xref: /openbmc/linux/drivers/i2c/busses/i2c-mlxbf.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Mellanox BlueField I2C bus driver
4  *
5  *  Copyright (C) 2020 Mellanox Technologies, Ltd.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/i2c.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/string.h>
20 
21 /* Defines what functionality is present. */
22 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
23 	(I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
24 
25 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
26 	(I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
27 	 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
28 	 I2C_FUNC_SMBUS_PROC_CALL)
29 
30 #define MLXBF_I2C_FUNC_ALL \
31 	(MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
32 	 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
33 
34 #define MLXBF_I2C_SMBUS_MAX        3
35 
36 /* Shared resources info in BlueField platforms. */
37 
38 #define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
39 #define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
40 
41 #define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
42 #define MLXBF_I2C_GPIO_TYU_SIZE        0x100
43 
44 #define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
45 #define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
46 
47 #define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
48 #define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
49 
50 #define MLXBF_I2C_SHARED_RES_MAX       3
51 
52 /*
53  * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
54  * refer to their respective offsets relative to the corresponding
55  * memory-mapped region whose addresses are specified in either the DT or
56  * the ACPI tables or above.
57  */
58 
59 /*
60  * SMBus Master core clock frequency. Timing configurations are
61  * strongly dependent on the core clock frequency of the SMBus
62  * Master. Default value is set to 400MHz.
63  */
64 #define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
65 /* Reference clock for Bluefield - 156 MHz. */
66 #define MLXBF_I2C_PLL_IN_FREQ       (156 * 1000 * 1000)
67 
68 /* Constant used to determine the PLL frequency. */
69 #define MLNXBF_I2C_COREPLL_CONST    16384
70 
71 /* PLL registers. */
72 #define MLXBF_I2C_CORE_PLL_REG0         0x0
73 #define MLXBF_I2C_CORE_PLL_REG1         0x4
74 #define MLXBF_I2C_CORE_PLL_REG2         0x8
75 
76 /* OR cause register. */
77 #define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
78 #define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
79 
80 /* Arbiter Cause Register. */
81 #define MLXBF_I2C_CAUSE_ARBITER      0x1c
82 
83 /*
84  * Cause Status flags. Note that those bits might be considered
85  * as interrupt enabled bits.
86  */
87 
88 /* Transaction ended with STOP. */
89 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
90 /* Master arbitration lost. */
91 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
92 /* Unexpected start detected. */
93 #define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
94 /* Unexpected stop detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
96 /* Wait for transfer continuation. */
97 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
98 /* Failed to generate STOP. */
99 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
100 /* Failed to generate START. */
101 #define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
102 /* Clock toggle completed. */
103 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
104 /* Transfer timeout occurred. */
105 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
106 /* Master busy bit reset. */
107 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
108 
109 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
110 
111 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
112 	(MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
113 	 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
114 	 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
115 	 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
116 	 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
117 	 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
118 	 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
119 
120 /*
121  * Slave cause status flags. Note that those bits might be considered
122  * as interrupt enabled bits.
123  */
124 
125 /* Write transaction received successfully. */
126 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
127 /* Read transaction received, waiting for response. */
128 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
129 /* Slave busy bit reset. */
130 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
131 
132 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK     GENMASK(20, 0)
133 
134 /* Cause coalesce registers. */
135 #define MLXBF_I2C_CAUSE_COALESCE_0        0x00
136 #define MLXBF_I2C_CAUSE_COALESCE_1        0x04
137 #define MLXBF_I2C_CAUSE_COALESCE_2        0x08
138 
139 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   MLXBF_I2C_SMBUS_MAX
140 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
141 
142 /* Functional enable register. */
143 #define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
144 /* Force OE enable register. */
145 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
146 /*
147  * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
148  * SDA/SCL lines:
149  *
150  *  SMBUS GW0 -> bits[26:25]
151  *  SMBUS GW1 -> bits[28:27]
152  *  SMBUS GW2 -> bits[30:29]
153  */
154 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
155 
156 /* Note that gw_id can be 0,1 or 2. */
157 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
158 	(0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
159 
160 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
161 	((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
162 
163 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
164 	((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
165 
166 /* SMBus timing parameters. */
167 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
168 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
169 #define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
170 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
171 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
172 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
173 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
174 
175 /*
176  * Defines SMBus operating frequency and core clock frequency.
177  * According to ADB files, default values are compliant to 100KHz SMBus
178  * @ 400MHz core clock. The driver should be able to calculate core
179  * frequency based on PLL parameters.
180  */
181 #define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
182 
183 /* Core PLL TYU configuration. */
184 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(12, 0)
185 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(3, 0)
186 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(5, 0)
187 
188 #define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT  3
189 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16
190 #define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT  20
191 
192 /* Core PLL YU configuration. */
193 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
194 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
195 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(5, 0)
196 
197 #define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT   0
198 #define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT  1
199 #define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT   26
200 
201 /* Core PLL frequency. */
202 static u64 mlxbf_i2c_corepll_frequency;
203 
204 /* SMBus Master GW. */
205 #define MLXBF_I2C_SMBUS_MASTER_GW     0x200
206 /* Number of bytes received and sent. */
207 #define MLXBF_I2C_SMBUS_RS_BYTES      0x300
208 /* Packet error check (PEC) value. */
209 #define MLXBF_I2C_SMBUS_MASTER_PEC    0x304
210 /* Status bits (ACK/NACK/FW Timeout). */
211 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
212 /* SMbus Master Finite State Machine. */
213 #define MLXBF_I2C_SMBUS_MASTER_FSM    0x310
214 
215 /*
216  * When enabled, the master will issue a stop condition in case of
217  * timeout while waiting for FW response.
218  */
219 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
220 
221 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
222 #define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
223 #define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
224 #define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
225 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
226 #define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
227 #define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
228 
229 #define MLXBF_I2C_MASTER_ENABLE \
230 	(MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
231 	 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
232 
233 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
234 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
235 
236 #define MLXBF_I2C_MASTER_ENABLE_READ \
237 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
238 
239 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address shift. */
240 #define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes shift. */
241 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte shift. */
242 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Parse expected bytes shift. */
243 #define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes shift. */
244 
245 /* SMBus master GW Data descriptor. */
246 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x280
247 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
248 
249 /* Maximum bytes to read/write per SMBus transaction. */
250 #define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
251 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
252 
253 /* All bytes were transmitted. */
254 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
255 /* NACK received. */
256 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
257 /* Slave's byte count >128 bytes. */
258 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
259 /* Timeout occurred. */
260 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
261 
262 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
263 
264 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
265 	(MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
266 	 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
267 	 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
268 
269 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
270 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
271 
272 /* SMBus slave GW. */
273 #define MLXBF_I2C_SMBUS_SLAVE_GW              0x400
274 /* Number of bytes received and sent from/to master. */
275 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
276 /* Packet error check (PEC) value. */
277 #define MLXBF_I2C_SMBUS_SLAVE_PEC             0x504
278 /* SMBus slave Finite State Machine (FSM). */
279 #define MLXBF_I2C_SMBUS_SLAVE_FSM             0x510
280 /*
281  * Should be set when all raised causes handled, and cleared by HW on
282  * every new cause.
283  */
284 #define MLXBF_I2C_SMBUS_SLAVE_READY           0x52c
285 
286 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
287 #define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
288 #define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
289 
290 #define MLXBF_I2C_SLAVE_ENABLE \
291 	(MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
292 
293 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
294 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
295 
296 /* SMBus slave GW Data descriptor. */
297 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x480
298 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
299 
300 /* SMbus slave configuration registers. */
301 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x514
302 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
303 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     7
304 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
305 
306 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
307 	((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
308 
309 /*
310  * Timeout is given in microsends. Note also that timeout handling is not
311  * exact.
312  */
313 #define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
314 
315 /* Encapsulates timing parameters. */
316 struct mlxbf_i2c_timings {
317 	u16 scl_high;		/* Clock high period. */
318 	u16 scl_low;		/* Clock low period. */
319 	u8 sda_rise;		/* Data rise time. */
320 	u8 sda_fall;		/* Data fall time. */
321 	u8 scl_rise;		/* Clock rise time. */
322 	u8 scl_fall;		/* Clock fall time. */
323 	u16 hold_start;		/* Hold time after (REPEATED) START. */
324 	u16 hold_data;		/* Data hold time. */
325 	u16 setup_start;	/* REPEATED START condition setup time. */
326 	u16 setup_stop;		/* STOP condition setup time. */
327 	u16 setup_data;		/* Data setup time. */
328 	u16 pad;		/* Padding. */
329 	u16 buf;		/* Bus free time between STOP and START. */
330 	u16 thigh_max;		/* Thigh max. */
331 	u32 timeout;		/* Detect clock low timeout. */
332 };
333 
334 enum {
335 	MLXBF_I2C_F_READ = BIT(0),
336 	MLXBF_I2C_F_WRITE = BIT(1),
337 	MLXBF_I2C_F_NORESTART = BIT(3),
338 	MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
339 	MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
340 	MLXBF_I2C_F_SMBUS_PEC = BIT(6),
341 	MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
342 };
343 
344 struct mlxbf_i2c_smbus_operation {
345 	u32 flags;
346 	u32 length; /* Buffer length in bytes. */
347 	u8 *buffer;
348 };
349 
350 #define MLXBF_I2C_SMBUS_OP_CNT_1	1
351 #define MLXBF_I2C_SMBUS_OP_CNT_2	2
352 #define MLXBF_I2C_SMBUS_OP_CNT_3	3
353 #define MLXBF_I2C_SMBUS_MAX_OP_CNT	MLXBF_I2C_SMBUS_OP_CNT_3
354 
355 struct mlxbf_i2c_smbus_request {
356 	u8 slave;
357 	u8 operation_cnt;
358 	struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
359 };
360 
361 struct mlxbf_i2c_resource {
362 	void __iomem *io;
363 	struct resource *params;
364 	struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
365 	u8 type;
366 };
367 
368 /* List of chip resources that are being accessed by the driver. */
369 enum {
370 	MLXBF_I2C_SMBUS_RES,
371 	MLXBF_I2C_MST_CAUSE_RES,
372 	MLXBF_I2C_SLV_CAUSE_RES,
373 	MLXBF_I2C_COALESCE_RES,
374 	MLXBF_I2C_COREPLL_RES,
375 	MLXBF_I2C_GPIO_RES,
376 	MLXBF_I2C_END_RES,
377 };
378 
379 /* Helper macro to define an I2C resource parameters. */
380 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
381 	{ \
382 		.start = (addr), \
383 		.end = (addr) + (size) - 1, \
384 		.name = (str) \
385 	}
386 
387 static struct resource mlxbf_i2c_coalesce_tyu_params =
388 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
389 				     MLXBF_I2C_COALESCE_TYU_SIZE,
390 				     "COALESCE_MEM");
391 static struct resource mlxbf_i2c_corepll_tyu_params =
392 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
393 				     MLXBF_I2C_COREPLL_TYU_SIZE,
394 				     "COREPLL_MEM");
395 static struct resource mlxbf_i2c_corepll_yu_params =
396 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
397 				     MLXBF_I2C_COREPLL_YU_SIZE,
398 				     "COREPLL_MEM");
399 static struct resource mlxbf_i2c_gpio_tyu_params =
400 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
401 				     MLXBF_I2C_GPIO_TYU_SIZE,
402 				     "GPIO_MEM");
403 
404 static struct mutex mlxbf_i2c_coalesce_lock;
405 static struct mutex mlxbf_i2c_corepll_lock;
406 static struct mutex mlxbf_i2c_gpio_lock;
407 
408 /* Mellanox BlueField chip type. */
409 enum mlxbf_i2c_chip_type {
410 	MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
411 	MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
412 };
413 
414 struct mlxbf_i2c_chip_info {
415 	enum mlxbf_i2c_chip_type type;
416 	/* Chip shared resources that are being used by the I2C controller. */
417 	struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
418 
419 	/* Callback to calculate the core PLL frequency. */
420 	u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
421 };
422 
423 struct mlxbf_i2c_priv {
424 	const struct mlxbf_i2c_chip_info *chip;
425 	struct i2c_adapter adap;
426 	struct mlxbf_i2c_resource *smbus;
427 	struct mlxbf_i2c_resource *mst_cause;
428 	struct mlxbf_i2c_resource *slv_cause;
429 	struct mlxbf_i2c_resource *coalesce;
430 	u64 frequency; /* Core frequency in Hz. */
431 	int bus; /* Physical bus identifier. */
432 	int irq;
433 	struct i2c_client *slave;
434 };
435 
436 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
437 	[MLXBF_I2C_CHIP_TYPE_1] = {
438 		.params = &mlxbf_i2c_coalesce_tyu_params,
439 		.lock = &mlxbf_i2c_coalesce_lock,
440 		.type = MLXBF_I2C_COALESCE_RES
441 	},
442 	{}
443 };
444 
445 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
446 	[MLXBF_I2C_CHIP_TYPE_1] = {
447 		.params = &mlxbf_i2c_corepll_tyu_params,
448 		.lock = &mlxbf_i2c_corepll_lock,
449 		.type = MLXBF_I2C_COREPLL_RES
450 	},
451 	[MLXBF_I2C_CHIP_TYPE_2] = {
452 		.params = &mlxbf_i2c_corepll_yu_params,
453 		.lock = &mlxbf_i2c_corepll_lock,
454 		.type = MLXBF_I2C_COREPLL_RES,
455 	}
456 };
457 
458 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
459 	[MLXBF_I2C_CHIP_TYPE_1] = {
460 		.params = &mlxbf_i2c_gpio_tyu_params,
461 		.lock = &mlxbf_i2c_gpio_lock,
462 		.type = MLXBF_I2C_GPIO_RES
463 	},
464 	{}
465 };
466 
467 static u8 mlxbf_i2c_bus_count;
468 
469 static struct mutex mlxbf_i2c_bus_lock;
470 
471 /* Polling frequency in microseconds. */
472 #define MLXBF_I2C_POLL_FREQ_IN_USEC        200
473 
474 #define MLXBF_I2C_SHIFT_0   0
475 #define MLXBF_I2C_SHIFT_8   8
476 #define MLXBF_I2C_SHIFT_16  16
477 #define MLXBF_I2C_SHIFT_24  24
478 
479 #define MLXBF_I2C_MASK_8    GENMASK(7, 0)
480 #define MLXBF_I2C_MASK_16   GENMASK(15, 0)
481 
482 #define MLXBF_I2C_FREQUENCY_1GHZ  1000000000
483 
484 /*
485  * Function to poll a set of bits at a specific address; it checks whether
486  * the bits are equal to zero when eq_zero is set to 'true', and not equal
487  * to zero when eq_zero is set to 'false'.
488  * Note that the timeout is given in microseconds.
489  */
490 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
491 			    bool eq_zero, u32  timeout)
492 {
493 	u32 bits;
494 
495 	timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
496 
497 	do {
498 		bits = readl(io + addr) & mask;
499 		if (eq_zero ? bits == 0 : bits != 0)
500 			return eq_zero ? 1 : bits;
501 		udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
502 	} while (timeout-- != 0);
503 
504 	return 0;
505 }
506 
507 /*
508  * SW must make sure that the SMBus Master GW is idle before starting
509  * a transaction. Accordingly, this function polls the Master FSM stop
510  * bit; it returns false when the bit is asserted, true if not.
511  */
512 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
513 {
514 	u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
515 	u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
516 	u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
517 
518 	if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
519 		return true;
520 
521 	return false;
522 }
523 
524 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
525 						u32 cause_status)
526 {
527 	/*
528 	 * When transaction ended with STOP, all bytes were transmitted,
529 	 * and no NACK received, then the transaction ended successfully.
530 	 * On the other hand, when the GW is configured with the stop bit
531 	 * de-asserted then the SMBus expects the following GW configuration
532 	 * for transfer continuation.
533 	 */
534 	if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
535 	    ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
536 	     (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
537 	     !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
538 		return true;
539 
540 	return false;
541 }
542 
543 /*
544  * Poll SMBus master status and return transaction status,
545  * i.e. whether succeeded or failed. I2C and SMBus fault codes
546  * are returned as negative numbers from most calls, with zero
547  * or some positive number indicating a non-fault return.
548  */
549 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
550 {
551 	u32 master_status_bits;
552 	u32 cause_status_bits;
553 
554 	/*
555 	 * GW busy bit is raised by the driver and cleared by the HW
556 	 * when the transaction is completed. The busy bit is a good
557 	 * indicator of transaction status. So poll the busy bit, and
558 	 * then read the cause and master status bits to determine if
559 	 * errors occurred during the transaction.
560 	 */
561 	mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
562 			 MLXBF_I2C_MASTER_BUSY_BIT, true,
563 			 MLXBF_I2C_SMBUS_TIMEOUT);
564 
565 	/* Read cause status bits. */
566 	cause_status_bits = readl(priv->mst_cause->io +
567 					MLXBF_I2C_CAUSE_ARBITER);
568 	cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
569 
570 	/*
571 	 * Parse both Cause and Master GW bits, then return transaction status.
572 	 */
573 
574 	master_status_bits = readl(priv->smbus->io +
575 					MLXBF_I2C_SMBUS_MASTER_STATUS);
576 	master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
577 
578 	if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
579 						cause_status_bits))
580 		return 0;
581 
582 	/*
583 	 * In case of timeout on GW busy, the ISR will clear busy bit but
584 	 * transaction ended bits cause will not be set so the transaction
585 	 * fails. Then, we must check Master GW status bits.
586 	 */
587 	if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
588 	    (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
589 				  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
590 		return -EIO;
591 
592 	if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
593 		return -EAGAIN;
594 
595 	return -ETIMEDOUT;
596 }
597 
598 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
599 				       const u8 *data, u8 length, u32 addr)
600 {
601 	u8 offset, aligned_length;
602 	u32 data32;
603 
604 	aligned_length = round_up(length, 4);
605 
606 	/*
607 	 * Copy data bytes from 4-byte aligned source buffer.
608 	 * Data copied to the Master GW Data Descriptor MUST be shifted
609 	 * left so the data starts at the MSB of the descriptor registers
610 	 * as required by the underlying hardware. Enable byte swapping
611 	 * when writing data bytes to the 32 * 32-bit HW Data registers
612 	 * a.k.a Master GW Data Descriptor.
613 	 */
614 	for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
615 		data32 = *((u32 *)(data + offset));
616 		iowrite32be(data32, priv->smbus->io + addr + offset);
617 	}
618 }
619 
620 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
621 				      u8 *data, u8 length, u32 addr)
622 {
623 	u32 data32, mask;
624 	u8 byte, offset;
625 
626 	mask = sizeof(u32) - 1;
627 
628 	/*
629 	 * Data bytes in the Master GW Data Descriptor are shifted left
630 	 * so the data starts at the MSB of the descriptor registers as
631 	 * set by the underlying hardware. Enable byte swapping while
632 	 * reading data bytes from the 32 * 32-bit HW Data registers
633 	 * a.k.a Master GW Data Descriptor.
634 	 */
635 
636 	for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
637 		data32 = ioread32be(priv->smbus->io + addr + offset);
638 		*((u32 *)(data + offset)) = data32;
639 	}
640 
641 	if (!(length & mask))
642 		return;
643 
644 	data32 = ioread32be(priv->smbus->io + addr + offset);
645 
646 	for (byte = 0; byte < (length & mask); byte++) {
647 		data[offset + byte] = data32 & GENMASK(7, 0);
648 		data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
649 	}
650 }
651 
652 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
653 				  u8 len, u8 block_en, u8 pec_en, bool read)
654 {
655 	u32 command;
656 
657 	/* Set Master GW control word. */
658 	if (read) {
659 		command = MLXBF_I2C_MASTER_ENABLE_READ;
660 		command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
661 	} else {
662 		command = MLXBF_I2C_MASTER_ENABLE_WRITE;
663 		command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
664 	}
665 	command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
666 	command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
667 	command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
668 
669 	/* Clear status bits. */
670 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
671 	/* Set the cause data. */
672 	writel(~0x0, priv->smbus->io + MLXBF_I2C_CAUSE_OR_CLEAR);
673 	/* Zero PEC byte. */
674 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
675 	/* Zero byte count. */
676 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
677 
678 	/* GW activation. */
679 	writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
680 
681 	/*
682 	 * Poll master status and check status bits. An ACK is sent when
683 	 * completing writing data to the bus (Master 'byte_count_done' bit
684 	 * is set to 1).
685 	 */
686 	return mlxbf_i2c_smbus_check_status(priv);
687 }
688 
689 static int
690 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
691 				  struct mlxbf_i2c_smbus_request *request)
692 {
693 	u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
694 	u8 op_idx, data_idx, data_len, write_len, read_len;
695 	struct mlxbf_i2c_smbus_operation *operation;
696 	u8 read_en, write_en, block_en, pec_en;
697 	u8 slave, flags, addr;
698 	u8 *read_buf;
699 	int ret = 0;
700 
701 	if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
702 		return -EINVAL;
703 
704 	read_buf = NULL;
705 	data_idx = 0;
706 	read_en = 0;
707 	write_en = 0;
708 	write_len = 0;
709 	read_len = 0;
710 	block_en = 0;
711 	pec_en = 0;
712 	slave = request->slave & GENMASK(6, 0);
713 	addr = slave << 1;
714 
715 	/* First of all, check whether the HW is idle. */
716 	if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv)))
717 		return -EBUSY;
718 
719 	/* Set first byte. */
720 	data_desc[data_idx++] = addr;
721 
722 	for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
723 		operation = &request->operation[op_idx];
724 		flags = operation->flags;
725 
726 		/*
727 		 * Note that read and write operations might be handled by a
728 		 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
729 		 * then write command byte and set the optional SMBus specific
730 		 * bits such as block_en and pec_en. These bits MUST be
731 		 * submitted by the first operation only.
732 		 */
733 		if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
734 			block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
735 			pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
736 		}
737 
738 		if (flags & MLXBF_I2C_F_WRITE) {
739 			write_en = 1;
740 			write_len += operation->length;
741 			memcpy(data_desc + data_idx,
742 			       operation->buffer, operation->length);
743 			data_idx += operation->length;
744 		}
745 		/*
746 		 * We assume that read operations are performed only once per
747 		 * SMBus transaction. *TBD* protect this statement so it won't
748 		 * be executed twice? or return an error if we try to read more
749 		 * than once?
750 		 */
751 		if (flags & MLXBF_I2C_F_READ) {
752 			read_en = 1;
753 			/* Subtract 1 as required by HW. */
754 			read_len = operation->length - 1;
755 			read_buf = operation->buffer;
756 		}
757 	}
758 
759 	/* Set Master GW data descriptor. */
760 	data_len = write_len + 1; /* Add one byte of the slave address. */
761 	/*
762 	 * Note that data_len cannot be 0. Indeed, the slave address byte
763 	 * must be written to the data registers.
764 	 */
765 	mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
766 				   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
767 
768 	if (write_en) {
769 		ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
770 					 pec_en, 0);
771 		if (ret)
772 			return ret;
773 	}
774 
775 	if (read_en) {
776 		/* Write slave address to Master GW data descriptor. */
777 		mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
778 					   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
779 		ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
780 					 pec_en, 1);
781 		if (!ret) {
782 			/* Get Master GW data descriptor. */
783 			mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
784 					     MLXBF_I2C_MASTER_DATA_DESC_ADDR);
785 
786 			/* Get data from Master GW data descriptor. */
787 			memcpy(read_buf, data_desc, read_len + 1);
788 		}
789 
790 		/*
791 		 * After a read operation the SMBus FSM ps (present state)
792 		 * needs to be 'manually' reset. This should be removed in
793 		 * next tag integration.
794 		 */
795 		writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
796 			priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
797 	}
798 
799 	return ret;
800 }
801 
802 /* I2C SMBus protocols. */
803 
804 static void
805 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
806 			      u8 read)
807 {
808 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
809 
810 	request->operation[0].length = 0;
811 	request->operation[0].flags = MLXBF_I2C_F_WRITE;
812 	request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
813 }
814 
815 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
816 				      u8 *data, bool read, bool pec_check)
817 {
818 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
819 
820 	request->operation[0].length = 1;
821 	request->operation[0].length += pec_check;
822 
823 	request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
824 	request->operation[0].flags |= read ?
825 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
826 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
827 
828 	request->operation[0].buffer = data;
829 }
830 
831 static void
832 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
833 			       u8 *command, u8 *data, bool read, bool pec_check)
834 {
835 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
836 
837 	request->operation[0].length = 1;
838 	request->operation[0].flags =
839 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
840 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
841 	request->operation[0].buffer = command;
842 
843 	request->operation[1].length = 1;
844 	request->operation[1].length += pec_check;
845 	request->operation[1].flags = read ?
846 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
847 	request->operation[1].buffer = data;
848 }
849 
850 static void
851 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
852 			       u8 *command, u8 *data, bool read, bool pec_check)
853 {
854 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
855 
856 	request->operation[0].length = 1;
857 	request->operation[0].flags =
858 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
859 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
860 	request->operation[0].buffer = command;
861 
862 	request->operation[1].length = 2;
863 	request->operation[1].length += pec_check;
864 	request->operation[1].flags = read ?
865 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
866 	request->operation[1].buffer = data;
867 }
868 
869 static void
870 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
871 			       u8 *command, u8 *data, u8 *data_len, bool read,
872 			       bool pec_check)
873 {
874 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
875 
876 	request->operation[0].length = 1;
877 	request->operation[0].flags =
878 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
879 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
880 	request->operation[0].buffer = command;
881 
882 	/*
883 	 * As specified in the standard, the max number of bytes to read/write
884 	 * per block operation is 32 bytes. In Golan code, the controller can
885 	 * read up to 128 bytes and write up to 127 bytes.
886 	 */
887 	request->operation[1].length =
888 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
889 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
890 	request->operation[1].flags = read ?
891 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
892 	/*
893 	 * Skip the first data byte, which corresponds to the number of bytes
894 	 * to read/write.
895 	 */
896 	request->operation[1].buffer = data + 1;
897 
898 	*data_len = request->operation[1].length;
899 
900 	/* Set the number of byte to read. This will be used by userspace. */
901 	if (read)
902 		data[0] = *data_len;
903 }
904 
905 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
906 				       u8 *command, u8 *data, u8 *data_len,
907 				       bool read, bool pec_check)
908 {
909 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
910 
911 	request->operation[0].length = 1;
912 	request->operation[0].flags =
913 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
914 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
915 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
916 	request->operation[0].buffer = command;
917 
918 	request->operation[1].length =
919 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
920 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
921 	request->operation[1].flags = read ?
922 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
923 	request->operation[1].buffer = data + 1;
924 
925 	*data_len = request->operation[1].length;
926 
927 	/* Set the number of bytes to read. This will be used by userspace. */
928 	if (read)
929 		data[0] = *data_len;
930 }
931 
932 static void
933 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
934 				  u8 *command, u8 *data, bool pec_check)
935 {
936 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
937 
938 	request->operation[0].length = 1;
939 	request->operation[0].flags =
940 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
941 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
942 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
943 	request->operation[0].buffer = command;
944 
945 	request->operation[1].length = 2;
946 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
947 	request->operation[1].buffer = data;
948 
949 	request->operation[2].length = 3;
950 	request->operation[2].flags = MLXBF_I2C_F_READ;
951 	request->operation[2].buffer = data;
952 }
953 
954 static void
955 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
956 				      u8 *command, u8 *data, u8 *data_len,
957 				      bool pec_check)
958 {
959 	u32 length;
960 
961 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
962 
963 	request->operation[0].length = 1;
964 	request->operation[0].flags =
965 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
966 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
967 	request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
968 	request->operation[0].buffer = command;
969 
970 	length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
971 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
972 
973 	request->operation[1].length = length - pec_check;
974 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
975 	request->operation[1].buffer = data;
976 
977 	request->operation[2].length = length;
978 	request->operation[2].flags = MLXBF_I2C_F_READ;
979 	request->operation[2].buffer = data;
980 
981 	*data_len = length; /* including PEC byte. */
982 }
983 
984 /* Initialization functions. */
985 
986 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
987 {
988 	return priv->chip->type == type;
989 }
990 
991 static struct mlxbf_i2c_resource *
992 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
993 {
994 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
995 	struct mlxbf_i2c_resource *res;
996 	u8 res_idx = 0;
997 
998 	for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
999 		res = chip->shared_res[res_idx];
1000 		if (res && res->type == type)
1001 			return res;
1002 	}
1003 
1004 	return NULL;
1005 }
1006 
1007 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1008 				   struct mlxbf_i2c_resource **res,
1009 				   u8 type)
1010 {
1011 	struct mlxbf_i2c_resource *tmp_res;
1012 	struct device *dev = &pdev->dev;
1013 
1014 	if (!res || *res || type >= MLXBF_I2C_END_RES)
1015 		return -EINVAL;
1016 
1017 	tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1018 			       GFP_KERNEL);
1019 	if (!tmp_res)
1020 		return -ENOMEM;
1021 
1022 	tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1023 	if (!tmp_res->params) {
1024 		devm_kfree(dev, tmp_res);
1025 		return -EIO;
1026 	}
1027 
1028 	tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1029 	if (IS_ERR(tmp_res->io)) {
1030 		devm_kfree(dev, tmp_res);
1031 		return PTR_ERR(tmp_res->io);
1032 	}
1033 
1034 	tmp_res->type = type;
1035 
1036 	*res = tmp_res;
1037 
1038 	return 0;
1039 }
1040 
1041 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1042 			       bool minimum)
1043 {
1044 	u64 frequency;
1045 	u32 ticks;
1046 
1047 	/*
1048 	 * Compute ticks as follow:
1049 	 *
1050 	 *           Ticks
1051 	 * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1052 	 *         Frequency
1053 	 */
1054 	frequency = priv->frequency;
1055 	ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1056 	/*
1057 	 * The number of ticks is rounded down and if minimum is equal to 1
1058 	 * then add one tick.
1059 	 */
1060 	if (minimum)
1061 		ticks++;
1062 
1063 	return ticks;
1064 }
1065 
1066 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1067 			       u32 mask, u8 shift)
1068 {
1069 	u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1070 
1071 	return val;
1072 }
1073 
1074 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1075 				  const struct mlxbf_i2c_timings *timings)
1076 {
1077 	u32 timer;
1078 
1079 	timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1080 				    false, MLXBF_I2C_MASK_16,
1081 				    MLXBF_I2C_SHIFT_0);
1082 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1083 				     false, MLXBF_I2C_MASK_16,
1084 				     MLXBF_I2C_SHIFT_16);
1085 	writel(timer, priv->smbus->io +
1086 		MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1087 
1088 	timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1089 				    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1090 	timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1091 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1092 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1093 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1094 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1095 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1096 	writel(timer, priv->smbus->io +
1097 		MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1098 
1099 	timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1100 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1101 	timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1102 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1103 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1104 
1105 	timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1106 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1107 	timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1108 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1109 	writel(timer, priv->smbus->io +
1110 		MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1111 
1112 	timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1113 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1114 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1115 
1116 	timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1117 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1118 	timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1119 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1120 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1121 
1122 	timer = timings->timeout;
1123 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1124 }
1125 
1126 enum mlxbf_i2c_timings_config {
1127 	MLXBF_I2C_TIMING_CONFIG_100KHZ,
1128 	MLXBF_I2C_TIMING_CONFIG_400KHZ,
1129 	MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1130 };
1131 
1132 /*
1133  * Note that the mlxbf_i2c_timings->timeout value is not related to the
1134  * bus frequency, it is impacted by the time it takes the driver to
1135  * complete data transmission before transaction abort.
1136  */
1137 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1138 	[MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1139 		.scl_high = 4810,
1140 		.scl_low = 5000,
1141 		.hold_start = 4000,
1142 		.setup_start = 4800,
1143 		.setup_stop = 4000,
1144 		.setup_data = 250,
1145 		.sda_rise = 50,
1146 		.sda_fall = 50,
1147 		.scl_rise = 50,
1148 		.scl_fall = 50,
1149 		.hold_data = 300,
1150 		.buf = 20000,
1151 		.thigh_max = 5000,
1152 		.timeout = 106500
1153 	},
1154 	[MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1155 		.scl_high = 1011,
1156 		.scl_low = 1300,
1157 		.hold_start = 600,
1158 		.setup_start = 700,
1159 		.setup_stop = 600,
1160 		.setup_data = 100,
1161 		.sda_rise = 50,
1162 		.sda_fall = 50,
1163 		.scl_rise = 50,
1164 		.scl_fall = 50,
1165 		.hold_data = 300,
1166 		.buf = 20000,
1167 		.thigh_max = 5000,
1168 		.timeout = 106500
1169 	},
1170 	[MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1171 		.scl_high = 600,
1172 		.scl_low = 1300,
1173 		.hold_start = 600,
1174 		.setup_start = 600,
1175 		.setup_stop = 600,
1176 		.setup_data = 100,
1177 		.sda_rise = 50,
1178 		.sda_fall = 50,
1179 		.scl_rise = 50,
1180 		.scl_fall = 50,
1181 		.hold_data = 300,
1182 		.buf = 20000,
1183 		.thigh_max = 5000,
1184 		.timeout = 106500
1185 	}
1186 };
1187 
1188 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1189 				  struct mlxbf_i2c_priv *priv)
1190 {
1191 	enum mlxbf_i2c_timings_config config_idx;
1192 	struct device *dev = &pdev->dev;
1193 	u32 config_khz;
1194 
1195 	int ret;
1196 
1197 	ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1198 	if (ret < 0)
1199 		config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1200 
1201 	switch (config_khz) {
1202 	default:
1203 		/* Default settings is 100 KHz. */
1204 		pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1205 			config_khz);
1206 		fallthrough;
1207 	case I2C_MAX_STANDARD_MODE_FREQ:
1208 		config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1209 		break;
1210 
1211 	case I2C_MAX_FAST_MODE_FREQ:
1212 		config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1213 		break;
1214 
1215 	case I2C_MAX_FAST_MODE_PLUS_FREQ:
1216 		config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1217 		break;
1218 	}
1219 
1220 	mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1221 
1222 	return 0;
1223 }
1224 
1225 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1226 			      struct mlxbf_i2c_priv *priv)
1227 {
1228 	struct mlxbf_i2c_resource *gpio_res;
1229 	struct device *dev = &pdev->dev;
1230 	struct resource	*params;
1231 	resource_size_t size;
1232 
1233 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1234 	if (!gpio_res)
1235 		return -EPERM;
1236 
1237 	/*
1238 	 * The GPIO region in TYU space is shared among I2C busses.
1239 	 * This function MUST be serialized to avoid racing when
1240 	 * claiming the memory region and/or setting up the GPIO.
1241 	 */
1242 	lockdep_assert_held(gpio_res->lock);
1243 
1244 	/* Check whether the memory map exist. */
1245 	if (gpio_res->io)
1246 		return 0;
1247 
1248 	params = gpio_res->params;
1249 	size = resource_size(params);
1250 
1251 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1252 		return -EFAULT;
1253 
1254 	gpio_res->io = devm_ioremap(dev, params->start, size);
1255 	if (!gpio_res->io) {
1256 		devm_release_mem_region(dev, params->start, size);
1257 		return -ENOMEM;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1264 				  struct mlxbf_i2c_priv *priv)
1265 {
1266 	struct mlxbf_i2c_resource *gpio_res;
1267 	struct device *dev = &pdev->dev;
1268 	struct resource	*params;
1269 
1270 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1271 	if (!gpio_res)
1272 		return 0;
1273 
1274 	mutex_lock(gpio_res->lock);
1275 
1276 	if (gpio_res->io) {
1277 		/* Release the GPIO resource. */
1278 		params = gpio_res->params;
1279 		devm_iounmap(dev, gpio_res->io);
1280 		devm_release_mem_region(dev, params->start,
1281 					resource_size(params));
1282 	}
1283 
1284 	mutex_unlock(gpio_res->lock);
1285 
1286 	return 0;
1287 }
1288 
1289 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1290 				 struct mlxbf_i2c_priv *priv)
1291 {
1292 	struct mlxbf_i2c_resource *corepll_res;
1293 	struct device *dev = &pdev->dev;
1294 	struct resource *params;
1295 	resource_size_t size;
1296 
1297 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1298 						    MLXBF_I2C_COREPLL_RES);
1299 	if (!corepll_res)
1300 		return -EPERM;
1301 
1302 	/*
1303 	 * The COREPLL region in TYU space is shared among I2C busses.
1304 	 * This function MUST be serialized to avoid racing when
1305 	 * claiming the memory region.
1306 	 */
1307 	lockdep_assert_held(corepll_res->lock);
1308 
1309 	/* Check whether the memory map exist. */
1310 	if (corepll_res->io)
1311 		return 0;
1312 
1313 	params = corepll_res->params;
1314 	size = resource_size(params);
1315 
1316 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1317 		return -EFAULT;
1318 
1319 	corepll_res->io = devm_ioremap(dev, params->start, size);
1320 	if (!corepll_res->io) {
1321 		devm_release_mem_region(dev, params->start, size);
1322 		return -ENOMEM;
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1329 				     struct mlxbf_i2c_priv *priv)
1330 {
1331 	struct mlxbf_i2c_resource *corepll_res;
1332 	struct device *dev = &pdev->dev;
1333 	struct resource *params;
1334 
1335 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1336 						    MLXBF_I2C_COREPLL_RES);
1337 
1338 	mutex_lock(corepll_res->lock);
1339 
1340 	if (corepll_res->io) {
1341 		/* Release the CorePLL resource. */
1342 		params = corepll_res->params;
1343 		devm_iounmap(dev, corepll_res->io);
1344 		devm_release_mem_region(dev, params->start,
1345 					resource_size(params));
1346 	}
1347 
1348 	mutex_unlock(corepll_res->lock);
1349 
1350 	return 0;
1351 }
1352 
1353 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1354 				 struct mlxbf_i2c_priv *priv)
1355 {
1356 	struct mlxbf_i2c_resource *gpio_res;
1357 	struct device *dev = &pdev->dev;
1358 	u32 config_reg;
1359 	int ret;
1360 
1361 	/* This configuration is only needed for BlueField 1. */
1362 	if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1363 		return 0;
1364 
1365 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1366 	if (!gpio_res)
1367 		return -EPERM;
1368 
1369 	/*
1370 	 * The GPIO region in TYU space is shared among I2C busses.
1371 	 * This function MUST be serialized to avoid racing when
1372 	 * claiming the memory region and/or setting up the GPIO.
1373 	 */
1374 
1375 	mutex_lock(gpio_res->lock);
1376 
1377 	ret = mlxbf_i2c_get_gpio(pdev, priv);
1378 	if (ret < 0) {
1379 		dev_err(dev, "Failed to get gpio resource");
1380 		mutex_unlock(gpio_res->lock);
1381 		return ret;
1382 	}
1383 
1384 	/*
1385 	 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1386 	 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1387 	 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1388 	 * instead of HW_OE.
1389 	 * For now, we do not reset the GPIO state when the driver is removed.
1390 	 * First, it is not necessary to disable the bus since we are using
1391 	 * the same busses. Then, some busses might be shared among Linux and
1392 	 * platform firmware; disabling the bus might compromise the system
1393 	 * functionality.
1394 	 */
1395 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1396 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1397 							 config_reg);
1398 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1399 
1400 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1401 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1402 							config_reg);
1403 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1404 
1405 	mutex_unlock(gpio_res->lock);
1406 
1407 	return 0;
1408 }
1409 
1410 static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1411 {
1412 	u64 core_frequency, pad_frequency;
1413 	u8 core_od, core_r;
1414 	u32 corepll_val;
1415 	u16 core_f;
1416 
1417 	pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1418 
1419 	corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1420 
1421 	/* Get Core PLL configuration bits. */
1422 	core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) &
1423 			MLXBF_I2C_COREPLL_CORE_F_TYU_MASK;
1424 	core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) &
1425 			MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK;
1426 	core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) &
1427 			MLXBF_I2C_COREPLL_CORE_R_TYU_MASK;
1428 
1429 	/*
1430 	 * Compute PLL output frequency as follow:
1431 	 *
1432 	 *                                       CORE_F + 1
1433 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1434 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1435 	 *
1436 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1437 	 * and PadFrequency, respectively.
1438 	 */
1439 	core_frequency = pad_frequency * (++core_f);
1440 	core_frequency /= (++core_r) * (++core_od);
1441 
1442 	return core_frequency;
1443 }
1444 
1445 static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1446 {
1447 	u32 corepll_reg1_val, corepll_reg2_val;
1448 	u64 corepll_frequency, pad_frequency;
1449 	u8 core_od, core_r;
1450 	u32 core_f;
1451 
1452 	pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1453 
1454 	corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1455 	corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1456 
1457 	/* Get Core PLL configuration bits */
1458 	core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) &
1459 			MLXBF_I2C_COREPLL_CORE_F_YU_MASK;
1460 	core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) &
1461 			MLXBF_I2C_COREPLL_CORE_R_YU_MASK;
1462 	core_od = rol32(corepll_reg2_val,  MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) &
1463 			MLXBF_I2C_COREPLL_CORE_OD_YU_MASK;
1464 
1465 	/*
1466 	 * Compute PLL output frequency as follow:
1467 	 *
1468 	 *                                     CORE_F / 16384
1469 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1470 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1471 	 *
1472 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1473 	 * and PadFrequency, respectively.
1474 	 */
1475 	corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST;
1476 	corepll_frequency /= (++core_r) * (++core_od);
1477 
1478 	return corepll_frequency;
1479 }
1480 
1481 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1482 					    struct mlxbf_i2c_priv *priv)
1483 {
1484 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1485 	struct mlxbf_i2c_resource *corepll_res;
1486 	struct device *dev = &pdev->dev;
1487 	u64 *freq = &priv->frequency;
1488 	int ret;
1489 
1490 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1491 						    MLXBF_I2C_COREPLL_RES);
1492 	if (!corepll_res)
1493 		return -EPERM;
1494 
1495 	/*
1496 	 * First, check whether the TYU core Clock frequency is set.
1497 	 * The TYU core frequency is the same for all I2C busses; when
1498 	 * the first device gets probed the frequency is determined and
1499 	 * stored into a globally visible variable. So, first of all,
1500 	 * check whether the frequency is already set. Here, we assume
1501 	 * that the frequency is expected to be greater than 0.
1502 	 */
1503 	mutex_lock(corepll_res->lock);
1504 	if (!mlxbf_i2c_corepll_frequency) {
1505 		if (!chip->calculate_freq) {
1506 			mutex_unlock(corepll_res->lock);
1507 			return -EPERM;
1508 		}
1509 
1510 		ret = mlxbf_i2c_get_corepll(pdev, priv);
1511 		if (ret < 0) {
1512 			dev_err(dev, "Failed to get corePLL resource");
1513 			mutex_unlock(corepll_res->lock);
1514 			return ret;
1515 		}
1516 
1517 		mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1518 	}
1519 	mutex_unlock(corepll_res->lock);
1520 
1521 	*freq = mlxbf_i2c_corepll_frequency;
1522 
1523 	return 0;
1524 }
1525 
1526 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1527 {
1528 	u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1529 	u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1530 	bool avail, disabled;
1531 
1532 	disabled = false;
1533 	avail = false;
1534 
1535 	if (!priv)
1536 		return -EPERM;
1537 
1538 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1539 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1540 
1541 	/*
1542 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1543 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1544 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1545 	 */
1546 	for (reg = 0; reg < reg_cnt; reg++) {
1547 		slave_reg = readl(priv->smbus->io +
1548 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1549 		/*
1550 		 * Each register holds 4 slave addresses. So, we have to keep
1551 		 * the byte order consistent with the value read in order to
1552 		 * update the register correctly, if needed.
1553 		 */
1554 		slave_reg_tmp = slave_reg;
1555 		for (byte = 0; byte < 4; byte++) {
1556 			addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1557 
1558 			/*
1559 			 * Mark the first available slave address slot, i.e. its
1560 			 * enabled bit should be unset. This slot might be used
1561 			 * later on to register our slave.
1562 			 */
1563 			if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1564 				avail = true;
1565 				reg_avail = reg;
1566 				byte_avail = byte;
1567 				slave_reg_avail = slave_reg;
1568 			}
1569 
1570 			/*
1571 			 * Parse slave address bytes and check whether the
1572 			 * slave address already exists and it's enabled,
1573 			 * i.e. most significant bit is set.
1574 			 */
1575 			if ((addr_tmp & slave_addr_mask) == addr) {
1576 				if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1577 					return 0;
1578 				disabled = true;
1579 				break;
1580 			}
1581 
1582 			/* Parse next byte. */
1583 			slave_reg_tmp >>= 8;
1584 		}
1585 
1586 		/* Exit the loop if the slave address is found. */
1587 		if (disabled)
1588 			break;
1589 	}
1590 
1591 	if (!avail && !disabled)
1592 		return -EINVAL; /* No room for a new slave address. */
1593 
1594 	if (avail && !disabled) {
1595 		reg = reg_avail;
1596 		byte = byte_avail;
1597 		/* Set the slave address. */
1598 		slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1599 		slave_reg_avail |= addr << (byte * 8);
1600 		slave_reg = slave_reg_avail;
1601 	}
1602 
1603 	/* Enable the slave address and update the register. */
1604 	slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1605 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1606 		reg * 0x4);
1607 
1608 	return 0;
1609 }
1610 
1611 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1612 {
1613 	u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1614 	u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1615 	struct i2c_client *client = priv->slave;
1616 	bool exist;
1617 
1618 	exist = false;
1619 
1620 	addr = client->addr;
1621 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1622 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1623 
1624 	/*
1625 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1626 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1627 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1628 	 */
1629 	for (reg = 0; reg < reg_cnt; reg++) {
1630 		slave_reg = readl(priv->smbus->io +
1631 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1632 
1633 		/* Check whether the address slots are empty. */
1634 		if (slave_reg == 0)
1635 			continue;
1636 
1637 		/*
1638 		 * Each register holds 4 slave addresses. So, we have to keep
1639 		 * the byte order consistent with the value read in order to
1640 		 * update the register correctly, if needed.
1641 		 */
1642 		slave_reg_tmp = slave_reg;
1643 		slave_byte = 0;
1644 		while (slave_reg_tmp != 0) {
1645 			addr_tmp = slave_reg_tmp & slave_addr_mask;
1646 			/*
1647 			 * Parse slave address bytes and check whether the
1648 			 * slave address already exists.
1649 			 */
1650 			if (addr_tmp == addr) {
1651 				exist = true;
1652 				break;
1653 			}
1654 
1655 			/* Parse next byte. */
1656 			slave_reg_tmp >>= 8;
1657 			slave_byte += 1;
1658 		}
1659 
1660 		/* Exit the loop if the slave address is found. */
1661 		if (exist)
1662 			break;
1663 	}
1664 
1665 	if (!exist)
1666 		return 0; /* Slave is not registered, nothing to do. */
1667 
1668 	/* Cleanup the slave address slot. */
1669 	slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1670 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1671 		reg * 0x4);
1672 
1673 	return 0;
1674 }
1675 
1676 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1677 				   struct mlxbf_i2c_priv *priv)
1678 {
1679 	struct mlxbf_i2c_resource *coalesce_res;
1680 	struct resource *params;
1681 	resource_size_t size;
1682 	int ret = 0;
1683 
1684 	/*
1685 	 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1686 	 * resource in the next generations of BlueField.
1687 	 */
1688 	if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1689 		coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1690 						MLXBF_I2C_COALESCE_RES);
1691 		if (!coalesce_res)
1692 			return -EPERM;
1693 
1694 		/*
1695 		 * The Cause Coalesce group in TYU space is shared among
1696 		 * I2C busses. This function MUST be serialized to avoid
1697 		 * racing when claiming the memory region.
1698 		 */
1699 		lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1700 
1701 		/* Check whether the memory map exist. */
1702 		if (coalesce_res->io) {
1703 			priv->coalesce = coalesce_res;
1704 			return 0;
1705 		}
1706 
1707 		params = coalesce_res->params;
1708 		size = resource_size(params);
1709 
1710 		if (!request_mem_region(params->start, size, params->name))
1711 			return -EFAULT;
1712 
1713 		coalesce_res->io = ioremap(params->start, size);
1714 		if (!coalesce_res->io) {
1715 			release_mem_region(params->start, size);
1716 			return -ENOMEM;
1717 		}
1718 
1719 		priv->coalesce = coalesce_res;
1720 
1721 	} else {
1722 		ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1723 					      MLXBF_I2C_COALESCE_RES);
1724 	}
1725 
1726 	return ret;
1727 }
1728 
1729 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1730 				      struct mlxbf_i2c_priv *priv)
1731 {
1732 	struct mlxbf_i2c_resource *coalesce_res;
1733 	struct device *dev = &pdev->dev;
1734 	struct resource *params;
1735 	resource_size_t size;
1736 
1737 	coalesce_res = priv->coalesce;
1738 
1739 	if (coalesce_res->io) {
1740 		params = coalesce_res->params;
1741 		size = resource_size(params);
1742 		if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1743 			mutex_lock(coalesce_res->lock);
1744 			iounmap(coalesce_res->io);
1745 			release_mem_region(params->start, size);
1746 			mutex_unlock(coalesce_res->lock);
1747 		} else {
1748 			devm_release_mem_region(dev, params->start, size);
1749 		}
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1756 				struct mlxbf_i2c_priv *priv)
1757 {
1758 	struct device *dev = &pdev->dev;
1759 	u32 int_reg;
1760 	int ret;
1761 
1762 	/* Reset FSM. */
1763 	writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1764 
1765 	/*
1766 	 * Enable slave cause interrupt bits. Drive
1767 	 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1768 	 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1769 	 * masters issue a Read and Write, respectively. But, clear all
1770 	 * interrupts first.
1771 	 */
1772 	writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1773 	int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1774 	int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1775 	writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1776 
1777 	/* Finally, set the 'ready' bit to start handling transactions. */
1778 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1779 
1780 	/* Initialize the cause coalesce resource. */
1781 	ret = mlxbf_i2c_init_coalesce(pdev, priv);
1782 	if (ret < 0) {
1783 		dev_err(dev, "failed to initialize cause coalesce\n");
1784 		return ret;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1791 				   bool *write)
1792 {
1793 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1794 	u32 coalesce0_reg, cause_reg;
1795 	u8 slave_shift, is_set;
1796 
1797 	*write = false;
1798 	*read = false;
1799 
1800 	slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1801 				MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1802 				priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1803 
1804 	coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1805 	is_set = coalesce0_reg & (1 << slave_shift);
1806 
1807 	if (!is_set)
1808 		return false;
1809 
1810 	/* Check the source of the interrupt, i.e. whether a Read or Write. */
1811 	cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1812 	if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1813 		*read = true;
1814 	else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1815 		*write = true;
1816 
1817 	/* Clear cause bits. */
1818 	writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1819 
1820 	return true;
1821 }
1822 
1823 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1824 					    u32 timeout)
1825 {
1826 	u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1827 	u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1828 
1829 	if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1830 		return true;
1831 
1832 	return false;
1833 }
1834 
1835 /* Send byte to 'external' smbus master. */
1836 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1837 {
1838 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1839 	u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1840 	struct i2c_client *slave = priv->slave;
1841 	u32 control32, data32;
1842 	int ret;
1843 
1844 	if (!slave)
1845 		return -EINVAL;
1846 
1847 	addr = 0;
1848 	byte = 0;
1849 	desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1850 
1851 	/*
1852 	 * Read bytes received from the external master. These bytes should
1853 	 * be located in the first data descriptor register of the slave GW.
1854 	 * These bytes are the slave address byte and the internal register
1855 	 * address, if supplied.
1856 	 */
1857 	if (recv_bytes > 0) {
1858 		data32 = ioread32be(priv->smbus->io +
1859 					MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1860 
1861 		/* Parse the received bytes. */
1862 		switch (recv_bytes) {
1863 		case 2:
1864 			byte = (data32 >> 8) & GENMASK(7, 0);
1865 			fallthrough;
1866 		case 1:
1867 			addr = (data32 & GENMASK(7, 0)) >> 1;
1868 		}
1869 
1870 		/* Check whether it's our slave address. */
1871 		if (slave->addr != addr)
1872 			return -EINVAL;
1873 	}
1874 
1875 	/*
1876 	 * I2C read transactions may start by a WRITE followed by a READ.
1877 	 * Indeed, most slave devices would expect the internal address
1878 	 * following the slave address byte. So, write that byte first,
1879 	 * and then, send the requested data bytes to the master.
1880 	 */
1881 	if (recv_bytes > 1) {
1882 		i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1883 		value = byte;
1884 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1885 				      &value);
1886 		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1887 
1888 		if (ret < 0)
1889 			return ret;
1890 	}
1891 
1892 	/*
1893 	 * Now, send data to the master; currently, the driver supports
1894 	 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1895 	 * hardware can send up to 128 bytes per transfer. That is the
1896 	 * size of its data registers.
1897 	 */
1898 	i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1899 
1900 	for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1901 		data_desc[byte_cnt] = value;
1902 		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1903 	}
1904 
1905 	/* Send a stop condition to the backend. */
1906 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1907 
1908 	/* Handle the actual transfer. */
1909 
1910 	/* Set the number of bytes to write to master. */
1911 	write_size = (byte_cnt - 1) & 0x7f;
1912 
1913 	/* Write data to Slave GW data descriptor. */
1914 	mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1915 				   MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1916 
1917 	pec_en = 0; /* Disable PEC since it is not supported. */
1918 
1919 	/* Prepare control word. */
1920 	control32 = MLXBF_I2C_SLAVE_ENABLE;
1921 	control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1922 	control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1923 
1924 	writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1925 
1926 	/*
1927 	 * Wait until the transfer is completed; the driver will wait
1928 	 * until the GW is idle, a cause will rise on fall of GW busy.
1929 	 */
1930 	mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1931 
1932 	/* Release the Slave GW. */
1933 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1934 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1935 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1936 
1937 	return 0;
1938 }
1939 
1940 /* Receive bytes from 'external' smbus master. */
1941 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1942 {
1943 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1944 	struct i2c_client *slave = priv->slave;
1945 	u8 value, byte, addr;
1946 	int ret = 0;
1947 
1948 	if (!slave)
1949 		return -EINVAL;
1950 
1951 	/* Read data from Slave GW data descriptor. */
1952 	mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1953 				  MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1954 
1955 	/* Check whether its our slave address. */
1956 	addr = data_desc[0] >> 1;
1957 	if (slave->addr != addr)
1958 		return -EINVAL;
1959 
1960 	/*
1961 	 * Notify the slave backend; another I2C master wants to write data
1962 	 * to us. This event is sent once the slave address and the write bit
1963 	 * is detected.
1964 	 */
1965 	i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1966 
1967 	/* Send the received data to the slave backend. */
1968 	for (byte = 1; byte < recv_bytes; byte++) {
1969 		value = data_desc[byte];
1970 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1971 				      &value);
1972 		if (ret < 0)
1973 			break;
1974 	}
1975 
1976 	/* Send a stop condition to the backend. */
1977 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1978 
1979 	/* Release the Slave GW. */
1980 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1981 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1982 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1983 
1984 	return ret;
1985 }
1986 
1987 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
1988 {
1989 	struct mlxbf_i2c_priv *priv = ptr;
1990 	bool read, write, irq_is_set;
1991 	u32 rw_bytes_reg;
1992 	u8 recv_bytes;
1993 
1994 	/*
1995 	 * Read TYU interrupt register and determine the source of the
1996 	 * interrupt. Based on the source of the interrupt one of the
1997 	 * following actions are performed:
1998 	 *  - Receive data and send response to master.
1999 	 *  - Send data and release slave GW.
2000 	 *
2001 	 * Handle read/write transaction only. CRmaster and Iarp requests
2002 	 * are ignored for now.
2003 	 */
2004 	irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2005 	if (!irq_is_set || (!read && !write)) {
2006 		/* Nothing to do here, interrupt was not from this device. */
2007 		return IRQ_NONE;
2008 	}
2009 
2010 	/*
2011 	 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2012 	 * bytes from/to master. These are defined by 8-bits each. If the lower
2013 	 * 8 bits are set, then the master expect to read N bytes from the
2014 	 * slave, if the higher 8 bits are sent then the slave expect N bytes
2015 	 * from the master.
2016 	 */
2017 	rw_bytes_reg = readl(priv->smbus->io +
2018 				MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2019 	recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2020 
2021 	/*
2022 	 * For now, the slave supports 128 bytes transfer. Discard remaining
2023 	 * data bytes if the master wrote more than
2024 	 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2025 	 * data descriptor.
2026 	 *
2027 	 * Note that we will never expect to transfer more than 128 bytes; as
2028 	 * specified in the SMBus standard, block transactions cannot exceed
2029 	 * 32 bytes.
2030 	 */
2031 	recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2032 		MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2033 
2034 	if (read)
2035 		mlxbf_smbus_irq_send(priv, recv_bytes);
2036 	else
2037 		mlxbf_smbus_irq_recv(priv, recv_bytes);
2038 
2039 	return IRQ_HANDLED;
2040 }
2041 
2042 /* Return negative errno on error. */
2043 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2044 				unsigned short flags, char read_write,
2045 				u8 command, int size,
2046 				union i2c_smbus_data *data)
2047 {
2048 	struct mlxbf_i2c_smbus_request request = { 0 };
2049 	struct mlxbf_i2c_priv *priv;
2050 	bool read, pec;
2051 	u8 byte_cnt;
2052 
2053 	request.slave = addr;
2054 
2055 	read = (read_write == I2C_SMBUS_READ);
2056 	pec = flags & I2C_FUNC_SMBUS_PEC;
2057 
2058 	switch (size) {
2059 	case I2C_SMBUS_QUICK:
2060 		mlxbf_i2c_smbus_quick_command(&request, read);
2061 		dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2062 		break;
2063 
2064 	case I2C_SMBUS_BYTE:
2065 		mlxbf_i2c_smbus_byte_func(&request,
2066 					  read ? &data->byte : &command, read,
2067 					  pec);
2068 		dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2069 			read ? "read" : "write", addr);
2070 		break;
2071 
2072 	case I2C_SMBUS_BYTE_DATA:
2073 		mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2074 					       read, pec);
2075 		dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2076 			read ? "read" : "write", command, addr);
2077 		break;
2078 
2079 	case I2C_SMBUS_WORD_DATA:
2080 		mlxbf_i2c_smbus_data_word_func(&request, &command,
2081 					       (u8 *)&data->word, read, pec);
2082 		dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2083 			read ? "read" : "write", command, addr);
2084 		break;
2085 
2086 	case I2C_SMBUS_I2C_BLOCK_DATA:
2087 		byte_cnt = data->block[0];
2088 		mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2089 					       &byte_cnt, read, pec);
2090 		dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2091 			read ? "read" : "write", byte_cnt, command, addr);
2092 		break;
2093 
2094 	case I2C_SMBUS_BLOCK_DATA:
2095 		byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2096 		mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2097 					   &byte_cnt, read, pec);
2098 		dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2099 			read ? "read" : "write", byte_cnt, command, addr);
2100 		break;
2101 
2102 	case I2C_FUNC_SMBUS_PROC_CALL:
2103 		mlxbf_i2c_smbus_process_call_func(&request, &command,
2104 						  (u8 *)&data->word, pec);
2105 		dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2106 			command, addr);
2107 		break;
2108 
2109 	case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2110 		byte_cnt = data->block[0];
2111 		mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2112 						      data->block, &byte_cnt,
2113 						      pec);
2114 		dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2115 			byte_cnt, addr);
2116 		break;
2117 
2118 	default:
2119 		dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2120 			size);
2121 		return -EOPNOTSUPP;
2122 	}
2123 
2124 	priv = i2c_get_adapdata(adap);
2125 
2126 	return mlxbf_i2c_smbus_start_transaction(priv, &request);
2127 }
2128 
2129 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2130 {
2131 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2132 	int ret;
2133 
2134 	if (priv->slave)
2135 		return -EBUSY;
2136 
2137 	/*
2138 	 * Do not support ten bit chip address and do not use Packet Error
2139 	 * Checking (PEC).
2140 	 */
2141 	if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2142 		return -EAFNOSUPPORT;
2143 
2144 	ret = mlxbf_slave_enable(priv, slave->addr);
2145 	if (ret < 0)
2146 		return ret;
2147 
2148 	priv->slave = slave;
2149 
2150 	return 0;
2151 }
2152 
2153 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2154 {
2155 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2156 	int ret;
2157 
2158 	WARN_ON(!priv->slave);
2159 
2160 	/* Unregister slave, i.e. disable the slave address in hardware. */
2161 	ret = mlxbf_slave_disable(priv);
2162 	if (ret < 0)
2163 		return ret;
2164 
2165 	priv->slave = NULL;
2166 
2167 	return 0;
2168 }
2169 
2170 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2171 {
2172 	return MLXBF_I2C_FUNC_ALL;
2173 }
2174 
2175 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2176 	[MLXBF_I2C_CHIP_TYPE_1] = {
2177 		.type = MLXBF_I2C_CHIP_TYPE_1,
2178 		.shared_res = {
2179 			[0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2180 			[1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2181 			[2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2182 		},
2183 		.calculate_freq = mlxbf_calculate_freq_from_tyu
2184 	},
2185 	[MLXBF_I2C_CHIP_TYPE_2] = {
2186 		.type = MLXBF_I2C_CHIP_TYPE_2,
2187 		.shared_res = {
2188 			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2189 		},
2190 		.calculate_freq = mlxbf_calculate_freq_from_yu
2191 	}
2192 };
2193 
2194 static const struct i2c_algorithm mlxbf_i2c_algo = {
2195 	.smbus_xfer = mlxbf_i2c_smbus_xfer,
2196 	.functionality = mlxbf_i2c_functionality,
2197 	.reg_slave = mlxbf_i2c_reg_slave,
2198 	.unreg_slave = mlxbf_i2c_unreg_slave,
2199 };
2200 
2201 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2202 	.max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2203 	.max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2204 };
2205 
2206 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2207 	{
2208 		.compatible = "mellanox,i2c-mlxbf1",
2209 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2210 	},
2211 	{
2212 		.compatible = "mellanox,i2c-mlxbf2",
2213 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2214 	},
2215 	{},
2216 };
2217 
2218 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2219 
2220 #ifdef CONFIG_ACPI
2221 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2222 	{ "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2223 	{ "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2224 	{},
2225 };
2226 
2227 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2228 
2229 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2230 {
2231 	const struct acpi_device_id *aid;
2232 	struct acpi_device *adev;
2233 	unsigned long bus_id = 0;
2234 	const char *uid;
2235 	int ret;
2236 
2237 	if (acpi_disabled)
2238 		return -ENOENT;
2239 
2240 	adev = ACPI_COMPANION(dev);
2241 	if (!adev)
2242 		return -ENXIO;
2243 
2244 	aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2245 	if (!aid)
2246 		return -ENODEV;
2247 
2248 	priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2249 
2250 	uid = acpi_device_uid(adev);
2251 	if (!uid || !(*uid)) {
2252 		dev_err(dev, "Cannot retrieve UID\n");
2253 		return -ENODEV;
2254 	}
2255 
2256 	ret = kstrtoul(uid, 0, &bus_id);
2257 	if (!ret)
2258 		priv->bus = bus_id;
2259 
2260 	return ret;
2261 }
2262 #else
2263 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2264 {
2265 	return -ENOENT;
2266 }
2267 #endif /* CONFIG_ACPI */
2268 
2269 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2270 {
2271 	const struct of_device_id *oid;
2272 	int bus_id = -1;
2273 
2274 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2275 		oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2276 		if (!oid)
2277 			return -ENODEV;
2278 
2279 		priv->chip = oid->data;
2280 
2281 		bus_id = of_alias_get_id(dev->of_node, "i2c");
2282 		if (bus_id >= 0)
2283 			priv->bus = bus_id;
2284 	}
2285 
2286 	if (bus_id < 0) {
2287 		dev_err(dev, "Cannot get bus id");
2288 		return bus_id;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 static int mlxbf_i2c_probe(struct platform_device *pdev)
2295 {
2296 	struct device *dev = &pdev->dev;
2297 	struct mlxbf_i2c_priv *priv;
2298 	struct i2c_adapter *adap;
2299 	int irq, ret;
2300 
2301 	priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2302 	if (!priv)
2303 		return -ENOMEM;
2304 
2305 	ret = mlxbf_i2c_acpi_probe(dev, priv);
2306 	if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2307 		ret = mlxbf_i2c_of_probe(dev, priv);
2308 
2309 	if (ret < 0)
2310 		return ret;
2311 
2312 	ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2313 				      MLXBF_I2C_SMBUS_RES);
2314 	if (ret < 0) {
2315 		dev_err(dev, "Cannot fetch smbus resource info");
2316 		return ret;
2317 	}
2318 
2319 	ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2320 				      MLXBF_I2C_MST_CAUSE_RES);
2321 	if (ret < 0) {
2322 		dev_err(dev, "Cannot fetch cause master resource info");
2323 		return ret;
2324 	}
2325 
2326 	ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2327 				      MLXBF_I2C_SLV_CAUSE_RES);
2328 	if (ret < 0) {
2329 		dev_err(dev, "Cannot fetch cause slave resource info");
2330 		return ret;
2331 	}
2332 
2333 	adap = &priv->adap;
2334 	adap->owner = THIS_MODULE;
2335 	adap->class = I2C_CLASS_HWMON;
2336 	adap->algo = &mlxbf_i2c_algo;
2337 	adap->quirks = &mlxbf_i2c_quirks;
2338 	adap->dev.parent = dev;
2339 	adap->dev.of_node = dev->of_node;
2340 	adap->nr = priv->bus;
2341 
2342 	snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2343 	i2c_set_adapdata(adap, priv);
2344 
2345 	/* Read Core PLL frequency. */
2346 	ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2347 	if (ret < 0) {
2348 		dev_err(dev, "cannot get core clock frequency\n");
2349 		/* Set to default value. */
2350 		priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2351 	}
2352 
2353 	/*
2354 	 * Initialize master.
2355 	 * Note that a physical bus might be shared among Linux and firmware
2356 	 * (e.g., ATF). Thus, the bus should be initialized and ready and
2357 	 * bus initialization would be unnecessary. This requires additional
2358 	 * knowledge about physical busses. But, since an extra initialization
2359 	 * does not really hurt, then keep the code as is.
2360 	 */
2361 	ret = mlxbf_i2c_init_master(pdev, priv);
2362 	if (ret < 0) {
2363 		dev_err(dev, "failed to initialize smbus master %d",
2364 			priv->bus);
2365 		return ret;
2366 	}
2367 
2368 	mlxbf_i2c_init_timings(pdev, priv);
2369 
2370 	mlxbf_i2c_init_slave(pdev, priv);
2371 
2372 	irq = platform_get_irq(pdev, 0);
2373 	if (irq < 0)
2374 		return irq;
2375 	ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2376 			       IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2377 			       dev_name(dev), priv);
2378 	if (ret < 0) {
2379 		dev_err(dev, "Cannot get irq %d\n", irq);
2380 		return ret;
2381 	}
2382 
2383 	priv->irq = irq;
2384 
2385 	platform_set_drvdata(pdev, priv);
2386 
2387 	ret = i2c_add_numbered_adapter(adap);
2388 	if (ret < 0)
2389 		return ret;
2390 
2391 	mutex_lock(&mlxbf_i2c_bus_lock);
2392 	mlxbf_i2c_bus_count++;
2393 	mutex_unlock(&mlxbf_i2c_bus_lock);
2394 
2395 	return 0;
2396 }
2397 
2398 static int mlxbf_i2c_remove(struct platform_device *pdev)
2399 {
2400 	struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2401 	struct device *dev = &pdev->dev;
2402 	struct resource *params;
2403 
2404 	params = priv->smbus->params;
2405 	devm_release_mem_region(dev, params->start, resource_size(params));
2406 
2407 	params = priv->mst_cause->params;
2408 	devm_release_mem_region(dev, params->start, resource_size(params));
2409 
2410 	params = priv->slv_cause->params;
2411 	devm_release_mem_region(dev, params->start, resource_size(params));
2412 
2413 	/*
2414 	 * Release shared resources. This should be done when releasing
2415 	 * the I2C controller.
2416 	 */
2417 	mutex_lock(&mlxbf_i2c_bus_lock);
2418 	if (--mlxbf_i2c_bus_count == 0) {
2419 		mlxbf_i2c_release_coalesce(pdev, priv);
2420 		mlxbf_i2c_release_corepll(pdev, priv);
2421 		mlxbf_i2c_release_gpio(pdev, priv);
2422 	}
2423 	mutex_unlock(&mlxbf_i2c_bus_lock);
2424 
2425 	devm_free_irq(dev, priv->irq, priv);
2426 
2427 	i2c_del_adapter(&priv->adap);
2428 
2429 	return 0;
2430 }
2431 
2432 static struct platform_driver mlxbf_i2c_driver = {
2433 	.probe = mlxbf_i2c_probe,
2434 	.remove = mlxbf_i2c_remove,
2435 	.driver = {
2436 		.name = "i2c-mlxbf",
2437 		.of_match_table = mlxbf_i2c_dt_ids,
2438 #ifdef CONFIG_ACPI
2439 		.acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2440 #endif /* CONFIG_ACPI  */
2441 	},
2442 };
2443 
2444 static int __init mlxbf_i2c_init(void)
2445 {
2446 	mutex_init(&mlxbf_i2c_coalesce_lock);
2447 	mutex_init(&mlxbf_i2c_corepll_lock);
2448 	mutex_init(&mlxbf_i2c_gpio_lock);
2449 
2450 	mutex_init(&mlxbf_i2c_bus_lock);
2451 
2452 	return platform_driver_register(&mlxbf_i2c_driver);
2453 }
2454 module_init(mlxbf_i2c_init);
2455 
2456 static void __exit mlxbf_i2c_exit(void)
2457 {
2458 	platform_driver_unregister(&mlxbf_i2c_driver);
2459 
2460 	mutex_destroy(&mlxbf_i2c_bus_lock);
2461 
2462 	mutex_destroy(&mlxbf_i2c_gpio_lock);
2463 	mutex_destroy(&mlxbf_i2c_corepll_lock);
2464 	mutex_destroy(&mlxbf_i2c_coalesce_lock);
2465 }
2466 module_exit(mlxbf_i2c_exit);
2467 
2468 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2469 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2470 MODULE_LICENSE("GPL v2");
2471