes were transmitted. */
262 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
263 /* NACK received. */
264 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
265 /* Slave's byte count >128 bytes. */
266 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
267 /* Timeout occurred. */
268 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
269 
270 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
271 
272 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
273 	(MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
274 	 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
275 	 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
276 
277 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
278 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
279 
280 /* SMBus slave GW. */
281 #define MLXBF_I2C_SMBUS_SLAVE_GW              0x400
282 /* Number of bytes received and sent from/to master. */
283 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
284 /* Packet error check (PEC) value. */
285 #define MLXBF_I2C_SMBUS_SLAVE_PEC             0x504
286 /* SMBus slave Finite State Machine (FSM). */
287 #define MLXBF_I2C_SMBUS_SLAVE_FSM             0x510
288 /*
289  * Should be set when all raised causes handled, and cleared by HW on
290  * every new cause.
291  */
292 #define MLXBF_I2C_SMBUS_SLAVE_READY           0x52c
293 
294 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
295 #define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
296 #define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
297 
298 #define MLXBF_I2C_SLAVE_ENABLE \
299 	(MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
300 
301 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
302 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
303 
304 /* SMBus slave GW Data descriptor. */
305 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x480
306 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
307 
308 /* SMbus slave configuration registers. */
309 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x514
310 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
311 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     7
312 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
313 
314 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
315 	((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
316 
317 /*
318  * Timeout is given in microsends. Note also that timeout handling is not
319  * exact.
320  */
321 #define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
322 
323 /* Encapsulates timing parameters. */
324 struct mlxbf_i2c_timings {
325 	u16 scl_high;		/* Clock high period. */
326 	u16 scl_low;		/* Clock low period. */
327 	u8 sda_rise;		/* Data rise time. */
328 	u8 sda_fall;		/* Data fall time. */
329 	u8 scl_rise;		/* Clock rise time. */
330 	u8 scl_fall;		/* Clock fall time. */
331 	u16 hold_start;		/* Hold time after (REPEATED) START. */
332 	u16 hold_data;		/* Data hold time. */
333 	u16 setup_start;	/* REPEATED START condition setup time. */
334 	u16 setup_stop;		/* STOP condition setup time. */
335 	u16 setup_data;		/* Data setup time. */
336 	u16 pad;		/* Padding. */
337 	u16 buf;		/* Bus free time between STOP and START. */
338 	u16 thigh_max;		/* Thigh max. */
339 	u32 timeout;		/* Detect clock low timeout. */
340 };
341 
342 enum {
343 	MLXBF_I2C_F_READ = BIT(0),
344 	MLXBF_I2C_F_WRITE = BIT(1),
345 	MLXBF_I2C_F_NORESTART = BIT(3),
346 	MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
347 	MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
348 	MLXBF_I2C_F_SMBUS_PEC = BIT(6),
349 	MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
350 };
351 
352 struct mlxbf_i2c_smbus_operation {
353 	u32 flags;
354 	u32 length; /* Buffer length in bytes. */
355 	u8 *buffer;
356 };
357 
358 #define MLXBF_I2C_SMBUS_OP_CNT_1	1
359 #define MLXBF_I2C_SMBUS_OP_CNT_2	2
360 #define MLXBF_I2C_SMBUS_OP_CNT_3	3
361 #define MLXBF_I2C_SMBUS_MAX_OP_CNT	MLXBF_I2C_SMBUS_OP_CNT_3
362 
363 struct mlxbf_i2c_smbus_request {
364 	u8 slave;
365 	u8 operation_cnt;
366 	struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
367 };
368 
369 struct mlxbf_i2c_resource {
370 	void __iomem *io;
371 	struct resource *params;
372 	struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
373 	u8 type;
374 };
375 
376 /* List of chip resources that are being accessed by the driver. */
377 enum {
378 	MLXBF_I2C_SMBUS_RES,
379 	MLXBF_I2C_MST_CAUSE_RES,
380 	MLXBF_I2C_SLV_CAUSE_RES,
381 	MLXBF_I2C_COALESCE_RES,
382 	MLXBF_I2C_COREPLL_RES,
383 	MLXBF_I2C_GPIO_RES,
384 	MLXBF_I2C_END_RES,
385 };
386 
387 /* Helper macro to define an I2C resource parameters. */
388 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
389 	{ \
390 		.start = (addr), \
391 		.end = (addr) + (size) - 1, \
392 		.name = (str) \
393 	}
394 
395 static struct resource mlxbf_i2c_coalesce_tyu_params =
396 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
397 				     MLXBF_I2C_COALESCE_TYU_SIZE,
398 				     "COALESCE_MEM");
399 static struct resource mlxbf_i2c_corepll_tyu_params =
400 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
401 				     MLXBF_I2C_COREPLL_TYU_SIZE,
402 				     "COREPLL_MEM");
403 static struct resource mlxbf_i2c_corepll_yu_params =
404 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
405 				     MLXBF_I2C_COREPLL_YU_SIZE,
406 				     "COREPLL_MEM");
407 static struct resource mlxbf_i2c_gpio_tyu_params =
408 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
409 				     MLXBF_I2C_GPIO_TYU_SIZE,
410 				     "GPIO_MEM");
411 
412 static struct mutex mlxbf_i2c_coalesce_lock;
413 static struct mutex mlxbf_i2c_corepll_lock;
414 static struct mutex mlxbf_i2c_gpio_lock;
415 
416 /* Mellanox BlueField chip type. */
417 enum mlxbf_i2c_chip_type {
418 	MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
419 	MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
420 };
421 
422 struct mlxbf_i2c_chip_info {
423 	enum mlxbf_i2c_chip_type type;
424 	/* Chip shared resources that are being used by the I2C controller. */
425 	struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
426 
427 	/* Callback to calculate the core PLL frequency. */
428 	u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
429 };
430 
431 struct mlxbf_i2c_priv {
432 	const struct mlxbf_i2c_chip_info *chip;
433 	struct i2c_adapter adap;
434 	struct mlxbf_i2c_resource *smbus;
435 	struct mlxbf_i2c_resource *mst_cause;
436 	struct mlxbf_i2c_resource *slv_cause;
437 	struct mlxbf_i2c_resource *coalesce;
438 	u64 frequency; /* Core frequency in Hz. */
439 	int bus; /* Physical bus identifier. */
440 	int irq;
441 	struct i2c_client *slave;
442 };
443 
444 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
445 	[MLXBF_I2C_CHIP_TYPE_1] = {
446 		.params = &mlxbf_i2c_coalesce_tyu_params,
447 		.lock = &mlxbf_i2c_coalesce_lock,
448 		.type = MLXBF_I2C_COALESCE_RES
449 	},
450 	{}
451 };
452 
453 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
454 	[MLXBF_I2C_CHIP_TYPE_1] = {
455 		.params = &mlxbf_i2c_corepll_tyu_params,
456 		.lock = &mlxbf_i2c_corepll_lock,
457 		.type = MLXBF_I2C_COREPLL_RES
458 	},
459 	[MLXBF_I2C_CHIP_TYPE_2] = {
460 		.params = &mlxbf_i2c_corepll_yu_params,
461 		.lock = &mlxbf_i2c_corepll_lock,
462 		.type = MLXBF_I2C_COREPLL_RES,
463 	}
464 };
465 
466 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
467 	[MLXBF_I2C_CHIP_TYPE_1] = {
468 		.params = &mlxbf_i2c_gpio_tyu_params,
469 		.lock = &mlxbf_i2c_gpio_lock,
470 		.type = MLXBF_I2C_GPIO_RES
471 	},
472 	{}
473 };
474 
475 static u8 mlxbf_i2c_bus_count;
476 
477 static struct mutex mlxbf_i2c_bus_lock;
478 
479 /* Polling frequency in microseconds. */
480 #define MLXBF_I2C_POLL_FREQ_IN_USEC        200
481 
482 #define MLXBF_I2C_SHIFT_0   0
483 #define MLXBF_I2C_SHIFT_8   8
484 #define MLXBF_I2C_SHIFT_16  16
485 #define MLXBF_I2C_SHIFT_24  24
486 
487 #define MLXBF_I2C_MASK_8    GENMASK(7, 0)
488 #define MLXBF_I2C_MASK_16   GENMASK(15, 0)
489 
490 #define MLXBF_I2C_FREQUENCY_1GHZ  1000000000
491 
492 static void mlxbf_i2c_write(void __iomem *io, int reg, u32 val)
493 {
494 	writel(val, io + reg);
495 }
496 
497 static u32 mlxbf_i2c_read(void __iomem *io, int reg)
498 {
499 	return readl(io + reg);
500 }
501 
502 /*
503  * This function is used to read data from Master GW Data Descriptor.
504  * Data bytes in the Master GW Data Descriptor are shifted left so the
505  * data starts at the MSB of the descriptor registers as set by the
506  * underlying hardware. TYU_READ_DATA enables byte swapping while
507  * reading data bytes, and MUST be called by the SMBus read routines
508  * to copy data from the 32 * 32-bit HW Data registers a.k.a Master GW
509  * Data Descriptor.
510  */
511 static u32 mlxbf_i2c_read_data(void __iomem *io, int reg)
512 {
513 	return (u32)be32_to_cpu(mlxbf_i2c_read(io, reg));
514 }
515 
516 /*
517  * This function is used to write data to the Master GW Data Descriptor.
518  * Data copied to the Master GW Data Descriptor MUST be shifted left so
519  * the data starts at the MSB of the descriptor registers as required by
520  * the underlying hardware. TYU_WRITE_DATA enables byte swapping when
521  * writing data bytes, and MUST be called by the SMBus write routines to
522  * copy data to the 32 * 32-bit HW Data registers a.k.a Master GW Data
523  * Descriptor.
524  */
525 static void mlxbf_i2c_write_data(void __iomem *io, int reg, u32 val)
526 {
527 	mlxbf_i2c_write(io, reg, (u32)cpu_to_be32(val));
528 }
529 
530 /*
531  * Function to poll a set of bits at a specific address; it checks whether
532  * the bits are equal to zero when eq_zero is set to 'true', and not equal
533  * to zero when eq_zero is set to 'false'.
534  * Note that the timeout is given in microseconds.
535  */
536 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
537 			    bool eq_zero, u32  timeout)
538 {
539 	u32 bits;
540 
541 	timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
542 
543 	do {
544 		bits = mlxbf_i2c_read(io, addr) & mask;
545 		if (eq_zero ? bits == 0 : bits != 0)
546 			return eq_zero ? 1 : bits;
547 		udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
548 	} while (timeout-- != 0);
549 
550 	return 0;
551 }
552 
553 /*
554  * SW must make sure that the SMBus Master GW is idle before starting
555  * a transaction. Accordingly, this function polls the Master FSM stop
556  * bit; it returns false when the bit is asserted, true if not.
557  */
558 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
559 {
560 	u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
561 	u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
562 	u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
563 
564 	if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
565 		return true;
566 
567 	return false;
568 }
569 
570 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
571 						u32 cause_status)
572 {
573 	/*
574 	 * When transaction ended with STOP, all bytes were transmitted,
575 	 * and no NACK received, then the transaction ended successfully.
576 	 * On the other hand, when the GW is configured with the stop bit
577 	 * de-asserted then the SMBus expects the following GW configuration
578 	 * for transfer continuation.
579 	 */
580 	if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
581 	    ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
582 	     (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
583 	     !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
584 		return true;
585 
586 	return false;
587 }
588 
589 /*
590  * Poll SMBus master status and return transaction status,
591  * i.e. whether succeeded or failed. I2C and SMBus fault codes
592  * are returned as negative numbers from most calls, with zero
593  * or some positive number indicating a non-fault return.
594  */
595 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
596 {
597 	u32 master_status_bits;
598 	u32 cause_status_bits;
599 
600 	/*
601 	 * GW busy bit is raised by the driver and cleared by the HW
602 	 * when the transaction is completed. The busy bit is a good
603 	 * indicator of transaction status. So poll the busy bit, and
604 	 * then read the cause and master status bits to determine if
605 	 * errors occurred during the transaction.
606 	 */
607 	mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
608 			 MLXBF_I2C_MASTER_BUSY_BIT, true,
609 			 MLXBF_I2C_SMBUS_TIMEOUT);
610 
611 	/* Read cause status bits. */
612 	cause_status_bits = mlxbf_i2c_read(priv->mst_cause->io,
613 					   MLXBF_I2C_CAUSE_ARBITER);
614 	cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
615 
616 	/*
617 	 * Parse both Cause and Master GW bits, then return transaction status.
618 	 */
619 
620 	master_status_bits = mlxbf_i2c_read(priv->smbus->io,
621 					    MLXBF_I2C_SMBUS_MASTER_STATUS);
622 	master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
623 
624 	if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
625 						cause_status_bits))
626 		return 0;
627 
628 	/*
629 	 * In case of timeout on GW busy, the ISR will clear busy bit but
630 	 * transaction ended bits cause will not be set so the transaction
631 	 * fails. Then, we must check Master GW status bits.
632 	 */
633 	if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
634 	    (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
635 				  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
636 		return -EIO;
637 
638 	if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
639 		return -EAGAIN;
640 
641 	return -ETIMEDOUT;
642 }
643 
644 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
645 				       const u8 *data, u8 length, u32 addr)
646 {
647 	u8 offset, aligned_length;
648 	u32 data32;
649 
650 	aligned_length = round_up(length, 4);
651 
652 	/* Copy data bytes from 4-byte aligned source buffer. */
653 	for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
654 		data32 = *((u32 *)(data + offset));
655 		mlxbf_i2c_write_data(priv->smbus->io, addr + offset, data32);
656 	}
657 }
658 
659 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
660 				      u8 *data, u8 length, u32 addr)
661 {
662 	u32 data32, mask;
663 	u8 byte, offset;
664 
665 	mask = sizeof(u32) - 1;
666 
667 	for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
668 		data32 = mlxbf_i2c_read_data(priv->smbus->io, addr + offset);
669 		*((u32 *)(data + offset)) = data32;
670 	}
671 
672 	if (!(length & mask))
673 		return;
674 
675 	data32 = mlxbf_i2c_read_data(priv->smbus->io, addr + offset);
676 
677 	for (byte = 0; byte < (length & mask); byte++) {
678 		data[offset + byte] = data32 & GENMASK(7, 0);
679 		data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
680 	}
681 }
682 
683 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
684 				  u8 len, u8 block_en, u8 pec_en, bool read)
685 {
686 	u32 command;
687 
688 	/* Set Master GW control word. */
689 	if (read) {
690 		command = MLXBF_I2C_MASTER_ENABLE_READ;
691 		command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
692 	} else {
693 		command = MLXBF_I2C_MASTER_ENABLE_WRITE;
694 		command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
695 	}
696 	command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
697 	command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
698 	command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
699 
700 	/* Clear status bits. */
701 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_STATUS, 0x0);
702 	/* Set the cause data. */
703 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_CAUSE_OR_CLEAR, ~0x0);
704 	/* Zero PEC byte. */
705 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_PEC, 0x0);
706 	/* Zero byte count. */
707 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_RS_BYTES, 0x0);
708 
709 	/* GW activation. */
710 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW, command);
711 
712 	/*
713 	 * Poll master status and check status bits. An ACK is sent when
714 	 * completing writing data to the bus (Master 'byte_count_done' bit
715 	 * is set to 1).
716 	 */
717 	return mlxbf_i2c_smbus_check_status(priv);
718 }
719 
720 static int
721 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
722 				  struct mlxbf_i2c_smbus_request *request)
723 {
724 	u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
725 	u8 op_idx, data_idx, data_len, write_len, read_len;
726 	struct mlxbf_i2c_smbus_operation *operation;
727 	u8 read_en, write_en, block_en, pec_en;
728 	u8 slave, flags, addr;
729 	u8 *read_buf;
730 	int ret = 0;
731 
732 	if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
733 		return -EINVAL;
734 
735 	read_buf = NULL;
736 	data_idx = 0;
737 	read_en = 0;
738 	write_en = 0;
739 	write_len = 0;
740 	read_len = 0;
741 	block_en = 0;
742 	pec_en = 0;
743 	slave = request->slave & GENMASK(6, 0);
744 	addr = slave << 1;
745 
746 	/* First of all, check whether the HW is idle. */
747 	if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv)))
748 		return -EBUSY;
749 
750 	/* Set first byte. */
751 	data_desc[data_idx++] = addr;
752 
753 	for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
754 		operation = &request->operation[op_idx];
755 		flags = operation->flags;
756 
757 		/*
758 		 * Note that read and write operations might be handled by a
759 		 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
760 		 * then write command byte and set the optional SMBus specific
761 		 * bits such as block_en and pec_en. These bits MUST be
762 		 * submitted by the first operation only.
763 		 */
764 		if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
765 			block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
766 			pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
767 		}
768 
769 		if (flags & MLXBF_I2C_F_WRITE) {
770 			write_en = 1;
771 			write_len += operation->length;
772 			memcpy(data_desc + data_idx,
773 			       operation->buffer, operation->length);
774 			data_idx += operation->length;
775 		}
776 		/*
777 		 * We assume that read operations are performed only once per
778 		 * SMBus transaction. *TBD* protect this statement so it won't
779 		 * be executed twice? or return an error if we try to read more
780 		 * than once?
781 		 */
782 		if (flags & MLXBF_I2C_F_READ) {
783 			read_en = 1;
784 			/* Subtract 1 as required by HW. */
785 			read_len = operation->length - 1;
786 			read_buf = operation->buffer;
787 		}
788 	}
789 
790 	/* Set Master GW data descriptor. */
791 	data_len = write_len + 1; /* Add one byte of the slave address. */
792 	/*
793 	 * Note that data_len cannot be 0. Indeed, the slave address byte
794 	 * must be written to the data registers.
795 	 */
796 	mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
797 				   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
798 
799 	if (write_en) {
800 		ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
801 					 pec_en, 0);
802 		if (ret)
803 			return ret;
804 	}
805 
806 	if (read_en) {
807 		/* Write slave address to Master GW data descriptor. */
808 		mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
809 					   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
810 		ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
811 					 pec_en, 1);
812 		if (!ret) {
813 			/* Get Master GW data descriptor. */
814 			mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
815 					     MLXBF_I2C_MASTER_DATA_DESC_ADDR);
816 
817 			/* Get data from Master GW data descriptor. */
818 			memcpy(read_buf, data_desc, read_len + 1);
819 		}
820 
821 		/*
822 		 * After a read operation the SMBus FSM ps (present state)
823 		 * needs to be 'manually' reset. This should be removed in
824 		 * next tag integration.
825 		 */
826 		mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_FSM,
827 				MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK);
828 	}
829 
830 	return ret;
831 }
832 
833 /* I2C SMBus protocols. */
834 
835 static void
836 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
837 			      u8 read)
838 {
839 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
840 
841 	request->operation[0].length = 0;
842 	request->operation[0].flags = MLXBF_I2C_F_WRITE;
843 	request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
844 }
845 
846 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
847 				      u8 *data, bool read, bool pec_check)
848 {
849 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
850 
851 	request->operation[0].length = 1;
852 	request->operation[0].length += pec_check;
853 
854 	request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
855 	request->operation[0].flags |= read ?
856 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
857 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
858 
859 	request->operation[0].buffer = data;
860 }
861 
862 static void
863 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
864 			       u8 *command, u8 *data, bool read, bool pec_check)
865 {
866 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
867 
868 	request->operation[0].length = 1;
869 	request->operation[0].flags =
870 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
871 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
872 	request->operation[0].buffer = command;
873 
874 	request->operation[1].length = 1;
875 	request->operation[1].length += pec_check;
876 	request->operation[1].flags = read ?
877 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
878 	request->operation[1].buffer = data;
879 }
880 
881 static void
882 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
883 			       u8 *command, u8 *data, bool read, bool pec_check)
884 {
885 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
886 
887 	request->operation[0].length = 1;
888 	request->operation[0].flags =
889 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
890 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
891 	request->operation[0].buffer = command;
892 
893 	request->operation[1].length = 2;
894 	request->operation[1].length += pec_check;
895 	request->operation[1].flags = read ?
896 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
897 	request->operation[1].buffer = data;
898 }
899 
900 static void
901 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
902 			       u8 *command, u8 *data, u8 *data_len, bool read,
903 			       bool pec_check)
904 {
905 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
906 
907 	request->operation[0].length = 1;
908 	request->operation[0].flags =
909 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
910 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
911 	request->operation[0].buffer = command;
912 
913 	/*
914 	 * As specified in the standard, the max number of bytes to read/write
915 	 * per block operation is 32 bytes. In Golan code, the controller can
916 	 * read up to 128 bytes and write up to 127 bytes.
917 	 */
918 	request->operation[1].length =
919 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
920 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
921 	request->operation[1].flags = read ?
922 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
923 	/*
924 	 * Skip the first data byte, which corresponds to the number of bytes
925 	 * to read/write.
926 	 */
927 	request->operation[1].buffer = data + 1;
928 
929 	*data_len = request->operation[1].length;
930 
931 	/* Set the number of byte to read. This will be used by userspace. */
932 	if (read)
933 		data[0] = *data_len;
934 }
935 
936 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
937 				       u8 *command, u8 *data, u8 *data_len,
938 				       bool read, bool pec_check)
939 {
940 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
941 
942 	request->operation[0].length = 1;
943 	request->operation[0].flags =
944 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
945 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
946 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
947 	request->operation[0].buffer = command;
948 
949 	request->operation[1].length =
950 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
951 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
952 	request->operation[1].flags = read ?
953 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
954 	request->operation[1].buffer = data + 1;
955 
956 	*data_len = request->operation[1].length;
957 
958 	/* Set the number of bytes to read. This will be used by userspace. */
959 	if (read)
960 		data[0] = *data_len;
961 }
962 
963 static void
964 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
965 				  u8 *command, u8 *data, bool pec_check)
966 {
967 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
968 
969 	request->operation[0].length = 1;
970 	request->operation[0].flags =
971 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
972 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
973 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
974 	request->operation[0].buffer = command;
975 
976 	request->operation[1].length = 2;
977 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
978 	request->operation[1].buffer = data;
979 
980 	request->operation[2].length = 3;
981 	request->operation[2].flags = MLXBF_I2C_F_READ;
982 	request->operation[2].buffer = data;
983 }
984 
985 static void
986 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
987 				      u8 *command, u8 *data, u8 *data_len,
988 				      bool pec_check)
989 {
990 	u32 length;
991 
992 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
993 
994 	request->operation[0].length = 1;
995 	request->operation[0].flags =
996 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
997 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
998 	request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
999 	request->operation[0].buffer = command;
1000 
1001 	length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
1002 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
1003 
1004 	request->operation[1].length = length - pec_check;
1005 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
1006 	request->operation[1].buffer = data;
1007 
1008 	request->operation[2].length = length;
1009 	request->operation[2].flags = MLXBF_I2C_F_READ;
1010 	request->operation[2].buffer = data;
1011 
1012 	*data_len = length; /* including PEC byte. */
1013 }
1014 
1015 /* Initialization functions. */
1016 
1017 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
1018 {
1019 	return priv->chip->type == type;
1020 }
1021 
1022 static struct mlxbf_i2c_resource *
1023 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
1024 {
1025 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1026 	struct mlxbf_i2c_resource *res;
1027 	u8 res_idx = 0;
1028 
1029 	for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1030 		res = chip->shared_res[res_idx];
1031 		if (res && res->type == type)
1032 			return res;
1033 	}
1034 
1035 	return NULL;
1036 }
1037 
1038 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1039 				   struct mlxbf_i2c_resource **res,
1040 				   u8 type)
1041 {
1042 	struct mlxbf_i2c_resource *tmp_res;
1043 	struct device *dev = &pdev->dev;
1044 
1045 	if (!res || *res || type >= MLXBF_I2C_END_RES)
1046 		return -EINVAL;
1047 
1048 	tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1049 			       GFP_KERNEL);
1050 	if (!tmp_res)
1051 		return -ENOMEM;
1052 
1053 	tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1054 	if (!tmp_res->params) {
1055 		devm_kfree(dev, tmp_res);
1056 		return -EIO;
1057 	}
1058 
1059 	tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1060 	if (IS_ERR(tmp_res->io)) {
1061 		devm_kfree(dev, tmp_res);
1062 		return PTR_ERR(tmp_res->io);
1063 	}
1064 
1065 	tmp_res->type = type;
1066 
1067 	*res = tmp_res;
1068 
1069 	return 0;
1070 }
1071 
1072 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1073 			       bool minimum)
1074 {
1075 	u64 frequency;
1076 	u32 ticks;
1077 
1078 	/*
1079 	 * Compute ticks as follow:
1080 	 *
1081 	 *           Ticks
1082 	 * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1083 	 *         Frequency
1084 	 */
1085 	frequency = priv->frequency;
1086 	ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1087 	/*
1088 	 * The number of ticks is rounded down and if minimum is equal to 1
1089 	 * then add one tick.
1090 	 */
1091 	if (minimum)
1092 		ticks++;
1093 
1094 	return ticks;
1095 }
1096 
1097 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1098 			       u32 mask, u8 shift)
1099 {
1100 	u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1101 
1102 	return val;
1103 }
1104 
1105 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1106 				  const struct mlxbf_i2c_timings *timings)
1107 {
1108 	u32 timer;
1109 
1110 	timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1111 				    false, MLXBF_I2C_MASK_16,
1112 				    MLXBF_I2C_SHIFT_0);
1113 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1114 				     false, MLXBF_I2C_MASK_16,
1115 				     MLXBF_I2C_SHIFT_16);
1116 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH,
1117 			  timer);
1118 
1119 	timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1120 				    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1121 	timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1122 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1123 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1124 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1125 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1126 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1127 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE,
1128 			  timer);
1129 
1130 	timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1131 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1132 	timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1133 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1134 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_THOLD, timer);
1135 
1136 	timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1137 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1138 	timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1139 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1140 	mlxbf_i2c_write(priv->smbus->io,
1141 			MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP, timer);
1142 
1143 	timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1144 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1145 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA,
1146 			  timer);
1147 
1148 	timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1149 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1150 	timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1151 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1152 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_THIGH_MAX_TBUF,
1153 			timer);
1154 
1155 	timer = timings->timeout;
1156 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT,
1157 			timer);
1158 }
1159 
1160 enum mlxbf_i2c_timings_config {
1161 	MLXBF_I2C_TIMING_CONFIG_100KHZ,
1162 	MLXBF_I2C_TIMING_CONFIG_400KHZ,
1163 	MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1164 };
1165 
1166 /*
1167  * Note that the mlxbf_i2c_timings->timeout value is not related to the
1168  * bus frequency, it is impacted by the time it takes the driver to
1169  * complete data transmission before transaction abort.
1170  */
1171 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1172 	[MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1173 		.scl_high = 4810,
1174 		.scl_low = 5000,
1175 		.hold_start = 4000,
1176 		.setup_start = 4800,
1177 		.setup_stop = 4000,
1178 		.setup_data = 250,
1179 		.sda_rise = 50,
1180 		.sda_fall = 50,
1181 		.scl_rise = 50,
1182 		.scl_fall = 50,
1183 		.hold_data = 300,
1184 		.buf = 20000,
1185 		.thigh_max = 5000,
1186 		.timeout = 106500
1187 	},
1188 	[MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1189 		.scl_high = 1011,
1190 		.scl_low = 1300,
1191 		.hold_start = 600,
1192 		.setup_start = 700,
1193 		.setup_stop = 600,
1194 		.setup_data = 100,
1195 		.sda_rise = 50,
1196 		.sda_fall = 50,
1197 		.scl_rise = 50,
1198 		.scl_fall = 50,
1199 		.hold_data = 300,
1200 		.buf = 20000,
1201 		.thigh_max = 5000,
1202 		.timeout = 106500
1203 	},
1204 	[MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1205 		.scl_high = 600,
1206 		.scl_low = 1300,
1207 		.hold_start = 600,
1208 		.setup_start = 600,
1209 		.setup_stop = 600,
1210 		.setup_data = 100,
1211 		.sda_rise = 50,
1212 		.sda_fall = 50,
1213 		.scl_rise = 50,
1214 		.scl_fall = 50,
1215 		.hold_data = 300,
1216 		.buf = 20000,
1217 		.thigh_max = 5000,
1218 		.timeout = 106500
1219 	}
1220 };
1221 
1222 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1223 				  struct mlxbf_i2c_priv *priv)
1224 {
1225 	enum mlxbf_i2c_timings_config config_idx;
1226 	struct device *dev = &pdev->dev;
1227 	u32 config_khz;
1228 
1229 	int ret;
1230 
1231 	ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1232 	if (ret < 0)
1233 		config_khz = MLXBF_I2C_TIMING_100KHZ;
1234 
1235 	switch (config_khz) {
1236 	default:
1237 		/* Default settings is 100 KHz. */
1238 		pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1239 			config_khz);
1240 		fallthrough;
1241 	case MLXBF_I2C_TIMING_100KHZ:
1242 		config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1243 		break;
1244 
1245 	case MLXBF_I2C_TIMING_400KHZ:
1246 		config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1247 		break;
1248 
1249 	case MLXBF_I2C_TIMING_1000KHZ:
1250 		config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1251 		break;
1252 	}
1253 
1254 	mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1255 
1256 	return 0;
1257 }
1258 
1259 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1260 			      struct mlxbf_i2c_priv *priv)
1261 {
1262 	struct mlxbf_i2c_resource *gpio_res;
1263 	struct device *dev = &pdev->dev;
1264 	struct resource	*params;
1265 	resource_size_t size;
1266 
1267 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1268 	if (!gpio_res)
1269 		return -EPERM;
1270 
1271 	/*
1272 	 * The GPIO region in TYU space is shared among I2C busses.
1273 	 * This function MUST be serialized to avoid racing when
1274 	 * claiming the memory region and/or setting up the GPIO.
1275 	 */
1276 	lockdep_assert_held(gpio_res->lock);
1277 
1278 	/* Check whether the memory map exist. */
1279 	if (gpio_res->io)
1280 		return 0;
1281 
1282 	params = gpio_res->params;
1283 	size = resource_size(params);
1284 
1285 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1286 		return -EFAULT;
1287 
1288 	gpio_res->io = devm_ioremap(dev, params->start, size);
1289 	if (IS_ERR(gpio_res->io)) {
1290 		devm_release_mem_region(dev, params->start, size);
1291 		return PTR_ERR(gpio_res->io);
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1298 				  struct mlxbf_i2c_priv *priv)
1299 {
1300 	struct mlxbf_i2c_resource *gpio_res;
1301 	struct device *dev = &pdev->dev;
1302 	struct resource	*params;
1303 
1304 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1305 	if (!gpio_res)
1306 		return 0;
1307 
1308 	mutex_lock(gpio_res->lock);
1309 
1310 	if (gpio_res->io) {
1311 		/* Release the GPIO resource. */
1312 		params = gpio_res->params;
1313 		devm_iounmap(dev, gpio_res->io);
1314 		devm_release_mem_region(dev, params->start,
1315 					resource_size(params));
1316 	}
1317 
1318 	mutex_unlock(gpio_res->lock);
1319 
1320 	return 0;
1321 }
1322 
1323 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1324 				 struct mlxbf_i2c_priv *priv)
1325 {
1326 	struct mlxbf_i2c_resource *corepll_res;
1327 	struct device *dev = &pdev->dev;
1328 	struct resource *params;
1329 	resource_size_t size;
1330 
1331 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1332 						    MLXBF_I2C_COREPLL_RES);
1333 	if (!corepll_res)
1334 		return -EPERM;
1335 
1336 	/*
1337 	 * The COREPLL region in TYU space is shared among I2C busses.
1338 	 * This function MUST be serialized to avoid racing when
1339 	 * claiming the memory region.
1340 	 */
1341 	lockdep_assert_held(corepll_res->lock);
1342 
1343 	/* Check whether the memory map exist. */
1344 	if (corepll_res->io)
1345 		return 0;
1346 
1347 	params = corepll_res->params;
1348 	size = resource_size(params);
1349 
1350 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1351 		return -EFAULT;
1352 
1353 	corepll_res->io = devm_ioremap(dev, params->start, size);
1354 	if (IS_ERR(corepll_res->io)) {
1355 		devm_release_mem_region(dev, params->start, size);
1356 		return PTR_ERR(corepll_res->io);
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1363 				     struct mlxbf_i2c_priv *priv)
1364 {
1365 	struct mlxbf_i2c_resource *corepll_res;
1366 	struct device *dev = &pdev->dev;
1367 	struct resource *params;
1368 
1369 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1370 						    MLXBF_I2C_COREPLL_RES);
1371 
1372 	mutex_lock(corepll_res->lock);
1373 
1374 	if (corepll_res->io) {
1375 		/* Release the CorePLL resource. */
1376 		params = corepll_res->params;
1377 		devm_iounmap(dev, corepll_res->io);
1378 		devm_release_mem_region(dev, params->start,
1379 					resource_size(params));
1380 	}
1381 
1382 	mutex_unlock(corepll_res->lock);
1383 
1384 	return 0;
1385 }
1386 
1387 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1388 				 struct mlxbf_i2c_priv *priv)
1389 {
1390 	struct mlxbf_i2c_resource *gpio_res;
1391 	struct device *dev = &pdev->dev;
1392 	u32 config_reg;
1393 	int ret;
1394 
1395 	/* This configuration is only needed for BlueField 1. */
1396 	if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1397 		return 0;
1398 
1399 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1400 	if (!gpio_res)
1401 		return -EPERM;
1402 
1403 	/*
1404 	 * The GPIO region in TYU space is shared among I2C busses.
1405 	 * This function MUST be serialized to avoid racing when
1406 	 * claiming the memory region and/or setting up the GPIO.
1407 	 */
1408 
1409 	mutex_lock(gpio_res->lock);
1410 
1411 	ret = mlxbf_i2c_get_gpio(pdev, priv);
1412 	if (ret < 0) {
1413 		dev_err(dev, "Failed to get gpio resource");
1414 		mutex_unlock(gpio_res->lock);
1415 		return ret;
1416 	}
1417 
1418 	/*
1419 	 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1420 	 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1421 	 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1422 	 * instead of HW_OE.
1423 	 * For now, we do not reset the GPIO state when the driver is removed.
1424 	 * First, it is not necessary to disable the bus since we are using
1425 	 * the same busses. Then, some busses might be shared among Linux and
1426 	 * platform firmware; disabling the bus might compromise the system
1427 	 * functionality.
1428 	 */
1429 	config_reg = mlxbf_i2c_read(gpio_res->io,
1430 				    MLXBF_I2C_GPIO_0_FUNC_EN_0);
1431 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1432 							 config_reg);
1433 	mlxbf_i2c_write(gpio_res->io, MLXBF_I2C_GPIO_0_FUNC_EN_0,
1434 			config_reg);
1435 
1436 	config_reg = mlxbf_i2c_read(gpio_res->io,
1437 				    MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1438 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1439 							config_reg);
1440 	mlxbf_i2c_write(gpio_res->io, MLXBF_I2C_GPIO_0_FORCE_OE_EN,
1441 			config_reg);
1442 
1443 	mutex_unlock(gpio_res->lock);
1444 
1445 	return 0;
1446 }
1447 
1448 static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1449 {
1450 	u64 core_frequency, pad_frequency;
1451 	u8 core_od, core_r;
1452 	u32 corepll_val;
1453 	u16 core_f;
1454 
1455 	pad_frequency = MLXBF_I2C_TYU_PLL_IN_FREQ;
1456 
1457 	corepll_val = mlxbf_i2c_read(corepll_res->io,
1458 				     MLXBF_I2C_CORE_PLL_REG1);
1459 
1460 	/* Get Core PLL configuration bits. */
1461 	core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) &
1462 			MLXBF_I2C_COREPLL_CORE_F_TYU_MASK;
1463 	core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) &
1464 			MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK;
1465 	core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) &
1466 			MLXBF_I2C_COREPLL_CORE_R_TYU_MASK;
1467 
1468 	/*
1469 	 * Compute PLL output frequency as follow:
1470 	 *
1471 	 *                                       CORE_F + 1
1472 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1473 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1474 	 *
1475 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1476 	 * and PadFrequency, respectively.
1477 	 */
1478 	core_frequency = pad_frequency * (++core_f);
1479 	core_frequency /= (++core_r) * (++core_od);
1480 
1481 	return core_frequency;
1482 }
1483 
1484 static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1485 {
1486 	u32 corepll_reg1_val, corepll_reg2_val;
1487 	u64 corepll_frequency, pad_frequency;
1488 	u8 core_od, core_r;
1489 	u32 core_f;
1490 
1491 	pad_frequency = MLXBF_I2C_YU_PLL_IN_FREQ;
1492 
1493 	corepll_reg1_val = mlxbf_i2c_read(corepll_res->io,
1494 					  MLXBF_I2C_CORE_PLL_REG1);
1495 	corepll_reg2_val = mlxbf_i2c_read(corepll_res->io,
1496 					  MLXBF_I2C_CORE_PLL_REG2);
1497 
1498 	/* Get Core PLL configuration bits */
1499 	core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) &
1500 			MLXBF_I2C_COREPLL_CORE_F_YU_MASK;
1501 	core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) &
1502 			MLXBF_I2C_COREPLL_CORE_R_YU_MASK;
1503 	core_od = rol32(corepll_reg2_val,  MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) &
1504 			MLXBF_I2C_COREPLL_CORE_OD_YU_MASK;
1505 
1506 	/*
1507 	 * Compute PLL output frequency as follow:
1508 	 *
1509 	 *                                     CORE_F / 16384
1510 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1511 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1512 	 *
1513 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1514 	 * and PadFrequency, respectively.
1515 	 */
1516 	corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST;
1517 	corepll_frequency /= (++core_r) * (++core_od);
1518 
1519 	return corepll_frequency;
1520 }
1521 
1522 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1523 					    struct mlxbf_i2c_priv *priv)
1524 {
1525 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1526 	struct mlxbf_i2c_resource *corepll_res;
1527 	struct device *dev = &pdev->dev;
1528 	u64 *freq = &priv->frequency;
1529 	int ret;
1530 
1531 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1532 						    MLXBF_I2C_COREPLL_RES);
1533 	if (!corepll_res)
1534 		return -EPERM;
1535 
1536 	/*
1537 	 * First, check whether the TYU core Clock frequency is set.
1538 	 * The TYU core frequency is the same for all I2C busses; when
1539 	 * the first device gets probed the frequency is determined and
1540 	 * stored into a globally visible variable. So, first of all,
1541 	 * check whether the frequency is already set. Here, we assume
1542 	 * that the frequency is expected to be greater than 0.
1543 	 */
1544 	mutex_lock(corepll_res->lock);
1545 	if (!mlxbf_i2c_corepll_frequency) {
1546 		if (!chip->calculate_freq) {
1547 			mutex_unlock(corepll_res->lock);
1548 			return -EPERM;
1549 		}
1550 
1551 		ret = mlxbf_i2c_get_corepll(pdev, priv);
1552 		if (ret < 0) {
1553 			dev_err(dev, "Failed to get corePLL resource");
1554 			mutex_unlock(corepll_res->lock);
1555 			return ret;
1556 		}
1557 
1558 		mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1559 	}
1560 	mutex_unlock(corepll_res->lock);
1561 
1562 	*freq = mlxbf_i2c_corepll_frequency;
1563 
1564 	return 0;
1565 }
1566 
1567 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1568 {
1569 	u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1570 	u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1571 	bool avail, disabled;
1572 
1573 	disabled = false;
1574 	avail = false;
1575 
1576 	if (!priv)
1577 		return -EPERM;
1578 
1579 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1580 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1581 
1582 	/*
1583 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1584 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1585 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1586 	 */
1587 	for (reg = 0; reg < reg_cnt; reg++) {
1588 		slave_reg = mlxbf_i2c_read(priv->smbus->io,
1589 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1590 		/*
1591 		 * Each register holds 4 slave addresses. So, we have to keep
1592 		 * the byte order consistent with the value read in order to
1593 		 * update the register correctly, if needed.
1594 		 */
1595 		slave_reg_tmp = slave_reg;
1596 		for (byte = 0; byte < 4; byte++) {
1597 			addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1598 
1599 			/*
1600 			 * Mark the first available slave address slot, i.e. its
1601 			 * enabled bit should be unset. This slot might be used
1602 			 * later on to register our slave.
1603 			 */
1604 			if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1605 				avail = true;
1606 				reg_avail = reg;
1607 				byte_avail = byte;
1608 				slave_reg_avail = slave_reg;
1609 			}
1610 
1611 			/*
1612 			 * Parse slave address bytes and check whether the
1613 			 * slave address already exists and it's enabled,
1614 			 * i.e. most significant bit is set.
1615 			 */
1616 			if ((addr_tmp & slave_addr_mask) == addr) {
1617 				if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1618 					return 0;
1619 				disabled = true;
1620 				break;
1621 			}
1622 
1623 			/* Parse next byte. */
1624 			slave_reg_tmp >>= 8;
1625 		}
1626 
1627 		/* Exit the loop if the slave address is found. */
1628 		if (disabled)
1629 			break;
1630 	}
1631 
1632 	if (!avail && !disabled)
1633 		return -EINVAL; /* No room for a new slave address. */
1634 
1635 	if (avail && !disabled) {
1636 		reg = reg_avail;
1637 		byte = byte_avail;
1638 		/* Set the slave address. */
1639 		slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1640 		slave_reg_avail |= addr << (byte * 8);
1641 		slave_reg = slave_reg_avail;
1642 	}
1643 
1644 	/* Enable the slave address and update the register. */
1645 	slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1646 	mlxbf_i2c_write(priv->smbus->io,
1647 			MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4, slave_reg);
1648 
1649 	return 0;
1650 }
1651 
1652 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1653 {
1654 	u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1655 	u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1656 	struct i2c_client *client = priv->slave;
1657 	bool exist;
1658 
1659 	exist = false;
1660 
1661 	addr = client->addr;
1662 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1663 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1664 
1665 	/*
1666 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1667 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1668 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1669 	 */
1670 	for (reg = 0; reg < reg_cnt; reg++) {
1671 		slave_reg = mlxbf_i2c_read(priv->smbus->io,
1672 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1673 
1674 		/* Check whether the address slots are empty. */
1675 		if (slave_reg == 0)
1676 			continue;
1677 
1678 		/*
1679 		 * Each register holds 4 slave addresses. So, we have to keep
1680 		 * the byte order consistent with the value read in order to
1681 		 * update the register correctly, if needed.
1682 		 */
1683 		slave_reg_tmp = slave_reg;
1684 		slave_byte = 0;
1685 		while (slave_reg_tmp != 0) {
1686 			addr_tmp = slave_reg_tmp & slave_addr_mask;
1687 			/*
1688 			 * Parse slave address bytes and check whether the
1689 			 * slave address already exists.
1690 			 */
1691 			if (addr_tmp == addr) {
1692 				exist = true;
1693 				break;
1694 			}
1695 
1696 			/* Parse next byte. */
1697 			slave_reg_tmp >>= 8;
1698 			slave_byte += 1;
1699 		}
1700 
1701 		/* Exit the loop if the slave address is found. */
1702 		if (exist)
1703 			break;
1704 	}
1705 
1706 	if (!exist)
1707 		return 0; /* Slave is not registered, nothing to do. */
1708 
1709 	/* Cleanup the slave address slot. */
1710 	slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1711 	mlxbf_i2c_write(priv->smbus->io,
1712 			MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4, slave_reg);
1713 
1714 	return 0;
1715 }
1716 
1717 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1718 				   struct mlxbf_i2c_priv *priv)
1719 {
1720 	struct mlxbf_i2c_resource *coalesce_res;
1721 	struct resource *params;
1722 	resource_size_t size;
1723 	int ret = 0;
1724 
1725 	/*
1726 	 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1727 	 * resource in the next generations of BlueField.
1728 	 */
1729 	if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1730 		coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1731 						MLXBF_I2C_COALESCE_RES);
1732 		if (!coalesce_res)
1733 			return -EPERM;
1734 
1735 		/*
1736 		 * The Cause Coalesce group in TYU space is shared among
1737 		 * I2C busses. This function MUST be serialized to avoid
1738 		 * racing when claiming the memory region.
1739 		 */
1740 		lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1741 
1742 		/* Check whether the memory map exist. */
1743 		if (coalesce_res->io) {
1744 			priv->coalesce = coalesce_res;
1745 			return 0;
1746 		}
1747 
1748 		params = coalesce_res->params;
1749 		size = resource_size(params);
1750 
1751 		if (!request_mem_region(params->start, size, params->name))
1752 			return -EFAULT;
1753 
1754 		coalesce_res->io = ioremap(params->start, size);
1755 		if (IS_ERR(coalesce_res->io)) {
1756 			release_mem_region(params->start, size);
1757 			return PTR_ERR(coalesce_res->io);
1758 		}
1759 
1760 		priv->coalesce = coalesce_res;
1761 
1762 	} else {
1763 		ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1764 					      MLXBF_I2C_COALESCE_RES);
1765 	}
1766 
1767 	return ret;
1768 }
1769 
1770 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1771 				      struct mlxbf_i2c_priv *priv)
1772 {
1773 	struct mlxbf_i2c_resource *coalesce_res;
1774 	struct device *dev = &pdev->dev;
1775 	struct resource *params;
1776 	resource_size_t size;
1777 
1778 	coalesce_res = priv->coalesce;
1779 
1780 	if (coalesce_res->io) {
1781 		params = coalesce_res->params;
1782 		size = resource_size(params);
1783 		if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1784 			mutex_lock(coalesce_res->lock);
1785 			iounmap(coalesce_res->io);
1786 			release_mem_region(params->start, size);
1787 			mutex_unlock(coalesce_res->lock);
1788 		} else {
1789 			devm_release_mem_region(dev, params->start, size);
1790 		}
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1797 				struct mlxbf_i2c_priv *priv)
1798 {
1799 	struct device *dev = &pdev->dev;
1800 	u32 int_reg;
1801 	int ret;
1802 
1803 	/* Reset FSM. */
1804 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_FSM, 0);
1805 
1806 	/*
1807 	 * Enable slave cause interrupt bits. Drive
1808 	 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1809 	 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1810 	 * masters issue a Read and Write, respectively. But, clear all
1811 	 * interrupts first.
1812 	 */
1813 	mlxbf_i2c_write(priv->slv_cause->io,
1814 			  MLXBF_I2C_CAUSE_OR_CLEAR, ~0);
1815 	int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1816 	int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1817 	mlxbf_i2c_write(priv->slv_cause->io,
1818 			  MLXBF_I2C_CAUSE_OR_EVTEN0, int_reg);
1819 
1820 	/* Finally, set the 'ready' bit to start handling transactions. */
1821 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_READY, 0x1);
1822 
1823 	/* Initialize the cause coalesce resource. */
1824 	ret = mlxbf_i2c_init_coalesce(pdev, priv);
1825 	if (ret < 0) {
1826 		dev_err(dev, "failed to initialize cause coalesce\n");
1827 		return ret;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1834 				   bool *write)
1835 {
1836 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1837 	u32 coalesce0_reg, cause_reg;
1838 	u8 slave_shift, is_set;
1839 
1840 	*write = false;
1841 	*read = false;
1842 
1843 	slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1844 				MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1845 				priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1846 
1847 	coalesce0_reg = mlxbf_i2c_read(priv->coalesce->io,
1848 				       MLXBF_I2C_CAUSE_COALESCE_0);
1849 	is_set = coalesce0_reg & (1 << slave_shift);
1850 
1851 	if (!is_set)
1852 		return false;
1853 
1854 	/* Check the source of the interrupt, i.e. whether a Read or Write. */
1855 	cause_reg = mlxbf_i2c_read(priv->slv_cause->io,
1856 				     MLXBF_I2C_CAUSE_ARBITER);
1857 	if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1858 		*read = true;
1859 	else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1860 		*write = true;
1861 
1862 	/* Clear cause bits. */
1863 	mlxbf_i2c_write(priv->slv_cause->io, MLXBF_I2C_CAUSE_OR_CLEAR, ~0x0);
1864 
1865 	return true;
1866 }
1867 
1868 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1869 					    u32 timeout)
1870 {
1871 	u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1872 	u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1873 
1874 	if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1875 		return true;
1876 
1877 	return false;
1878 }
1879 
1880 /* Send byte to 'external' smbus master. */
1881 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1882 {
1883 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1884 	u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1885 	struct i2c_client *slave = priv->slave;
1886 	u32 control32, data32;
1887 	int ret;
1888 
1889 	if (!slave)
1890 		return -EINVAL;
1891 
1892 	addr = 0;
1893 	byte = 0;
1894 	desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1895 
1896 	/*
1897 	 * Read bytes received from the external master. These bytes should
1898 	 * be located in the first data descriptor register of the slave GW.
1899 	 * These bytes are the slave address byte and the internal register
1900 	 * address, if supplied.
1901 	 */
1902 	if (recv_bytes > 0) {
1903 		data32 = mlxbf_i2c_read_data(priv->smbus->io,
1904 					     MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1905 
1906 		/* Parse the received bytes. */
1907 		switch (recv_bytes) {
1908 		case 2:
1909 			byte = (data32 >> 8) & GENMASK(7, 0);
1910 			fallthrough;
1911 		case 1:
1912 			addr = (data32 & GENMASK(7, 0)) >> 1;
1913 		}
1914 
1915 		/* Check whether it's our slave address. */
1916 		if (slave->addr != addr)
1917 			return -EINVAL;
1918 	}
1919 
1920 	/*
1921 	 * I2C read transactions may start by a WRITE followed by a READ.
1922 	 * Indeed, most slave devices would expect the internal address
1923 	 * following the slave address byte. So, write that byte first,
1924 	 * and then, send the requested data bytes to the master.
1925 	 */
1926 	if (recv_bytes > 1) {
1927 		i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1928 		value = byte;
1929 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1930 				      &value);
1931 		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1932 
1933 		if (ret < 0)
1934 			return ret;
1935 	}
1936 
1937 	/*
1938 	 * Now, send data to the master; currently, the driver supports
1939 	 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1940 	 * hardware can send up to 128 bytes per transfer. That is the
1941 	 * size of its data registers.
1942 	 */
1943 	i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1944 
1945 	for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1946 		data_desc[byte_cnt] = value;
1947 		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1948 	}
1949 
1950 	/* Send a stop condition to the backend. */
1951 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1952 
1953 	/* Handle the actual transfer. */
1954 
1955 	/* Set the number of bytes to write to master. */
1956 	write_size = (byte_cnt - 1) & 0x7f;
1957 
1958 	/* Write data to Slave GW data descriptor. */
1959 	mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1960 				   MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1961 
1962 	pec_en = 0; /* Disable PEC since it is not supported. */
1963 
1964 	/* Prepare control word. */
1965 	control32 = MLXBF_I2C_SLAVE_ENABLE;
1966 	control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1967 	control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1968 
1969 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_GW, control32);
1970 
1971 	/*
1972 	 * Wait until the transfer is completed; the driver will wait
1973 	 * until the GW is idle, a cause will rise on fall of GW busy.
1974 	 */
1975 	mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1976 
1977 	/* Release the Slave GW. */
1978 	mlxbf_i2c_write(priv->smbus->io,
1979 			MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES, 0x0);
1980 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_PEC, 0x0);
1981 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_READY, 0x1);
1982 
1983 	return 0;
1984 }
1985 
1986 /* Receive bytes from 'external' smbus master. */
1987 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1988 {
1989 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1990 	struct i2c_client *slave = priv->slave;
1991 	u8 value, byte, addr;
1992 	int ret = 0;
1993 
1994 	if (!slave)
1995 		return -EINVAL;
1996 
1997 	/* Read data from Slave GW data descriptor. */
1998 	mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1999 				  MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
2000 
2001 	/* Check whether its our slave address. */
2002 	addr = data_desc[0] >> 1;
2003 	if (slave->addr != addr)
2004 		return -EINVAL;
2005 
2006 	/*
2007 	 * Notify the slave backend; another I2C master wants to write data
2008 	 * to us. This event is sent once the slave address and the write bit
2009 	 * is detected.
2010 	 */
2011 	i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
2012 
2013 	/* Send the received data to the slave backend. */
2014 	for (byte = 1; byte < recv_bytes; byte++) {
2015 		value = data_desc[byte];
2016 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
2017 				      &value);
2018 		if (ret < 0)
2019 			break;
2020 	}
2021 
2022 	/* Send a stop condition to the backend. */
2023 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
2024 
2025 	/* Release the Slave GW. */
2026 	mlxbf_i2c_write(priv->smbus->io,
2027 			MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES, 0x0);
2028 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_PEC, 0x0);
2029 	mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_READY, 0x1);
2030 
2031 	return ret;
2032 }
2033 
2034 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
2035 {
2036 	struct mlxbf_i2c_priv *priv = ptr;
2037 	bool read, write, irq_is_set;
2038 	u32 rw_bytes_reg;
2039 	u8 recv_bytes;
2040 
2041 	/*
2042 	 * Read TYU interrupt register and determine the source of the
2043 	 * interrupt. Based on the source of the interrupt one of the
2044 	 * following actions are performed:
2045 	 *  - Receive data and send response to master.
2046 	 *  - Send data and release slave GW.
2047 	 *
2048 	 * Handle read/write transaction only. CRmaster and Iarp requests
2049 	 * are ignored for now.
2050 	 */
2051 	irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2052 	if (!irq_is_set || (!read && !write)) {
2053 		/* Nothing to do here, interrupt was not from this device. */
2054 		return IRQ_NONE;
2055 	}
2056 
2057 	/*
2058 	 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2059 	 * bytes from/to master. These are defined by 8-bits each. If the lower
2060 	 * 8 bits are set, then the master expect to read N bytes from the
2061 	 * slave, if the higher 8 bits are sent then the slave expect N bytes
2062 	 * from the master.
2063 	 */
2064 	rw_bytes_reg = mlxbf_i2c_read(priv->smbus->io,
2065 				      MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2066 	recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2067 
2068 	/*
2069 	 * For now, the slave supports 128 bytes transfer. Discard remaining
2070 	 * data bytes if the master wrote more than
2071 	 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2072 	 * data descriptor.
2073 	 *
2074 	 * Note that we will never expect to transfer more than 128 bytes; as
2075 	 * specified in the SMBus standard, block transactions cannot exceed
2076 	 * 32 bytes.
2077 	 */
2078 	recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2079 		MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2080 
2081 	if (read)
2082 		mlxbf_smbus_irq_send(priv, recv_bytes);
2083 	else
2084 		mlxbf_smbus_irq_recv(priv, recv_bytes);
2085 
2086 	return IRQ_HANDLED;
2087 }
2088 
2089 /* Return negative errno on error. */
2090 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2091 				unsigned short flags, char read_write,
2092 				u8 command, int size,
2093 				union i2c_smbus_data *data)
2094 {
2095 	struct mlxbf_i2c_smbus_request request = { 0 };
2096 	struct mlxbf_i2c_priv *priv;
2097 	bool read, pec;
2098 	u8 byte_cnt;
2099 
2100 	request.slave = addr;
2101 
2102 	read = (read_write == I2C_SMBUS_READ);
2103 	pec = flags & I2C_FUNC_SMBUS_PEC;
2104 
2105 	switch (size) {
2106 	case I2C_SMBUS_QUICK:
2107 		mlxbf_i2c_smbus_quick_command(&request, read);
2108 		dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2109 		break;
2110 
2111 	case I2C_SMBUS_BYTE:
2112 		mlxbf_i2c_smbus_byte_func(&request,
2113 					  read ? &data->byte : &command, read,
2114 					  pec);
2115 		dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2116 			read ? "read" : "write", addr);
2117 		break;
2118 
2119 	case I2C_SMBUS_BYTE_DATA:
2120 		mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2121 					       read, pec);
2122 		dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2123 			read ? "read" : "write", command, addr);
2124 		break;
2125 
2126 	case I2C_SMBUS_WORD_DATA:
2127 		mlxbf_i2c_smbus_data_word_func(&request, &command,
2128 					       (u8 *)&data->word, read, pec);
2129 		dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2130 			read ? "read" : "write", command, addr);
2131 		break;
2132 
2133 	case I2C_SMBUS_I2C_BLOCK_DATA:
2134 		byte_cnt = data->block[0];
2135 		mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2136 					       &byte_cnt, read, pec);
2137 		dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2138 			read ? "read" : "write", byte_cnt, command, addr);
2139 		break;
2140 
2141 	case I2C_SMBUS_BLOCK_DATA:
2142 		byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2143 		mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2144 					   &byte_cnt, read, pec);
2145 		dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2146 			read ? "read" : "write", byte_cnt, command, addr);
2147 		break;
2148 
2149 	case I2C_FUNC_SMBUS_PROC_CALL:
2150 		mlxbf_i2c_smbus_process_call_func(&request, &command,
2151 						  (u8 *)&data->word, pec);
2152 		dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2153 			command, addr);
2154 		break;
2155 
2156 	case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2157 		byte_cnt = data->block[0];
2158 		mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2159 						      data->block, &byte_cnt,
2160 						      pec);
2161 		dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2162 			byte_cnt, addr);
2163 		break;
2164 
2165 	default:
2166 		dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2167 			size);
2168 		return -EOPNOTSUPP;
2169 	}
2170 
2171 	priv = i2c_get_adapdata(adap);
2172 
2173 	return mlxbf_i2c_smbus_start_transaction(priv, &request);
2174 }
2175 
2176 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2177 {
2178 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2179 	int ret;
2180 
2181 	if (priv->slave)
2182 		return -EBUSY;
2183 
2184 	/*
2185 	 * Do not support ten bit chip address and do not use Packet Error
2186 	 * Checking (PEC).
2187 	 */
2188 	if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2189 		return -EAFNOSUPPORT;
2190 
2191 	ret = mlxbf_slave_enable(priv, slave->addr);
2192 	if (ret < 0)
2193 		return ret;
2194 
2195 	priv->slave = slave;
2196 
2197 	return 0;
2198 }
2199 
2200 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2201 {
2202 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2203 	int ret;
2204 
2205 	WARN_ON(!priv->slave);
2206 
2207 	/* Unregister slave, i.e. disable the slave address in hardware. */
2208 	ret = mlxbf_slave_disable(priv);
2209 	if (ret < 0)
2210 		return ret;
2211 
2212 	priv->slave = NULL;
2213 
2214 	return 0;
2215 }
2216 
2217 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2218 {
2219 	return MLXBF_I2C_FUNC_ALL;
2220 }
2221 
2222 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2223 	[MLXBF_I2C_CHIP_TYPE_1] = {
2224 		.type = MLXBF_I2C_CHIP_TYPE_1,
2225 		.shared_res = {
2226 			[0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2227 			[1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2228 			[2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2229 		},
2230 		.calculate_freq = mlxbf_calculate_freq_from_tyu
2231 	},
2232 	[MLXBF_I2C_CHIP_TYPE_2] = {
2233 		.type = MLXBF_I2C_CHIP_TYPE_2,
2234 		.shared_res = {
2235 			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2236 		},
2237 		.calculate_freq = mlxbf_calculate_freq_from_yu
2238 	}
2239 };
2240 
2241 static const struct i2c_algorithm mlxbf_i2c_algo = {
2242 	.smbus_xfer = mlxbf_i2c_smbus_xfer,
2243 	.functionality = mlxbf_i2c_functionality,
2244 	.reg_slave = mlxbf_i2c_reg_slave,
2245 	.unreg_slave = mlxbf_i2c_unreg_slave,
2246 };
2247 
2248 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2249 	.max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2250 	.max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2251 };
2252 
2253 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2254 	{
2255 		.compatible = "mellanox,i2c-mlxbf1",
2256 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2257 	},
2258 	{
2259 		.compatible = "mellanox,i2c-mlxbf2",
2260 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2261 	},
2262 	{},
2263 };
2264 
2265 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2266 
2267 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2268 	{ "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2269 	{ "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2270 	{},
2271 };
2272 
2273 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2274 
2275 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2276 {
2277 	const struct acpi_device_id *aid;
2278 	struct acpi_device *adev;
2279 	unsigned long bus_id = 0;
2280 	const char *uid;
2281 	int ret;
2282 
2283 	if (acpi_disabled)
2284 		return -ENOENT;
2285 
2286 	adev = ACPI_COMPANION(dev);
2287 	if (!adev)
2288 		return -ENXIO;
2289 
2290 	aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2291 	if (!aid)
2292 		return -ENODEV;
2293 
2294 	priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2295 
2296 	uid = acpi_device_uid(adev);
2297 	if (!uid || !(*uid)) {
2298 		dev_err(dev, "Cannot retrieve UID\n");
2299 		return -ENODEV;
2300 	}
2301 
2302 	ret = kstrtoul(uid, 0, &bus_id);
2303 	if (!ret)
2304 		priv->bus = bus_id;
2305 
2306 	return ret;
2307 }
2308 
2309 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2310 {
2311 	const struct of_device_id *oid;
2312 	int bus_id = -1;
2313 
2314 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2315 		oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2316 		if (!oid)
2317 			return -ENODEV;
2318 
2319 		priv->chip = oid->data;
2320 
2321 		bus_id = of_alias_get_id(dev->of_node, "i2c");
2322 		if (bus_id >= 0)
2323 			priv->bus = bus_id;
2324 	}
2325 
2326 	if (bus_id < 0) {
2327 		dev_err(dev, "Cannot get bus id");
2328 		return bus_id;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 static int mlxbf_i2c_probe(struct platform_device *pdev)
2335 {
2336 	struct device *dev = &pdev->dev;
2337 	struct mlxbf_i2c_priv *priv;
2338 	struct i2c_adapter *adap;
2339 	int irq, ret;
2340 
2341 	priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2342 	if (!priv)
2343 		return -ENOMEM;
2344 
2345 	ret = mlxbf_i2c_acpi_probe(dev, priv);
2346 	if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2347 		ret = mlxbf_i2c_of_probe(dev, priv);
2348 
2349 	if (ret < 0)
2350 		return ret;
2351 
2352 	ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2353 				      MLXBF_I2C_SMBUS_RES);
2354 	if (ret < 0) {
2355 		dev_err(dev, "Cannot fetch smbus resource info");
2356 		return ret;
2357 	}
2358 
2359 	ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2360 				      MLXBF_I2C_MST_CAUSE_RES);
2361 	if (ret < 0) {
2362 		dev_err(dev, "Cannot fetch cause master resource info");
2363 		return ret;
2364 	}
2365 
2366 	ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2367 				      MLXBF_I2C_SLV_CAUSE_RES);
2368 	if (ret < 0) {
2369 		dev_err(dev, "Cannot fetch cause slave resource info");
2370 		return ret;
2371 	}
2372 
2373 	adap = &priv->adap;
2374 	adap->owner = THIS_MODULE;
2375 	adap->class = I2C_CLASS_HWMON;
2376 	adap->algo = &mlxbf_i2c_algo;
2377 	adap->quirks = &mlxbf_i2c_quirks;
2378 	adap->dev.parent = dev;
2379 	adap->dev.of_node = dev->of_node;
2380 	adap->nr = priv->bus;
2381 
2382 	snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2383 	i2c_set_adapdata(adap, priv);
2384 
2385 	/* Read Core PLL frequency. */
2386 	ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2387 	if (ret < 0) {
2388 		dev_err(dev, "cannot get core clock frequency\n");
2389 		/* Set to default value. */
2390 		priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2391 	}
2392 
2393 	/*
2394 	 * Initialize master.
2395 	 * Note that a physical bus might be shared among Linux and firmware
2396 	 * (e.g., ATF). Thus, the bus should be initialized and ready and
2397 	 * bus initialization would be unnecessary. This requires additional
2398 	 * knowledge about physical busses. But, since an extra initialization
2399 	 * does not really hurt, then keep the code as is.
2400 	 */
2401 	ret = mlxbf_i2c_init_master(pdev, priv);
2402 	if (ret < 0) {
2403 		dev_err(dev, "failed to initialize smbus master %d",
2404 			priv->bus);
2405 		return ret;
2406 	}
2407 
2408 	mlxbf_i2c_init_timings(pdev, priv);
2409 
2410 	mlxbf_i2c_init_slave(pdev, priv);
2411 
2412 	irq = platform_get_irq(pdev, 0);
2413 	ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2414 			       IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2415 			       dev_name(dev), priv);
2416 	if (ret < 0) {
2417 		dev_err(dev, "Cannot get irq %d\n", irq);
2418 		return ret;
2419 	}
2420 
2421 	priv->irq = irq;
2422 
2423 	platform_set_drvdata(pdev, priv);
2424 
2425 	ret = i2c_add_numbered_adapter(adap);
2426 	if (ret < 0)
2427 		return ret;
2428 
2429 	mutex_lock(&mlxbf_i2c_bus_lock);
2430 	mlxbf_i2c_bus_count++;
2431 	mutex_unlock(&mlxbf_i2c_bus_lock);
2432 
2433 	return 0;
2434 }
2435 
2436 static int mlxbf_i2c_remove(struct platform_device *pdev)
2437 {
2438 	struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2439 	struct device *dev = &pdev->dev;
2440 	struct resource *params;
2441 
2442 	params = priv->smbus->params;
2443 	devm_release_mem_region(dev, params->start, resource_size(params));
2444 
2445 	params = priv->mst_cause->params;
2446 	devm_release_mem_region(dev, params->start, resource_size(params));
2447 
2448 	params = priv->slv_cause->params;
2449 	devm_release_mem_region(dev, params->start, resource_size(params));
2450 
2451 	/*
2452 	 * Release shared resources. This should be done when releasing
2453 	 * the I2C controller.
2454 	 */
2455 	mutex_lock(&mlxbf_i2c_bus_lock);
2456 	if (--mlxbf_i2c_bus_count == 0) {
2457 		mlxbf_i2c_release_coalesce(pdev, priv);
2458 		mlxbf_i2c_release_corepll(pdev, priv);
2459 		mlxbf_i2c_release_gpio(pdev, priv);
2460 	}
2461 	mutex_unlock(&mlxbf_i2c_bus_lock);
2462 
2463 	devm_free_irq(dev, priv->irq, priv);
2464 
2465 	i2c_del_adapter(&priv->adap);
2466 
2467 	return 0;
2468 }
2469 
2470 static struct platform_driver mlxbf_i2c_driver = {
2471 	.probe = mlxbf_i2c_probe,
2472 	.remove = mlxbf_i2c_remove,
2473 	.driver = {
2474 		.name = "i2c-mlxbf",
2475 		.of_match_table = mlxbf_i2c_dt_ids,
2476 		.acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2477 	},
2478 };
2479 
2480 static int __init mlxbf_i2c_init(void)
2481 {
2482 	mutex_init(&mlxbf_i2c_coalesce_lock);
2483 	mutex_init(&mlxbf_i2c_corepll_lock);
2484 	mutex_init(&mlxbf_i2c_gpio_lock);
2485 
2486 	mutex_init(&mlxbf_i2c_bus_lock);
2487 
2488 	return platform_driver_register(&mlxbf_i2c_driver);
2489 }
2490 module_init(mlxbf_i2c_init);
2491 
2492 static void __exit mlxbf_i2c_exit(void)
2493 {
2494 	platform_driver_unregister(&mlxbf_i2c_driver);
2495 
2496 	mutex_destroy(&mlxbf_i2c_bus_lock);
2497 
2498 	mutex_destroy(&mlxbf_i2c_gpio_lock);
2499 	mutex_destroy(&mlxbf_i2c_corepll_lock);
2500 	mutex_destroy(&mlxbf_i2c_coalesce_lock);
2501 }
2502 module_exit(mlxbf_i2c_exit);
2503 
2504 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2505 MODULE_AUTHOR("Khalil Blaiech <kblaiech@mellanox.com>");
2506 MODULE_LICENSE("GPL v2");
2507