xref: /openbmc/linux/drivers/i2c/busses/i2c-mlxbf.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Mellanox BlueField I2C bus driver
4  *
5  *  Copyright (C) 2020 Mellanox Technologies, Ltd.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/i2c.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/string.h>
20 
21 /* Defines what functionality is present. */
22 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
23 	(I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
24 
25 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
26 	(I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
27 	 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
28 	 I2C_FUNC_SMBUS_PROC_CALL)
29 
30 #define MLXBF_I2C_FUNC_ALL \
31 	(MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
32 	 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
33 
34 #define MLXBF_I2C_SMBUS_MAX        3
35 
36 /* Shared resources info in BlueField platforms. */
37 
38 #define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
39 #define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
40 
41 #define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
42 #define MLXBF_I2C_GPIO_TYU_SIZE        0x100
43 
44 #define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
45 #define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
46 
47 #define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
48 #define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
49 
50 #define MLXBF_I2C_SHARED_RES_MAX       3
51 
52 /*
53  * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
54  * refer to their respective offsets relative to the corresponding
55  * memory-mapped region whose addresses are specified in either the DT or
56  * the ACPI tables or above.
57  */
58 
59 /*
60  * SMBus Master core clock frequency. Timing configurations are
61  * strongly dependent on the core clock frequency of the SMBus
62  * Master. Default value is set to 400MHz.
63  */
64 #define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
65 /* Reference clock for Bluefield - 156 MHz. */
66 #define MLXBF_I2C_PLL_IN_FREQ       (156 * 1000 * 1000)
67 
68 /* Constant used to determine the PLL frequency. */
69 #define MLNXBF_I2C_COREPLL_CONST    16384
70 
71 /* PLL registers. */
72 #define MLXBF_I2C_CORE_PLL_REG0         0x0
73 #define MLXBF_I2C_CORE_PLL_REG1         0x4
74 #define MLXBF_I2C_CORE_PLL_REG2         0x8
75 
76 /* OR cause register. */
77 #define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
78 #define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
79 
80 /* Arbiter Cause Register. */
81 #define MLXBF_I2C_CAUSE_ARBITER      0x1c
82 
83 /*
84  * Cause Status flags. Note that those bits might be considered
85  * as interrupt enabled bits.
86  */
87 
88 /* Transaction ended with STOP. */
89 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
90 /* Master arbitration lost. */
91 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
92 /* Unexpected start detected. */
93 #define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
94 /* Unexpected stop detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
96 /* Wait for transfer continuation. */
97 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
98 /* Failed to generate STOP. */
99 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
100 /* Failed to generate START. */
101 #define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
102 /* Clock toggle completed. */
103 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
104 /* Transfer timeout occurred. */
105 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
106 /* Master busy bit reset. */
107 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
108 
109 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
110 
111 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
112 	(MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
113 	 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
114 	 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
115 	 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
116 	 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
117 	 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
118 	 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
119 
120 /*
121  * Slave cause status flags. Note that those bits might be considered
122  * as interrupt enabled bits.
123  */
124 
125 /* Write transaction received successfully. */
126 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
127 /* Read transaction received, waiting for response. */
128 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
129 /* Slave busy bit reset. */
130 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
131 
132 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK     GENMASK(20, 0)
133 
134 /* Cause coalesce registers. */
135 #define MLXBF_I2C_CAUSE_COALESCE_0        0x00
136 #define MLXBF_I2C_CAUSE_COALESCE_1        0x04
137 #define MLXBF_I2C_CAUSE_COALESCE_2        0x08
138 
139 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   MLXBF_I2C_SMBUS_MAX
140 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
141 
142 /* Functional enable register. */
143 #define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
144 /* Force OE enable register. */
145 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
146 /*
147  * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
148  * SDA/SCL lines:
149  *
150  *  SMBUS GW0 -> bits[26:25]
151  *  SMBUS GW1 -> bits[28:27]
152  *  SMBUS GW2 -> bits[30:29]
153  */
154 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
155 
156 /* Note that gw_id can be 0,1 or 2. */
157 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
158 	(0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
159 
160 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
161 	((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
162 
163 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
164 	((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
165 
166 /* SMBus timing parameters. */
167 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
168 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
169 #define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
170 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
171 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
172 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
173 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
174 
175 enum {
176 	MLXBF_I2C_TIMING_100KHZ = 100000,
177 	MLXBF_I2C_TIMING_400KHZ = 400000,
178 	MLXBF_I2C_TIMING_1000KHZ = 1000000,
179 };
180 
181 /*
182  * Defines SMBus operating frequency and core clock frequency.
183  * According to ADB files, default values are compliant to 100KHz SMBus
184  * @ 400MHz core clock. The driver should be able to calculate core
185  * frequency based on PLL parameters.
186  */
187 #define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
188 
189 /* Core PLL TYU configuration. */
190 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(12, 0)
191 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(3, 0)
192 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(5, 0)
193 
194 #define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT  3
195 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16
196 #define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT  20
197 
198 /* Core PLL YU configuration. */
199 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
200 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
201 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(5, 0)
202 
203 #define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT   0
204 #define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT  1
205 #define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT   26
206 
207 /* Core PLL frequency. */
208 static u64 mlxbf_i2c_corepll_frequency;
209 
210 /* SMBus Master GW. */
211 #define MLXBF_I2C_SMBUS_MASTER_GW     0x200
212 /* Number of bytes received and sent. */
213 #define MLXBF_I2C_SMBUS_RS_BYTES      0x300
214 /* Packet error check (PEC) value. */
215 #define MLXBF_I2C_SMBUS_MASTER_PEC    0x304
216 /* Status bits (ACK/NACK/FW Timeout). */
217 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
218 /* SMbus Master Finite State Machine. */
219 #define MLXBF_I2C_SMBUS_MASTER_FSM    0x310
220 
221 /*
222  * When enabled, the master will issue a stop condition in case of
223  * timeout while waiting for FW response.
224  */
225 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
226 
227 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
228 #define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
229 #define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
230 #define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
231 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
232 #define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
233 #define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
234 
235 #define MLXBF_I2C_MASTER_ENABLE \
236 	(MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
237 	 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
238 
239 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
240 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
241 
242 #define MLXBF_I2C_MASTER_ENABLE_READ \
243 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
244 
245 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address shift. */
246 #define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes shift. */
247 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte shift. */
248 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Parse expected bytes shift. */
249 #define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes shift. */
250 
251 /* SMBus master GW Data descriptor. */
252 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x280
253 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
254 
255 /* Maximum bytes to read/write per SMBus transaction. */
256 #define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
257 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
258 
259 /* All bytes were transmitted. */
260 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
261 /* NACK received. */
262 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
263 /* Slave's byte count >128 bytes. */
264 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
265 /* Timeout occurred. */
266 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
267 
268 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
269 
270 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
271 	(MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
272 	 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
273 	 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
274 
275 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
276 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
277 
278 /* SMBus slave GW. */
279 #define MLXBF_I2C_SMBUS_SLAVE_GW              0x400
280 /* Number of bytes received and sent from/to master. */
281 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
282 /* Packet error check (PEC) value. */
283 #define MLXBF_I2C_SMBUS_SLAVE_PEC             0x504
284 /* SMBus slave Finite State Machine (FSM). */
285 #define MLXBF_I2C_SMBUS_SLAVE_FSM             0x510
286 /*
287  * Should be set when all raised causes handled, and cleared by HW on
288  * every new cause.
289  */
290 #define MLXBF_I2C_SMBUS_SLAVE_READY           0x52c
291 
292 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
293 #define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
294 #define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
295 
296 #define MLXBF_I2C_SLAVE_ENABLE \
297 	(MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
298 
299 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
300 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
301 
302 /* SMBus slave GW Data descriptor. */
303 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x480
304 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
305 
306 /* SMbus slave configuration registers. */
307 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x514
308 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
309 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     7
310 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
311 
312 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
313 	((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
314 
315 /*
316  * Timeout is given in microsends. Note also that timeout handling is not
317  * exact.
318  */
319 #define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
320 
321 /* Encapsulates timing parameters. */
322 struct mlxbf_i2c_timings {
323 	u16 scl_high;		/* Clock high period. */
324 	u16 scl_low;		/* Clock low period. */
325 	u8 sda_rise;		/* Data rise time. */
326 	u8 sda_fall;		/* Data fall time. */
327 	u8 scl_rise;		/* Clock rise time. */
328 	u8 scl_fall;		/* Clock fall time. */
329 	u16 hold_start;		/* Hold time after (REPEATED) START. */
330 	u16 hold_data;		/* Data hold time. */
331 	u16 setup_start;	/* REPEATED START condition setup time. */
332 	u16 setup_stop;		/* STOP condition setup time. */
333 	u16 setup_data;		/* Data setup time. */
334 	u16 pad;		/* Padding. */
335 	u16 buf;		/* Bus free time between STOP and START. */
336 	u16 thigh_max;		/* Thigh max. */
337 	u32 timeout;		/* Detect clock low timeout. */
338 };
339 
340 enum {
341 	MLXBF_I2C_F_READ = BIT(0),
342 	MLXBF_I2C_F_WRITE = BIT(1),
343 	MLXBF_I2C_F_NORESTART = BIT(3),
344 	MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
345 	MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
346 	MLXBF_I2C_F_SMBUS_PEC = BIT(6),
347 	MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
348 };
349 
350 struct mlxbf_i2c_smbus_operation {
351 	u32 flags;
352 	u32 length; /* Buffer length in bytes. */
353 	u8 *buffer;
354 };
355 
356 #define MLXBF_I2C_SMBUS_OP_CNT_1	1
357 #define MLXBF_I2C_SMBUS_OP_CNT_2	2
358 #define MLXBF_I2C_SMBUS_OP_CNT_3	3
359 #define MLXBF_I2C_SMBUS_MAX_OP_CNT	MLXBF_I2C_SMBUS_OP_CNT_3
360 
361 struct mlxbf_i2c_smbus_request {
362 	u8 slave;
363 	u8 operation_cnt;
364 	struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
365 };
366 
367 struct mlxbf_i2c_resource {
368 	void __iomem *io;
369 	struct resource *params;
370 	struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
371 	u8 type;
372 };
373 
374 /* List of chip resources that are being accessed by the driver. */
375 enum {
376 	MLXBF_I2C_SMBUS_RES,
377 	MLXBF_I2C_MST_CAUSE_RES,
378 	MLXBF_I2C_SLV_CAUSE_RES,
379 	MLXBF_I2C_COALESCE_RES,
380 	MLXBF_I2C_COREPLL_RES,
381 	MLXBF_I2C_GPIO_RES,
382 	MLXBF_I2C_END_RES,
383 };
384 
385 /* Helper macro to define an I2C resource parameters. */
386 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
387 	{ \
388 		.start = (addr), \
389 		.end = (addr) + (size) - 1, \
390 		.name = (str) \
391 	}
392 
393 static struct resource mlxbf_i2c_coalesce_tyu_params =
394 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
395 				     MLXBF_I2C_COALESCE_TYU_SIZE,
396 				     "COALESCE_MEM");
397 static struct resource mlxbf_i2c_corepll_tyu_params =
398 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
399 				     MLXBF_I2C_COREPLL_TYU_SIZE,
400 				     "COREPLL_MEM");
401 static struct resource mlxbf_i2c_corepll_yu_params =
402 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
403 				     MLXBF_I2C_COREPLL_YU_SIZE,
404 				     "COREPLL_MEM");
405 static struct resource mlxbf_i2c_gpio_tyu_params =
406 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
407 				     MLXBF_I2C_GPIO_TYU_SIZE,
408 				     "GPIO_MEM");
409 
410 static struct mutex mlxbf_i2c_coalesce_lock;
411 static struct mutex mlxbf_i2c_corepll_lock;
412 static struct mutex mlxbf_i2c_gpio_lock;
413 
414 /* Mellanox BlueField chip type. */
415 enum mlxbf_i2c_chip_type {
416 	MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
417 	MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
418 };
419 
420 struct mlxbf_i2c_chip_info {
421 	enum mlxbf_i2c_chip_type type;
422 	/* Chip shared resources that are being used by the I2C controller. */
423 	struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
424 
425 	/* Callback to calculate the core PLL frequency. */
426 	u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
427 };
428 
429 struct mlxbf_i2c_priv {
430 	const struct mlxbf_i2c_chip_info *chip;
431 	struct i2c_adapter adap;
432 	struct mlxbf_i2c_resource *smbus;
433 	struct mlxbf_i2c_resource *mst_cause;
434 	struct mlxbf_i2c_resource *slv_cause;
435 	struct mlxbf_i2c_resource *coalesce;
436 	u64 frequency; /* Core frequency in Hz. */
437 	int bus; /* Physical bus identifier. */
438 	int irq;
439 	struct i2c_client *slave;
440 };
441 
442 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
443 	[MLXBF_I2C_CHIP_TYPE_1] = {
444 		.params = &mlxbf_i2c_coalesce_tyu_params,
445 		.lock = &mlxbf_i2c_coalesce_lock,
446 		.type = MLXBF_I2C_COALESCE_RES
447 	},
448 	{}
449 };
450 
451 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
452 	[MLXBF_I2C_CHIP_TYPE_1] = {
453 		.params = &mlxbf_i2c_corepll_tyu_params,
454 		.lock = &mlxbf_i2c_corepll_lock,
455 		.type = MLXBF_I2C_COREPLL_RES
456 	},
457 	[MLXBF_I2C_CHIP_TYPE_2] = {
458 		.params = &mlxbf_i2c_corepll_yu_params,
459 		.lock = &mlxbf_i2c_corepll_lock,
460 		.type = MLXBF_I2C_COREPLL_RES,
461 	}
462 };
463 
464 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
465 	[MLXBF_I2C_CHIP_TYPE_1] = {
466 		.params = &mlxbf_i2c_gpio_tyu_params,
467 		.lock = &mlxbf_i2c_gpio_lock,
468 		.type = MLXBF_I2C_GPIO_RES
469 	},
470 	{}
471 };
472 
473 static u8 mlxbf_i2c_bus_count;
474 
475 static struct mutex mlxbf_i2c_bus_lock;
476 
477 /* Polling frequency in microseconds. */
478 #define MLXBF_I2C_POLL_FREQ_IN_USEC        200
479 
480 #define MLXBF_I2C_SHIFT_0   0
481 #define MLXBF_I2C_SHIFT_8   8
482 #define MLXBF_I2C_SHIFT_16  16
483 #define MLXBF_I2C_SHIFT_24  24
484 
485 #define MLXBF_I2C_MASK_8    GENMASK(7, 0)
486 #define MLXBF_I2C_MASK_16   GENMASK(15, 0)
487 
488 #define MLXBF_I2C_FREQUENCY_1GHZ  1000000000
489 
490 /*
491  * Function to poll a set of bits at a specific address; it checks whether
492  * the bits are equal to zero when eq_zero is set to 'true', and not equal
493  * to zero when eq_zero is set to 'false'.
494  * Note that the timeout is given in microseconds.
495  */
496 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
497 			    bool eq_zero, u32  timeout)
498 {
499 	u32 bits;
500 
501 	timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
502 
503 	do {
504 		bits = readl(io + addr) & mask;
505 		if (eq_zero ? bits == 0 : bits != 0)
506 			return eq_zero ? 1 : bits;
507 		udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
508 	} while (timeout-- != 0);
509 
510 	return 0;
511 }
512 
513 /*
514  * SW must make sure that the SMBus Master GW is idle before starting
515  * a transaction. Accordingly, this function polls the Master FSM stop
516  * bit; it returns false when the bit is asserted, true if not.
517  */
518 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
519 {
520 	u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
521 	u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
522 	u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
523 
524 	if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
525 		return true;
526 
527 	return false;
528 }
529 
530 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
531 						u32 cause_status)
532 {
533 	/*
534 	 * When transaction ended with STOP, all bytes were transmitted,
535 	 * and no NACK received, then the transaction ended successfully.
536 	 * On the other hand, when the GW is configured with the stop bit
537 	 * de-asserted then the SMBus expects the following GW configuration
538 	 * for transfer continuation.
539 	 */
540 	if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
541 	    ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
542 	     (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
543 	     !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
544 		return true;
545 
546 	return false;
547 }
548 
549 /*
550  * Poll SMBus master status and return transaction status,
551  * i.e. whether succeeded or failed. I2C and SMBus fault codes
552  * are returned as negative numbers from most calls, with zero
553  * or some positive number indicating a non-fault return.
554  */
555 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
556 {
557 	u32 master_status_bits;
558 	u32 cause_status_bits;
559 
560 	/*
561 	 * GW busy bit is raised by the driver and cleared by the HW
562 	 * when the transaction is completed. The busy bit is a good
563 	 * indicator of transaction status. So poll the busy bit, and
564 	 * then read the cause and master status bits to determine if
565 	 * errors occurred during the transaction.
566 	 */
567 	mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
568 			 MLXBF_I2C_MASTER_BUSY_BIT, true,
569 			 MLXBF_I2C_SMBUS_TIMEOUT);
570 
571 	/* Read cause status bits. */
572 	cause_status_bits = readl(priv->mst_cause->io +
573 					MLXBF_I2C_CAUSE_ARBITER);
574 	cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
575 
576 	/*
577 	 * Parse both Cause and Master GW bits, then return transaction status.
578 	 */
579 
580 	master_status_bits = readl(priv->smbus->io +
581 					MLXBF_I2C_SMBUS_MASTER_STATUS);
582 	master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
583 
584 	if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
585 						cause_status_bits))
586 		return 0;
587 
588 	/*
589 	 * In case of timeout on GW busy, the ISR will clear busy bit but
590 	 * transaction ended bits cause will not be set so the transaction
591 	 * fails. Then, we must check Master GW status bits.
592 	 */
593 	if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
594 	    (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
595 				  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
596 		return -EIO;
597 
598 	if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
599 		return -EAGAIN;
600 
601 	return -ETIMEDOUT;
602 }
603 
604 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
605 				       const u8 *data, u8 length, u32 addr)
606 {
607 	u8 offset, aligned_length;
608 	u32 data32;
609 
610 	aligned_length = round_up(length, 4);
611 
612 	/*
613 	 * Copy data bytes from 4-byte aligned source buffer.
614 	 * Data copied to the Master GW Data Descriptor MUST be shifted
615 	 * left so the data starts at the MSB of the descriptor registers
616 	 * as required by the underlying hardware. Enable byte swapping
617 	 * when writing data bytes to the 32 * 32-bit HW Data registers
618 	 * a.k.a Master GW Data Descriptor.
619 	 */
620 	for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
621 		data32 = *((u32 *)(data + offset));
622 		iowrite32be(data32, priv->smbus->io + addr + offset);
623 	}
624 }
625 
626 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
627 				      u8 *data, u8 length, u32 addr)
628 {
629 	u32 data32, mask;
630 	u8 byte, offset;
631 
632 	mask = sizeof(u32) - 1;
633 
634 	/*
635 	 * Data bytes in the Master GW Data Descriptor are shifted left
636 	 * so the data starts at the MSB of the descriptor registers as
637 	 * set by the underlying hardware. Enable byte swapping while
638 	 * reading data bytes from the 32 * 32-bit HW Data registers
639 	 * a.k.a Master GW Data Descriptor.
640 	 */
641 
642 	for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
643 		data32 = ioread32be(priv->smbus->io + addr + offset);
644 		*((u32 *)(data + offset)) = data32;
645 	}
646 
647 	if (!(length & mask))
648 		return;
649 
650 	data32 = ioread32be(priv->smbus->io + addr + offset);
651 
652 	for (byte = 0; byte < (length & mask); byte++) {
653 		data[offset + byte] = data32 & GENMASK(7, 0);
654 		data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
655 	}
656 }
657 
658 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
659 				  u8 len, u8 block_en, u8 pec_en, bool read)
660 {
661 	u32 command;
662 
663 	/* Set Master GW control word. */
664 	if (read) {
665 		command = MLXBF_I2C_MASTER_ENABLE_READ;
666 		command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
667 	} else {
668 		command = MLXBF_I2C_MASTER_ENABLE_WRITE;
669 		command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
670 	}
671 	command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
672 	command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
673 	command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
674 
675 	/* Clear status bits. */
676 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
677 	/* Set the cause data. */
678 	writel(~0x0, priv->smbus->io + MLXBF_I2C_CAUSE_OR_CLEAR);
679 	/* Zero PEC byte. */
680 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
681 	/* Zero byte count. */
682 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
683 
684 	/* GW activation. */
685 	writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
686 
687 	/*
688 	 * Poll master status and check status bits. An ACK is sent when
689 	 * completing writing data to the bus (Master 'byte_count_done' bit
690 	 * is set to 1).
691 	 */
692 	return mlxbf_i2c_smbus_check_status(priv);
693 }
694 
695 static int
696 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
697 				  struct mlxbf_i2c_smbus_request *request)
698 {
699 	u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
700 	u8 op_idx, data_idx, data_len, write_len, read_len;
701 	struct mlxbf_i2c_smbus_operation *operation;
702 	u8 read_en, write_en, block_en, pec_en;
703 	u8 slave, flags, addr;
704 	u8 *read_buf;
705 	int ret = 0;
706 
707 	if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
708 		return -EINVAL;
709 
710 	read_buf = NULL;
711 	data_idx = 0;
712 	read_en = 0;
713 	write_en = 0;
714 	write_len = 0;
715 	read_len = 0;
716 	block_en = 0;
717 	pec_en = 0;
718 	slave = request->slave & GENMASK(6, 0);
719 	addr = slave << 1;
720 
721 	/* First of all, check whether the HW is idle. */
722 	if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv)))
723 		return -EBUSY;
724 
725 	/* Set first byte. */
726 	data_desc[data_idx++] = addr;
727 
728 	for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
729 		operation = &request->operation[op_idx];
730 		flags = operation->flags;
731 
732 		/*
733 		 * Note that read and write operations might be handled by a
734 		 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
735 		 * then write command byte and set the optional SMBus specific
736 		 * bits such as block_en and pec_en. These bits MUST be
737 		 * submitted by the first operation only.
738 		 */
739 		if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
740 			block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
741 			pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
742 		}
743 
744 		if (flags & MLXBF_I2C_F_WRITE) {
745 			write_en = 1;
746 			write_len += operation->length;
747 			memcpy(data_desc + data_idx,
748 			       operation->buffer, operation->length);
749 			data_idx += operation->length;
750 		}
751 		/*
752 		 * We assume that read operations are performed only once per
753 		 * SMBus transaction. *TBD* protect this statement so it won't
754 		 * be executed twice? or return an error if we try to read more
755 		 * than once?
756 		 */
757 		if (flags & MLXBF_I2C_F_READ) {
758 			read_en = 1;
759 			/* Subtract 1 as required by HW. */
760 			read_len = operation->length - 1;
761 			read_buf = operation->buffer;
762 		}
763 	}
764 
765 	/* Set Master GW data descriptor. */
766 	data_len = write_len + 1; /* Add one byte of the slave address. */
767 	/*
768 	 * Note that data_len cannot be 0. Indeed, the slave address byte
769 	 * must be written to the data registers.
770 	 */
771 	mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
772 				   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
773 
774 	if (write_en) {
775 		ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
776 					 pec_en, 0);
777 		if (ret)
778 			return ret;
779 	}
780 
781 	if (read_en) {
782 		/* Write slave address to Master GW data descriptor. */
783 		mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
784 					   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
785 		ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
786 					 pec_en, 1);
787 		if (!ret) {
788 			/* Get Master GW data descriptor. */
789 			mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
790 					     MLXBF_I2C_MASTER_DATA_DESC_ADDR);
791 
792 			/* Get data from Master GW data descriptor. */
793 			memcpy(read_buf, data_desc, read_len + 1);
794 		}
795 
796 		/*
797 		 * After a read operation the SMBus FSM ps (present state)
798 		 * needs to be 'manually' reset. This should be removed in
799 		 * next tag integration.
800 		 */
801 		writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
802 			priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
803 	}
804 
805 	return ret;
806 }
807 
808 /* I2C SMBus protocols. */
809 
810 static void
811 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
812 			      u8 read)
813 {
814 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
815 
816 	request->operation[0].length = 0;
817 	request->operation[0].flags = MLXBF_I2C_F_WRITE;
818 	request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
819 }
820 
821 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
822 				      u8 *data, bool read, bool pec_check)
823 {
824 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
825 
826 	request->operation[0].length = 1;
827 	request->operation[0].length += pec_check;
828 
829 	request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
830 	request->operation[0].flags |= read ?
831 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
832 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
833 
834 	request->operation[0].buffer = data;
835 }
836 
837 static void
838 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
839 			       u8 *command, u8 *data, bool read, bool pec_check)
840 {
841 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
842 
843 	request->operation[0].length = 1;
844 	request->operation[0].flags =
845 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
846 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
847 	request->operation[0].buffer = command;
848 
849 	request->operation[1].length = 1;
850 	request->operation[1].length += pec_check;
851 	request->operation[1].flags = read ?
852 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
853 	request->operation[1].buffer = data;
854 }
855 
856 static void
857 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
858 			       u8 *command, u8 *data, bool read, bool pec_check)
859 {
860 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
861 
862 	request->operation[0].length = 1;
863 	request->operation[0].flags =
864 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
865 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
866 	request->operation[0].buffer = command;
867 
868 	request->operation[1].length = 2;
869 	request->operation[1].length += pec_check;
870 	request->operation[1].flags = read ?
871 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
872 	request->operation[1].buffer = data;
873 }
874 
875 static void
876 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
877 			       u8 *command, u8 *data, u8 *data_len, bool read,
878 			       bool pec_check)
879 {
880 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
881 
882 	request->operation[0].length = 1;
883 	request->operation[0].flags =
884 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
885 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
886 	request->operation[0].buffer = command;
887 
888 	/*
889 	 * As specified in the standard, the max number of bytes to read/write
890 	 * per block operation is 32 bytes. In Golan code, the controller can
891 	 * read up to 128 bytes and write up to 127 bytes.
892 	 */
893 	request->operation[1].length =
894 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
895 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
896 	request->operation[1].flags = read ?
897 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
898 	/*
899 	 * Skip the first data byte, which corresponds to the number of bytes
900 	 * to read/write.
901 	 */
902 	request->operation[1].buffer = data + 1;
903 
904 	*data_len = request->operation[1].length;
905 
906 	/* Set the number of byte to read. This will be used by userspace. */
907 	if (read)
908 		data[0] = *data_len;
909 }
910 
911 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
912 				       u8 *command, u8 *data, u8 *data_len,
913 				       bool read, bool pec_check)
914 {
915 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
916 
917 	request->operation[0].length = 1;
918 	request->operation[0].flags =
919 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
920 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
921 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
922 	request->operation[0].buffer = command;
923 
924 	request->operation[1].length =
925 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
926 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
927 	request->operation[1].flags = read ?
928 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
929 	request->operation[1].buffer = data + 1;
930 
931 	*data_len = request->operation[1].length;
932 
933 	/* Set the number of bytes to read. This will be used by userspace. */
934 	if (read)
935 		data[0] = *data_len;
936 }
937 
938 static void
939 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
940 				  u8 *command, u8 *data, bool pec_check)
941 {
942 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
943 
944 	request->operation[0].length = 1;
945 	request->operation[0].flags =
946 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
947 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
948 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
949 	request->operation[0].buffer = command;
950 
951 	request->operation[1].length = 2;
952 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
953 	request->operation[1].buffer = data;
954 
955 	request->operation[2].length = 3;
956 	request->operation[2].flags = MLXBF_I2C_F_READ;
957 	request->operation[2].buffer = data;
958 }
959 
960 static void
961 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
962 				      u8 *command, u8 *data, u8 *data_len,
963 				      bool pec_check)
964 {
965 	u32 length;
966 
967 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
968 
969 	request->operation[0].length = 1;
970 	request->operation[0].flags =
971 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
972 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
973 	request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
974 	request->operation[0].buffer = command;
975 
976 	length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
977 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
978 
979 	request->operation[1].length = length - pec_check;
980 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
981 	request->operation[1].buffer = data;
982 
983 	request->operation[2].length = length;
984 	request->operation[2].flags = MLXBF_I2C_F_READ;
985 	request->operation[2].buffer = data;
986 
987 	*data_len = length; /* including PEC byte. */
988 }
989 
990 /* Initialization functions. */
991 
992 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
993 {
994 	return priv->chip->type == type;
995 }
996 
997 static struct mlxbf_i2c_resource *
998 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
999 {
1000 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1001 	struct mlxbf_i2c_resource *res;
1002 	u8 res_idx = 0;
1003 
1004 	for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1005 		res = chip->shared_res[res_idx];
1006 		if (res && res->type == type)
1007 			return res;
1008 	}
1009 
1010 	return NULL;
1011 }
1012 
1013 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1014 				   struct mlxbf_i2c_resource **res,
1015 				   u8 type)
1016 {
1017 	struct mlxbf_i2c_resource *tmp_res;
1018 	struct device *dev = &pdev->dev;
1019 
1020 	if (!res || *res || type >= MLXBF_I2C_END_RES)
1021 		return -EINVAL;
1022 
1023 	tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1024 			       GFP_KERNEL);
1025 	if (!tmp_res)
1026 		return -ENOMEM;
1027 
1028 	tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1029 	if (!tmp_res->params) {
1030 		devm_kfree(dev, tmp_res);
1031 		return -EIO;
1032 	}
1033 
1034 	tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1035 	if (IS_ERR(tmp_res->io)) {
1036 		devm_kfree(dev, tmp_res);
1037 		return PTR_ERR(tmp_res->io);
1038 	}
1039 
1040 	tmp_res->type = type;
1041 
1042 	*res = tmp_res;
1043 
1044 	return 0;
1045 }
1046 
1047 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1048 			       bool minimum)
1049 {
1050 	u64 frequency;
1051 	u32 ticks;
1052 
1053 	/*
1054 	 * Compute ticks as follow:
1055 	 *
1056 	 *           Ticks
1057 	 * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1058 	 *         Frequency
1059 	 */
1060 	frequency = priv->frequency;
1061 	ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1062 	/*
1063 	 * The number of ticks is rounded down and if minimum is equal to 1
1064 	 * then add one tick.
1065 	 */
1066 	if (minimum)
1067 		ticks++;
1068 
1069 	return ticks;
1070 }
1071 
1072 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1073 			       u32 mask, u8 shift)
1074 {
1075 	u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1076 
1077 	return val;
1078 }
1079 
1080 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1081 				  const struct mlxbf_i2c_timings *timings)
1082 {
1083 	u32 timer;
1084 
1085 	timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1086 				    false, MLXBF_I2C_MASK_16,
1087 				    MLXBF_I2C_SHIFT_0);
1088 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1089 				     false, MLXBF_I2C_MASK_16,
1090 				     MLXBF_I2C_SHIFT_16);
1091 	writel(timer, priv->smbus->io +
1092 		MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1093 
1094 	timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1095 				    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1096 	timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1097 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1098 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1099 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1100 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1101 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1102 	writel(timer, priv->smbus->io +
1103 		MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1104 
1105 	timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1106 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1107 	timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1108 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1109 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1110 
1111 	timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1112 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1113 	timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1114 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1115 	writel(timer, priv->smbus->io +
1116 		MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1117 
1118 	timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1119 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1120 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1121 
1122 	timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1123 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1124 	timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1125 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1126 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1127 
1128 	timer = timings->timeout;
1129 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1130 }
1131 
1132 enum mlxbf_i2c_timings_config {
1133 	MLXBF_I2C_TIMING_CONFIG_100KHZ,
1134 	MLXBF_I2C_TIMING_CONFIG_400KHZ,
1135 	MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1136 };
1137 
1138 /*
1139  * Note that the mlxbf_i2c_timings->timeout value is not related to the
1140  * bus frequency, it is impacted by the time it takes the driver to
1141  * complete data transmission before transaction abort.
1142  */
1143 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1144 	[MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1145 		.scl_high = 4810,
1146 		.scl_low = 5000,
1147 		.hold_start = 4000,
1148 		.setup_start = 4800,
1149 		.setup_stop = 4000,
1150 		.setup_data = 250,
1151 		.sda_rise = 50,
1152 		.sda_fall = 50,
1153 		.scl_rise = 50,
1154 		.scl_fall = 50,
1155 		.hold_data = 300,
1156 		.buf = 20000,
1157 		.thigh_max = 5000,
1158 		.timeout = 106500
1159 	},
1160 	[MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1161 		.scl_high = 1011,
1162 		.scl_low = 1300,
1163 		.hold_start = 600,
1164 		.setup_start = 700,
1165 		.setup_stop = 600,
1166 		.setup_data = 100,
1167 		.sda_rise = 50,
1168 		.sda_fall = 50,
1169 		.scl_rise = 50,
1170 		.scl_fall = 50,
1171 		.hold_data = 300,
1172 		.buf = 20000,
1173 		.thigh_max = 5000,
1174 		.timeout = 106500
1175 	},
1176 	[MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1177 		.scl_high = 600,
1178 		.scl_low = 1300,
1179 		.hold_start = 600,
1180 		.setup_start = 600,
1181 		.setup_stop = 600,
1182 		.setup_data = 100,
1183 		.sda_rise = 50,
1184 		.sda_fall = 50,
1185 		.scl_rise = 50,
1186 		.scl_fall = 50,
1187 		.hold_data = 300,
1188 		.buf = 20000,
1189 		.thigh_max = 5000,
1190 		.timeout = 106500
1191 	}
1192 };
1193 
1194 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1195 				  struct mlxbf_i2c_priv *priv)
1196 {
1197 	enum mlxbf_i2c_timings_config config_idx;
1198 	struct device *dev = &pdev->dev;
1199 	u32 config_khz;
1200 
1201 	int ret;
1202 
1203 	ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1204 	if (ret < 0)
1205 		config_khz = MLXBF_I2C_TIMING_100KHZ;
1206 
1207 	switch (config_khz) {
1208 	default:
1209 		/* Default settings is 100 KHz. */
1210 		pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1211 			config_khz);
1212 		fallthrough;
1213 	case MLXBF_I2C_TIMING_100KHZ:
1214 		config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1215 		break;
1216 
1217 	case MLXBF_I2C_TIMING_400KHZ:
1218 		config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1219 		break;
1220 
1221 	case MLXBF_I2C_TIMING_1000KHZ:
1222 		config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1223 		break;
1224 	}
1225 
1226 	mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1227 
1228 	return 0;
1229 }
1230 
1231 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1232 			      struct mlxbf_i2c_priv *priv)
1233 {
1234 	struct mlxbf_i2c_resource *gpio_res;
1235 	struct device *dev = &pdev->dev;
1236 	struct resource	*params;
1237 	resource_size_t size;
1238 
1239 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1240 	if (!gpio_res)
1241 		return -EPERM;
1242 
1243 	/*
1244 	 * The GPIO region in TYU space is shared among I2C busses.
1245 	 * This function MUST be serialized to avoid racing when
1246 	 * claiming the memory region and/or setting up the GPIO.
1247 	 */
1248 	lockdep_assert_held(gpio_res->lock);
1249 
1250 	/* Check whether the memory map exist. */
1251 	if (gpio_res->io)
1252 		return 0;
1253 
1254 	params = gpio_res->params;
1255 	size = resource_size(params);
1256 
1257 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1258 		return -EFAULT;
1259 
1260 	gpio_res->io = devm_ioremap(dev, params->start, size);
1261 	if (!gpio_res->io) {
1262 		devm_release_mem_region(dev, params->start, size);
1263 		return -ENOMEM;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1270 				  struct mlxbf_i2c_priv *priv)
1271 {
1272 	struct mlxbf_i2c_resource *gpio_res;
1273 	struct device *dev = &pdev->dev;
1274 	struct resource	*params;
1275 
1276 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1277 	if (!gpio_res)
1278 		return 0;
1279 
1280 	mutex_lock(gpio_res->lock);
1281 
1282 	if (gpio_res->io) {
1283 		/* Release the GPIO resource. */
1284 		params = gpio_res->params;
1285 		devm_iounmap(dev, gpio_res->io);
1286 		devm_release_mem_region(dev, params->start,
1287 					resource_size(params));
1288 	}
1289 
1290 	mutex_unlock(gpio_res->lock);
1291 
1292 	return 0;
1293 }
1294 
1295 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1296 				 struct mlxbf_i2c_priv *priv)
1297 {
1298 	struct mlxbf_i2c_resource *corepll_res;
1299 	struct device *dev = &pdev->dev;
1300 	struct resource *params;
1301 	resource_size_t size;
1302 
1303 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1304 						    MLXBF_I2C_COREPLL_RES);
1305 	if (!corepll_res)
1306 		return -EPERM;
1307 
1308 	/*
1309 	 * The COREPLL region in TYU space is shared among I2C busses.
1310 	 * This function MUST be serialized to avoid racing when
1311 	 * claiming the memory region.
1312 	 */
1313 	lockdep_assert_held(corepll_res->lock);
1314 
1315 	/* Check whether the memory map exist. */
1316 	if (corepll_res->io)
1317 		return 0;
1318 
1319 	params = corepll_res->params;
1320 	size = resource_size(params);
1321 
1322 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1323 		return -EFAULT;
1324 
1325 	corepll_res->io = devm_ioremap(dev, params->start, size);
1326 	if (!corepll_res->io) {
1327 		devm_release_mem_region(dev, params->start, size);
1328 		return -ENOMEM;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1335 				     struct mlxbf_i2c_priv *priv)
1336 {
1337 	struct mlxbf_i2c_resource *corepll_res;
1338 	struct device *dev = &pdev->dev;
1339 	struct resource *params;
1340 
1341 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1342 						    MLXBF_I2C_COREPLL_RES);
1343 
1344 	mutex_lock(corepll_res->lock);
1345 
1346 	if (corepll_res->io) {
1347 		/* Release the CorePLL resource. */
1348 		params = corepll_res->params;
1349 		devm_iounmap(dev, corepll_res->io);
1350 		devm_release_mem_region(dev, params->start,
1351 					resource_size(params));
1352 	}
1353 
1354 	mutex_unlock(corepll_res->lock);
1355 
1356 	return 0;
1357 }
1358 
1359 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1360 				 struct mlxbf_i2c_priv *priv)
1361 {
1362 	struct mlxbf_i2c_resource *gpio_res;
1363 	struct device *dev = &pdev->dev;
1364 	u32 config_reg;
1365 	int ret;
1366 
1367 	/* This configuration is only needed for BlueField 1. */
1368 	if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1369 		return 0;
1370 
1371 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1372 	if (!gpio_res)
1373 		return -EPERM;
1374 
1375 	/*
1376 	 * The GPIO region in TYU space is shared among I2C busses.
1377 	 * This function MUST be serialized to avoid racing when
1378 	 * claiming the memory region and/or setting up the GPIO.
1379 	 */
1380 
1381 	mutex_lock(gpio_res->lock);
1382 
1383 	ret = mlxbf_i2c_get_gpio(pdev, priv);
1384 	if (ret < 0) {
1385 		dev_err(dev, "Failed to get gpio resource");
1386 		mutex_unlock(gpio_res->lock);
1387 		return ret;
1388 	}
1389 
1390 	/*
1391 	 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1392 	 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1393 	 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1394 	 * instead of HW_OE.
1395 	 * For now, we do not reset the GPIO state when the driver is removed.
1396 	 * First, it is not necessary to disable the bus since we are using
1397 	 * the same busses. Then, some busses might be shared among Linux and
1398 	 * platform firmware; disabling the bus might compromise the system
1399 	 * functionality.
1400 	 */
1401 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1402 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1403 							 config_reg);
1404 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1405 
1406 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1407 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1408 							config_reg);
1409 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1410 
1411 	mutex_unlock(gpio_res->lock);
1412 
1413 	return 0;
1414 }
1415 
1416 static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1417 {
1418 	u64 core_frequency, pad_frequency;
1419 	u8 core_od, core_r;
1420 	u32 corepll_val;
1421 	u16 core_f;
1422 
1423 	pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1424 
1425 	corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1426 
1427 	/* Get Core PLL configuration bits. */
1428 	core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) &
1429 			MLXBF_I2C_COREPLL_CORE_F_TYU_MASK;
1430 	core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) &
1431 			MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK;
1432 	core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) &
1433 			MLXBF_I2C_COREPLL_CORE_R_TYU_MASK;
1434 
1435 	/*
1436 	 * Compute PLL output frequency as follow:
1437 	 *
1438 	 *                                       CORE_F + 1
1439 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1440 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1441 	 *
1442 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1443 	 * and PadFrequency, respectively.
1444 	 */
1445 	core_frequency = pad_frequency * (++core_f);
1446 	core_frequency /= (++core_r) * (++core_od);
1447 
1448 	return core_frequency;
1449 }
1450 
1451 static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1452 {
1453 	u32 corepll_reg1_val, corepll_reg2_val;
1454 	u64 corepll_frequency, pad_frequency;
1455 	u8 core_od, core_r;
1456 	u32 core_f;
1457 
1458 	pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1459 
1460 	corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1461 	corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1462 
1463 	/* Get Core PLL configuration bits */
1464 	core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) &
1465 			MLXBF_I2C_COREPLL_CORE_F_YU_MASK;
1466 	core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) &
1467 			MLXBF_I2C_COREPLL_CORE_R_YU_MASK;
1468 	core_od = rol32(corepll_reg2_val,  MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) &
1469 			MLXBF_I2C_COREPLL_CORE_OD_YU_MASK;
1470 
1471 	/*
1472 	 * Compute PLL output frequency as follow:
1473 	 *
1474 	 *                                     CORE_F / 16384
1475 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1476 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1477 	 *
1478 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1479 	 * and PadFrequency, respectively.
1480 	 */
1481 	corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST;
1482 	corepll_frequency /= (++core_r) * (++core_od);
1483 
1484 	return corepll_frequency;
1485 }
1486 
1487 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1488 					    struct mlxbf_i2c_priv *priv)
1489 {
1490 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1491 	struct mlxbf_i2c_resource *corepll_res;
1492 	struct device *dev = &pdev->dev;
1493 	u64 *freq = &priv->frequency;
1494 	int ret;
1495 
1496 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1497 						    MLXBF_I2C_COREPLL_RES);
1498 	if (!corepll_res)
1499 		return -EPERM;
1500 
1501 	/*
1502 	 * First, check whether the TYU core Clock frequency is set.
1503 	 * The TYU core frequency is the same for all I2C busses; when
1504 	 * the first device gets probed the frequency is determined and
1505 	 * stored into a globally visible variable. So, first of all,
1506 	 * check whether the frequency is already set. Here, we assume
1507 	 * that the frequency is expected to be greater than 0.
1508 	 */
1509 	mutex_lock(corepll_res->lock);
1510 	if (!mlxbf_i2c_corepll_frequency) {
1511 		if (!chip->calculate_freq) {
1512 			mutex_unlock(corepll_res->lock);
1513 			return -EPERM;
1514 		}
1515 
1516 		ret = mlxbf_i2c_get_corepll(pdev, priv);
1517 		if (ret < 0) {
1518 			dev_err(dev, "Failed to get corePLL resource");
1519 			mutex_unlock(corepll_res->lock);
1520 			return ret;
1521 		}
1522 
1523 		mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1524 	}
1525 	mutex_unlock(corepll_res->lock);
1526 
1527 	*freq = mlxbf_i2c_corepll_frequency;
1528 
1529 	return 0;
1530 }
1531 
1532 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1533 {
1534 	u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1535 	u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1536 	bool avail, disabled;
1537 
1538 	disabled = false;
1539 	avail = false;
1540 
1541 	if (!priv)
1542 		return -EPERM;
1543 
1544 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1545 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1546 
1547 	/*
1548 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1549 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1550 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1551 	 */
1552 	for (reg = 0; reg < reg_cnt; reg++) {
1553 		slave_reg = readl(priv->smbus->io +
1554 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1555 		/*
1556 		 * Each register holds 4 slave addresses. So, we have to keep
1557 		 * the byte order consistent with the value read in order to
1558 		 * update the register correctly, if needed.
1559 		 */
1560 		slave_reg_tmp = slave_reg;
1561 		for (byte = 0; byte < 4; byte++) {
1562 			addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1563 
1564 			/*
1565 			 * Mark the first available slave address slot, i.e. its
1566 			 * enabled bit should be unset. This slot might be used
1567 			 * later on to register our slave.
1568 			 */
1569 			if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1570 				avail = true;
1571 				reg_avail = reg;
1572 				byte_avail = byte;
1573 				slave_reg_avail = slave_reg;
1574 			}
1575 
1576 			/*
1577 			 * Parse slave address bytes and check whether the
1578 			 * slave address already exists and it's enabled,
1579 			 * i.e. most significant bit is set.
1580 			 */
1581 			if ((addr_tmp & slave_addr_mask) == addr) {
1582 				if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1583 					return 0;
1584 				disabled = true;
1585 				break;
1586 			}
1587 
1588 			/* Parse next byte. */
1589 			slave_reg_tmp >>= 8;
1590 		}
1591 
1592 		/* Exit the loop if the slave address is found. */
1593 		if (disabled)
1594 			break;
1595 	}
1596 
1597 	if (!avail && !disabled)
1598 		return -EINVAL; /* No room for a new slave address. */
1599 
1600 	if (avail && !disabled) {
1601 		reg = reg_avail;
1602 		byte = byte_avail;
1603 		/* Set the slave address. */
1604 		slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1605 		slave_reg_avail |= addr << (byte * 8);
1606 		slave_reg = slave_reg_avail;
1607 	}
1608 
1609 	/* Enable the slave address and update the register. */
1610 	slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1611 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1612 		reg * 0x4);
1613 
1614 	return 0;
1615 }
1616 
1617 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1618 {
1619 	u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1620 	u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1621 	struct i2c_client *client = priv->slave;
1622 	bool exist;
1623 
1624 	exist = false;
1625 
1626 	addr = client->addr;
1627 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1628 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1629 
1630 	/*
1631 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1632 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1633 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1634 	 */
1635 	for (reg = 0; reg < reg_cnt; reg++) {
1636 		slave_reg = readl(priv->smbus->io +
1637 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1638 
1639 		/* Check whether the address slots are empty. */
1640 		if (slave_reg == 0)
1641 			continue;
1642 
1643 		/*
1644 		 * Each register holds 4 slave addresses. So, we have to keep
1645 		 * the byte order consistent with the value read in order to
1646 		 * update the register correctly, if needed.
1647 		 */
1648 		slave_reg_tmp = slave_reg;
1649 		slave_byte = 0;
1650 		while (slave_reg_tmp != 0) {
1651 			addr_tmp = slave_reg_tmp & slave_addr_mask;
1652 			/*
1653 			 * Parse slave address bytes and check whether the
1654 			 * slave address already exists.
1655 			 */
1656 			if (addr_tmp == addr) {
1657 				exist = true;
1658 				break;
1659 			}
1660 
1661 			/* Parse next byte. */
1662 			slave_reg_tmp >>= 8;
1663 			slave_byte += 1;
1664 		}
1665 
1666 		/* Exit the loop if the slave address is found. */
1667 		if (exist)
1668 			break;
1669 	}
1670 
1671 	if (!exist)
1672 		return 0; /* Slave is not registered, nothing to do. */
1673 
1674 	/* Cleanup the slave address slot. */
1675 	slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1676 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1677 		reg * 0x4);
1678 
1679 	return 0;
1680 }
1681 
1682 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1683 				   struct mlxbf_i2c_priv *priv)
1684 {
1685 	struct mlxbf_i2c_resource *coalesce_res;
1686 	struct resource *params;
1687 	resource_size_t size;
1688 	int ret = 0;
1689 
1690 	/*
1691 	 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1692 	 * resource in the next generations of BlueField.
1693 	 */
1694 	if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1695 		coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1696 						MLXBF_I2C_COALESCE_RES);
1697 		if (!coalesce_res)
1698 			return -EPERM;
1699 
1700 		/*
1701 		 * The Cause Coalesce group in TYU space is shared among
1702 		 * I2C busses. This function MUST be serialized to avoid
1703 		 * racing when claiming the memory region.
1704 		 */
1705 		lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1706 
1707 		/* Check whether the memory map exist. */
1708 		if (coalesce_res->io) {
1709 			priv->coalesce = coalesce_res;
1710 			return 0;
1711 		}
1712 
1713 		params = coalesce_res->params;
1714 		size = resource_size(params);
1715 
1716 		if (!request_mem_region(params->start, size, params->name))
1717 			return -EFAULT;
1718 
1719 		coalesce_res->io = ioremap(params->start, size);
1720 		if (!coalesce_res->io) {
1721 			release_mem_region(params->start, size);
1722 			return -ENOMEM;
1723 		}
1724 
1725 		priv->coalesce = coalesce_res;
1726 
1727 	} else {
1728 		ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1729 					      MLXBF_I2C_COALESCE_RES);
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1736 				      struct mlxbf_i2c_priv *priv)
1737 {
1738 	struct mlxbf_i2c_resource *coalesce_res;
1739 	struct device *dev = &pdev->dev;
1740 	struct resource *params;
1741 	resource_size_t size;
1742 
1743 	coalesce_res = priv->coalesce;
1744 
1745 	if (coalesce_res->io) {
1746 		params = coalesce_res->params;
1747 		size = resource_size(params);
1748 		if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1749 			mutex_lock(coalesce_res->lock);
1750 			iounmap(coalesce_res->io);
1751 			release_mem_region(params->start, size);
1752 			mutex_unlock(coalesce_res->lock);
1753 		} else {
1754 			devm_release_mem_region(dev, params->start, size);
1755 		}
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1762 				struct mlxbf_i2c_priv *priv)
1763 {
1764 	struct device *dev = &pdev->dev;
1765 	u32 int_reg;
1766 	int ret;
1767 
1768 	/* Reset FSM. */
1769 	writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1770 
1771 	/*
1772 	 * Enable slave cause interrupt bits. Drive
1773 	 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1774 	 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1775 	 * masters issue a Read and Write, respectively. But, clear all
1776 	 * interrupts first.
1777 	 */
1778 	writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1779 	int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1780 	int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1781 	writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1782 
1783 	/* Finally, set the 'ready' bit to start handling transactions. */
1784 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1785 
1786 	/* Initialize the cause coalesce resource. */
1787 	ret = mlxbf_i2c_init_coalesce(pdev, priv);
1788 	if (ret < 0) {
1789 		dev_err(dev, "failed to initialize cause coalesce\n");
1790 		return ret;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1797 				   bool *write)
1798 {
1799 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1800 	u32 coalesce0_reg, cause_reg;
1801 	u8 slave_shift, is_set;
1802 
1803 	*write = false;
1804 	*read = false;
1805 
1806 	slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1807 				MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1808 				priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1809 
1810 	coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1811 	is_set = coalesce0_reg & (1 << slave_shift);
1812 
1813 	if (!is_set)
1814 		return false;
1815 
1816 	/* Check the source of the interrupt, i.e. whether a Read or Write. */
1817 	cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1818 	if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1819 		*read = true;
1820 	else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1821 		*write = true;
1822 
1823 	/* Clear cause bits. */
1824 	writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1825 
1826 	return true;
1827 }
1828 
1829 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1830 					    u32 timeout)
1831 {
1832 	u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1833 	u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1834 
1835 	if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1836 		return true;
1837 
1838 	return false;
1839 }
1840 
1841 /* Send byte to 'external' smbus master. */
1842 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1843 {
1844 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1845 	u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1846 	struct i2c_client *slave = priv->slave;
1847 	u32 control32, data32;
1848 	int ret;
1849 
1850 	if (!slave)
1851 		return -EINVAL;
1852 
1853 	addr = 0;
1854 	byte = 0;
1855 	desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1856 
1857 	/*
1858 	 * Read bytes received from the external master. These bytes should
1859 	 * be located in the first data descriptor register of the slave GW.
1860 	 * These bytes are the slave address byte and the internal register
1861 	 * address, if supplied.
1862 	 */
1863 	if (recv_bytes > 0) {
1864 		data32 = ioread32be(priv->smbus->io +
1865 					MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1866 
1867 		/* Parse the received bytes. */
1868 		switch (recv_bytes) {
1869 		case 2:
1870 			byte = (data32 >> 8) & GENMASK(7, 0);
1871 			fallthrough;
1872 		case 1:
1873 			addr = (data32 & GENMASK(7, 0)) >> 1;
1874 		}
1875 
1876 		/* Check whether it's our slave address. */
1877 		if (slave->addr != addr)
1878 			return -EINVAL;
1879 	}
1880 
1881 	/*
1882 	 * I2C read transactions may start by a WRITE followed by a READ.
1883 	 * Indeed, most slave devices would expect the internal address
1884 	 * following the slave address byte. So, write that byte first,
1885 	 * and then, send the requested data bytes to the master.
1886 	 */
1887 	if (recv_bytes > 1) {
1888 		i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1889 		value = byte;
1890 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1891 				      &value);
1892 		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1893 
1894 		if (ret < 0)
1895 			return ret;
1896 	}
1897 
1898 	/*
1899 	 * Now, send data to the master; currently, the driver supports
1900 	 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1901 	 * hardware can send up to 128 bytes per transfer. That is the
1902 	 * size of its data registers.
1903 	 */
1904 	i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1905 
1906 	for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1907 		data_desc[byte_cnt] = value;
1908 		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1909 	}
1910 
1911 	/* Send a stop condition to the backend. */
1912 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1913 
1914 	/* Handle the actual transfer. */
1915 
1916 	/* Set the number of bytes to write to master. */
1917 	write_size = (byte_cnt - 1) & 0x7f;
1918 
1919 	/* Write data to Slave GW data descriptor. */
1920 	mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1921 				   MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1922 
1923 	pec_en = 0; /* Disable PEC since it is not supported. */
1924 
1925 	/* Prepare control word. */
1926 	control32 = MLXBF_I2C_SLAVE_ENABLE;
1927 	control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1928 	control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1929 
1930 	writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1931 
1932 	/*
1933 	 * Wait until the transfer is completed; the driver will wait
1934 	 * until the GW is idle, a cause will rise on fall of GW busy.
1935 	 */
1936 	mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1937 
1938 	/* Release the Slave GW. */
1939 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1940 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1941 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1942 
1943 	return 0;
1944 }
1945 
1946 /* Receive bytes from 'external' smbus master. */
1947 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1948 {
1949 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1950 	struct i2c_client *slave = priv->slave;
1951 	u8 value, byte, addr;
1952 	int ret = 0;
1953 
1954 	if (!slave)
1955 		return -EINVAL;
1956 
1957 	/* Read data from Slave GW data descriptor. */
1958 	mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1959 				  MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1960 
1961 	/* Check whether its our slave address. */
1962 	addr = data_desc[0] >> 1;
1963 	if (slave->addr != addr)
1964 		return -EINVAL;
1965 
1966 	/*
1967 	 * Notify the slave backend; another I2C master wants to write data
1968 	 * to us. This event is sent once the slave address and the write bit
1969 	 * is detected.
1970 	 */
1971 	i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1972 
1973 	/* Send the received data to the slave backend. */
1974 	for (byte = 1; byte < recv_bytes; byte++) {
1975 		value = data_desc[byte];
1976 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1977 				      &value);
1978 		if (ret < 0)
1979 			break;
1980 	}
1981 
1982 	/* Send a stop condition to the backend. */
1983 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1984 
1985 	/* Release the Slave GW. */
1986 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1987 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1988 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1989 
1990 	return ret;
1991 }
1992 
1993 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
1994 {
1995 	struct mlxbf_i2c_priv *priv = ptr;
1996 	bool read, write, irq_is_set;
1997 	u32 rw_bytes_reg;
1998 	u8 recv_bytes;
1999 
2000 	/*
2001 	 * Read TYU interrupt register and determine the source of the
2002 	 * interrupt. Based on the source of the interrupt one of the
2003 	 * following actions are performed:
2004 	 *  - Receive data and send response to master.
2005 	 *  - Send data and release slave GW.
2006 	 *
2007 	 * Handle read/write transaction only. CRmaster and Iarp requests
2008 	 * are ignored for now.
2009 	 */
2010 	irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2011 	if (!irq_is_set || (!read && !write)) {
2012 		/* Nothing to do here, interrupt was not from this device. */
2013 		return IRQ_NONE;
2014 	}
2015 
2016 	/*
2017 	 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2018 	 * bytes from/to master. These are defined by 8-bits each. If the lower
2019 	 * 8 bits are set, then the master expect to read N bytes from the
2020 	 * slave, if the higher 8 bits are sent then the slave expect N bytes
2021 	 * from the master.
2022 	 */
2023 	rw_bytes_reg = readl(priv->smbus->io +
2024 				MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2025 	recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2026 
2027 	/*
2028 	 * For now, the slave supports 128 bytes transfer. Discard remaining
2029 	 * data bytes if the master wrote more than
2030 	 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2031 	 * data descriptor.
2032 	 *
2033 	 * Note that we will never expect to transfer more than 128 bytes; as
2034 	 * specified in the SMBus standard, block transactions cannot exceed
2035 	 * 32 bytes.
2036 	 */
2037 	recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2038 		MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2039 
2040 	if (read)
2041 		mlxbf_smbus_irq_send(priv, recv_bytes);
2042 	else
2043 		mlxbf_smbus_irq_recv(priv, recv_bytes);
2044 
2045 	return IRQ_HANDLED;
2046 }
2047 
2048 /* Return negative errno on error. */
2049 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2050 				unsigned short flags, char read_write,
2051 				u8 command, int size,
2052 				union i2c_smbus_data *data)
2053 {
2054 	struct mlxbf_i2c_smbus_request request = { 0 };
2055 	struct mlxbf_i2c_priv *priv;
2056 	bool read, pec;
2057 	u8 byte_cnt;
2058 
2059 	request.slave = addr;
2060 
2061 	read = (read_write == I2C_SMBUS_READ);
2062 	pec = flags & I2C_FUNC_SMBUS_PEC;
2063 
2064 	switch (size) {
2065 	case I2C_SMBUS_QUICK:
2066 		mlxbf_i2c_smbus_quick_command(&request, read);
2067 		dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2068 		break;
2069 
2070 	case I2C_SMBUS_BYTE:
2071 		mlxbf_i2c_smbus_byte_func(&request,
2072 					  read ? &data->byte : &command, read,
2073 					  pec);
2074 		dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2075 			read ? "read" : "write", addr);
2076 		break;
2077 
2078 	case I2C_SMBUS_BYTE_DATA:
2079 		mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2080 					       read, pec);
2081 		dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2082 			read ? "read" : "write", command, addr);
2083 		break;
2084 
2085 	case I2C_SMBUS_WORD_DATA:
2086 		mlxbf_i2c_smbus_data_word_func(&request, &command,
2087 					       (u8 *)&data->word, read, pec);
2088 		dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2089 			read ? "read" : "write", command, addr);
2090 		break;
2091 
2092 	case I2C_SMBUS_I2C_BLOCK_DATA:
2093 		byte_cnt = data->block[0];
2094 		mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2095 					       &byte_cnt, read, pec);
2096 		dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2097 			read ? "read" : "write", byte_cnt, command, addr);
2098 		break;
2099 
2100 	case I2C_SMBUS_BLOCK_DATA:
2101 		byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2102 		mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2103 					   &byte_cnt, read, pec);
2104 		dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2105 			read ? "read" : "write", byte_cnt, command, addr);
2106 		break;
2107 
2108 	case I2C_FUNC_SMBUS_PROC_CALL:
2109 		mlxbf_i2c_smbus_process_call_func(&request, &command,
2110 						  (u8 *)&data->word, pec);
2111 		dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2112 			command, addr);
2113 		break;
2114 
2115 	case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2116 		byte_cnt = data->block[0];
2117 		mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2118 						      data->block, &byte_cnt,
2119 						      pec);
2120 		dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2121 			byte_cnt, addr);
2122 		break;
2123 
2124 	default:
2125 		dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2126 			size);
2127 		return -EOPNOTSUPP;
2128 	}
2129 
2130 	priv = i2c_get_adapdata(adap);
2131 
2132 	return mlxbf_i2c_smbus_start_transaction(priv, &request);
2133 }
2134 
2135 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2136 {
2137 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2138 	int ret;
2139 
2140 	if (priv->slave)
2141 		return -EBUSY;
2142 
2143 	/*
2144 	 * Do not support ten bit chip address and do not use Packet Error
2145 	 * Checking (PEC).
2146 	 */
2147 	if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2148 		return -EAFNOSUPPORT;
2149 
2150 	ret = mlxbf_slave_enable(priv, slave->addr);
2151 	if (ret < 0)
2152 		return ret;
2153 
2154 	priv->slave = slave;
2155 
2156 	return 0;
2157 }
2158 
2159 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2160 {
2161 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2162 	int ret;
2163 
2164 	WARN_ON(!priv->slave);
2165 
2166 	/* Unregister slave, i.e. disable the slave address in hardware. */
2167 	ret = mlxbf_slave_disable(priv);
2168 	if (ret < 0)
2169 		return ret;
2170 
2171 	priv->slave = NULL;
2172 
2173 	return 0;
2174 }
2175 
2176 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2177 {
2178 	return MLXBF_I2C_FUNC_ALL;
2179 }
2180 
2181 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2182 	[MLXBF_I2C_CHIP_TYPE_1] = {
2183 		.type = MLXBF_I2C_CHIP_TYPE_1,
2184 		.shared_res = {
2185 			[0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2186 			[1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2187 			[2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2188 		},
2189 		.calculate_freq = mlxbf_calculate_freq_from_tyu
2190 	},
2191 	[MLXBF_I2C_CHIP_TYPE_2] = {
2192 		.type = MLXBF_I2C_CHIP_TYPE_2,
2193 		.shared_res = {
2194 			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2195 		},
2196 		.calculate_freq = mlxbf_calculate_freq_from_yu
2197 	}
2198 };
2199 
2200 static const struct i2c_algorithm mlxbf_i2c_algo = {
2201 	.smbus_xfer = mlxbf_i2c_smbus_xfer,
2202 	.functionality = mlxbf_i2c_functionality,
2203 	.reg_slave = mlxbf_i2c_reg_slave,
2204 	.unreg_slave = mlxbf_i2c_unreg_slave,
2205 };
2206 
2207 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2208 	.max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2209 	.max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2210 };
2211 
2212 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2213 	{
2214 		.compatible = "mellanox,i2c-mlxbf1",
2215 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2216 	},
2217 	{
2218 		.compatible = "mellanox,i2c-mlxbf2",
2219 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2220 	},
2221 	{},
2222 };
2223 
2224 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2225 
2226 #ifdef CONFIG_ACPI
2227 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2228 	{ "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2229 	{ "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2230 	{},
2231 };
2232 
2233 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2234 
2235 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2236 {
2237 	const struct acpi_device_id *aid;
2238 	struct acpi_device *adev;
2239 	unsigned long bus_id = 0;
2240 	const char *uid;
2241 	int ret;
2242 
2243 	if (acpi_disabled)
2244 		return -ENOENT;
2245 
2246 	adev = ACPI_COMPANION(dev);
2247 	if (!adev)
2248 		return -ENXIO;
2249 
2250 	aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2251 	if (!aid)
2252 		return -ENODEV;
2253 
2254 	priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2255 
2256 	uid = acpi_device_uid(adev);
2257 	if (!uid || !(*uid)) {
2258 		dev_err(dev, "Cannot retrieve UID\n");
2259 		return -ENODEV;
2260 	}
2261 
2262 	ret = kstrtoul(uid, 0, &bus_id);
2263 	if (!ret)
2264 		priv->bus = bus_id;
2265 
2266 	return ret;
2267 }
2268 #else
2269 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2270 {
2271 	return -ENOENT;
2272 }
2273 #endif /* CONFIG_ACPI */
2274 
2275 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2276 {
2277 	const struct of_device_id *oid;
2278 	int bus_id = -1;
2279 
2280 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2281 		oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2282 		if (!oid)
2283 			return -ENODEV;
2284 
2285 		priv->chip = oid->data;
2286 
2287 		bus_id = of_alias_get_id(dev->of_node, "i2c");
2288 		if (bus_id >= 0)
2289 			priv->bus = bus_id;
2290 	}
2291 
2292 	if (bus_id < 0) {
2293 		dev_err(dev, "Cannot get bus id");
2294 		return bus_id;
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static int mlxbf_i2c_probe(struct platform_device *pdev)
2301 {
2302 	struct device *dev = &pdev->dev;
2303 	struct mlxbf_i2c_priv *priv;
2304 	struct i2c_adapter *adap;
2305 	int irq, ret;
2306 
2307 	priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2308 	if (!priv)
2309 		return -ENOMEM;
2310 
2311 	ret = mlxbf_i2c_acpi_probe(dev, priv);
2312 	if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2313 		ret = mlxbf_i2c_of_probe(dev, priv);
2314 
2315 	if (ret < 0)
2316 		return ret;
2317 
2318 	ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2319 				      MLXBF_I2C_SMBUS_RES);
2320 	if (ret < 0) {
2321 		dev_err(dev, "Cannot fetch smbus resource info");
2322 		return ret;
2323 	}
2324 
2325 	ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2326 				      MLXBF_I2C_MST_CAUSE_RES);
2327 	if (ret < 0) {
2328 		dev_err(dev, "Cannot fetch cause master resource info");
2329 		return ret;
2330 	}
2331 
2332 	ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2333 				      MLXBF_I2C_SLV_CAUSE_RES);
2334 	if (ret < 0) {
2335 		dev_err(dev, "Cannot fetch cause slave resource info");
2336 		return ret;
2337 	}
2338 
2339 	adap = &priv->adap;
2340 	adap->owner = THIS_MODULE;
2341 	adap->class = I2C_CLASS_HWMON;
2342 	adap->algo = &mlxbf_i2c_algo;
2343 	adap->quirks = &mlxbf_i2c_quirks;
2344 	adap->dev.parent = dev;
2345 	adap->dev.of_node = dev->of_node;
2346 	adap->nr = priv->bus;
2347 
2348 	snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2349 	i2c_set_adapdata(adap, priv);
2350 
2351 	/* Read Core PLL frequency. */
2352 	ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2353 	if (ret < 0) {
2354 		dev_err(dev, "cannot get core clock frequency\n");
2355 		/* Set to default value. */
2356 		priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2357 	}
2358 
2359 	/*
2360 	 * Initialize master.
2361 	 * Note that a physical bus might be shared among Linux and firmware
2362 	 * (e.g., ATF). Thus, the bus should be initialized and ready and
2363 	 * bus initialization would be unnecessary. This requires additional
2364 	 * knowledge about physical busses. But, since an extra initialization
2365 	 * does not really hurt, then keep the code as is.
2366 	 */
2367 	ret = mlxbf_i2c_init_master(pdev, priv);
2368 	if (ret < 0) {
2369 		dev_err(dev, "failed to initialize smbus master %d",
2370 			priv->bus);
2371 		return ret;
2372 	}
2373 
2374 	mlxbf_i2c_init_timings(pdev, priv);
2375 
2376 	mlxbf_i2c_init_slave(pdev, priv);
2377 
2378 	irq = platform_get_irq(pdev, 0);
2379 	ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2380 			       IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2381 			       dev_name(dev), priv);
2382 	if (ret < 0) {
2383 		dev_err(dev, "Cannot get irq %d\n", irq);
2384 		return ret;
2385 	}
2386 
2387 	priv->irq = irq;
2388 
2389 	platform_set_drvdata(pdev, priv);
2390 
2391 	ret = i2c_add_numbered_adapter(adap);
2392 	if (ret < 0)
2393 		return ret;
2394 
2395 	mutex_lock(&mlxbf_i2c_bus_lock);
2396 	mlxbf_i2c_bus_count++;
2397 	mutex_unlock(&mlxbf_i2c_bus_lock);
2398 
2399 	return 0;
2400 }
2401 
2402 static int mlxbf_i2c_remove(struct platform_device *pdev)
2403 {
2404 	struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2405 	struct device *dev = &pdev->dev;
2406 	struct resource *params;
2407 
2408 	params = priv->smbus->params;
2409 	devm_release_mem_region(dev, params->start, resource_size(params));
2410 
2411 	params = priv->mst_cause->params;
2412 	devm_release_mem_region(dev, params->start, resource_size(params));
2413 
2414 	params = priv->slv_cause->params;
2415 	devm_release_mem_region(dev, params->start, resource_size(params));
2416 
2417 	/*
2418 	 * Release shared resources. This should be done when releasing
2419 	 * the I2C controller.
2420 	 */
2421 	mutex_lock(&mlxbf_i2c_bus_lock);
2422 	if (--mlxbf_i2c_bus_count == 0) {
2423 		mlxbf_i2c_release_coalesce(pdev, priv);
2424 		mlxbf_i2c_release_corepll(pdev, priv);
2425 		mlxbf_i2c_release_gpio(pdev, priv);
2426 	}
2427 	mutex_unlock(&mlxbf_i2c_bus_lock);
2428 
2429 	devm_free_irq(dev, priv->irq, priv);
2430 
2431 	i2c_del_adapter(&priv->adap);
2432 
2433 	return 0;
2434 }
2435 
2436 static struct platform_driver mlxbf_i2c_driver = {
2437 	.probe = mlxbf_i2c_probe,
2438 	.remove = mlxbf_i2c_remove,
2439 	.driver = {
2440 		.name = "i2c-mlxbf",
2441 		.of_match_table = mlxbf_i2c_dt_ids,
2442 #ifdef CONFIG_ACPI
2443 		.acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2444 #endif /* CONFIG_ACPI  */
2445 	},
2446 };
2447 
2448 static int __init mlxbf_i2c_init(void)
2449 {
2450 	mutex_init(&mlxbf_i2c_coalesce_lock);
2451 	mutex_init(&mlxbf_i2c_corepll_lock);
2452 	mutex_init(&mlxbf_i2c_gpio_lock);
2453 
2454 	mutex_init(&mlxbf_i2c_bus_lock);
2455 
2456 	return platform_driver_register(&mlxbf_i2c_driver);
2457 }
2458 module_init(mlxbf_i2c_init);
2459 
2460 static void __exit mlxbf_i2c_exit(void)
2461 {
2462 	platform_driver_unregister(&mlxbf_i2c_driver);
2463 
2464 	mutex_destroy(&mlxbf_i2c_bus_lock);
2465 
2466 	mutex_destroy(&mlxbf_i2c_gpio_lock);
2467 	mutex_destroy(&mlxbf_i2c_corepll_lock);
2468 	mutex_destroy(&mlxbf_i2c_coalesce_lock);
2469 }
2470 module_exit(mlxbf_i2c_exit);
2471 
2472 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2473 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2474 MODULE_LICENSE("GPL v2");
2475