xref: /openbmc/linux/drivers/i2c/busses/i2c-mlxbf.c (revision 0e407915)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Mellanox BlueField I2C bus driver
4  *
5  *  Copyright (C) 2020 Mellanox Technologies, Ltd.
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/i2c.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/string.h>
21 
22 /* Defines what functionality is present. */
23 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
24 	(I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
25 
26 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
27 	(I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
28 	 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
29 	 I2C_FUNC_SMBUS_PROC_CALL)
30 
31 #define MLXBF_I2C_FUNC_ALL \
32 	(MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
33 	 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
34 
35 #define MLXBF_I2C_SMBUS_MAX        3
36 
37 /* Shared resources info in BlueField platforms. */
38 
39 #define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
40 #define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
41 
42 #define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
43 #define MLXBF_I2C_GPIO_TYU_SIZE        0x100
44 
45 #define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
46 #define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
47 
48 #define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
49 #define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
50 
51 #define MLXBF_I2C_SHARED_RES_MAX       3
52 
53 /*
54  * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
55  * refer to their respective offsets relative to the corresponding
56  * memory-mapped region whose addresses are specified in either the DT or
57  * the ACPI tables or above.
58  */
59 
60 /*
61  * SMBus Master core clock frequency. Timing configurations are
62  * strongly dependent on the core clock frequency of the SMBus
63  * Master. Default value is set to 400MHz.
64  */
65 #define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
66 /* Reference clock for Bluefield - 156 MHz. */
67 #define MLXBF_I2C_PLL_IN_FREQ       156250000ULL
68 
69 /* Constant used to determine the PLL frequency. */
70 #define MLNXBF_I2C_COREPLL_CONST    16384ULL
71 
72 #define MLXBF_I2C_FREQUENCY_1GHZ  1000000000ULL
73 
74 /* PLL registers. */
75 #define MLXBF_I2C_CORE_PLL_REG1         0x4
76 #define MLXBF_I2C_CORE_PLL_REG2         0x8
77 
78 /* OR cause register. */
79 #define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
80 #define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
81 
82 /* Arbiter Cause Register. */
83 #define MLXBF_I2C_CAUSE_ARBITER      0x1c
84 
85 /*
86  * Cause Status flags. Note that those bits might be considered
87  * as interrupt enabled bits.
88  */
89 
90 /* Transaction ended with STOP. */
91 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
92 /* Master arbitration lost. */
93 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
94 /* Unexpected start detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
96 /* Unexpected stop detected. */
97 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
98 /* Wait for transfer continuation. */
99 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
100 /* Failed to generate STOP. */
101 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
102 /* Failed to generate START. */
103 #define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
104 /* Clock toggle completed. */
105 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
106 /* Transfer timeout occurred. */
107 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
108 /* Master busy bit reset. */
109 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
110 
111 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
112 
113 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
114 	(MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
115 	 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
116 	 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
117 	 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
118 	 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
119 	 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
120 	 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
121 
122 /*
123  * Slave cause status flags. Note that those bits might be considered
124  * as interrupt enabled bits.
125  */
126 
127 /* Write transaction received successfully. */
128 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
129 /* Read transaction received, waiting for response. */
130 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
131 /* Slave busy bit reset. */
132 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
133 
134 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK     GENMASK(20, 0)
135 
136 /* Cause coalesce registers. */
137 #define MLXBF_I2C_CAUSE_COALESCE_0        0x00
138 #define MLXBF_I2C_CAUSE_COALESCE_1        0x04
139 #define MLXBF_I2C_CAUSE_COALESCE_2        0x08
140 
141 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   MLXBF_I2C_SMBUS_MAX
142 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
143 
144 /* Functional enable register. */
145 #define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
146 /* Force OE enable register. */
147 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
148 /*
149  * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
150  * SDA/SCL lines:
151  *
152  *  SMBUS GW0 -> bits[26:25]
153  *  SMBUS GW1 -> bits[28:27]
154  *  SMBUS GW2 -> bits[30:29]
155  */
156 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
157 
158 /* Note that gw_id can be 0,1 or 2. */
159 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
160 	(0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
161 
162 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
163 	((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
164 
165 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
166 	((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
167 
168 /* SMBus timing parameters. */
169 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
170 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
171 #define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
172 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
173 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
174 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
175 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
176 
177 /*
178  * Defines SMBus operating frequency and core clock frequency.
179  * According to ADB files, default values are compliant to 100KHz SMBus
180  * @ 400MHz core clock. The driver should be able to calculate core
181  * frequency based on PLL parameters.
182  */
183 #define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
184 
185 /* Core PLL TYU configuration. */
186 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(15, 3)
187 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(19, 16)
188 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(25, 20)
189 
190 /* Core PLL YU configuration. */
191 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
192 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
193 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(31, 26)
194 
195 
196 /* Core PLL frequency. */
197 static u64 mlxbf_i2c_corepll_frequency;
198 
199 /* SMBus Master GW. */
200 #define MLXBF_I2C_SMBUS_MASTER_GW     0x200
201 /* Number of bytes received and sent. */
202 #define MLXBF_I2C_SMBUS_RS_BYTES      0x300
203 /* Packet error check (PEC) value. */
204 #define MLXBF_I2C_SMBUS_MASTER_PEC    0x304
205 /* Status bits (ACK/NACK/FW Timeout). */
206 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
207 /* SMbus Master Finite State Machine. */
208 #define MLXBF_I2C_SMBUS_MASTER_FSM    0x310
209 
210 /*
211  * When enabled, the master will issue a stop condition in case of
212  * timeout while waiting for FW response.
213  */
214 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
215 
216 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
217 #define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
218 #define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
219 #define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
220 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
221 #define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
222 #define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
223 
224 #define MLXBF_I2C_MASTER_ENABLE \
225 	(MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
226 	 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
227 
228 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
229 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
230 
231 #define MLXBF_I2C_MASTER_ENABLE_READ \
232 	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
233 
234 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address shift. */
235 #define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes shift. */
236 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte shift. */
237 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Parse expected bytes shift. */
238 #define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes shift. */
239 
240 /* SMBus master GW Data descriptor. */
241 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x280
242 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
243 
244 /* Maximum bytes to read/write per SMBus transaction. */
245 #define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
246 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
247 
248 /* All bytes were transmitted. */
249 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
250 /* NACK received. */
251 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
252 /* Slave's byte count >128 bytes. */
253 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
254 /* Timeout occurred. */
255 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
256 
257 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
258 
259 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
260 	(MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
261 	 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
262 	 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
263 
264 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
265 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
266 
267 /* SMBus slave GW. */
268 #define MLXBF_I2C_SMBUS_SLAVE_GW              0x400
269 /* Number of bytes received and sent from/to master. */
270 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
271 /* Packet error check (PEC) value. */
272 #define MLXBF_I2C_SMBUS_SLAVE_PEC             0x504
273 /* SMBus slave Finite State Machine (FSM). */
274 #define MLXBF_I2C_SMBUS_SLAVE_FSM             0x510
275 /*
276  * Should be set when all raised causes handled, and cleared by HW on
277  * every new cause.
278  */
279 #define MLXBF_I2C_SMBUS_SLAVE_READY           0x52c
280 
281 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
282 #define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
283 #define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
284 
285 #define MLXBF_I2C_SLAVE_ENABLE \
286 	(MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
287 
288 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
289 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
290 
291 /* SMBus slave GW Data descriptor. */
292 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x480
293 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
294 
295 /* SMbus slave configuration registers. */
296 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x514
297 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
298 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     7
299 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
300 
301 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
302 	((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
303 
304 /*
305  * Timeout is given in microsends. Note also that timeout handling is not
306  * exact.
307  */
308 #define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
309 
310 /* Encapsulates timing parameters. */
311 struct mlxbf_i2c_timings {
312 	u16 scl_high;		/* Clock high period. */
313 	u16 scl_low;		/* Clock low period. */
314 	u8 sda_rise;		/* Data rise time. */
315 	u8 sda_fall;		/* Data fall time. */
316 	u8 scl_rise;		/* Clock rise time. */
317 	u8 scl_fall;		/* Clock fall time. */
318 	u16 hold_start;		/* Hold time after (REPEATED) START. */
319 	u16 hold_data;		/* Data hold time. */
320 	u16 setup_start;	/* REPEATED START condition setup time. */
321 	u16 setup_stop;		/* STOP condition setup time. */
322 	u16 setup_data;		/* Data setup time. */
323 	u16 pad;		/* Padding. */
324 	u16 buf;		/* Bus free time between STOP and START. */
325 	u16 thigh_max;		/* Thigh max. */
326 	u32 timeout;		/* Detect clock low timeout. */
327 };
328 
329 enum {
330 	MLXBF_I2C_F_READ = BIT(0),
331 	MLXBF_I2C_F_WRITE = BIT(1),
332 	MLXBF_I2C_F_NORESTART = BIT(3),
333 	MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
334 	MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
335 	MLXBF_I2C_F_SMBUS_PEC = BIT(6),
336 	MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
337 };
338 
339 struct mlxbf_i2c_smbus_operation {
340 	u32 flags;
341 	u32 length; /* Buffer length in bytes. */
342 	u8 *buffer;
343 };
344 
345 #define MLXBF_I2C_SMBUS_OP_CNT_1	1
346 #define MLXBF_I2C_SMBUS_OP_CNT_2	2
347 #define MLXBF_I2C_SMBUS_OP_CNT_3	3
348 #define MLXBF_I2C_SMBUS_MAX_OP_CNT	MLXBF_I2C_SMBUS_OP_CNT_3
349 
350 struct mlxbf_i2c_smbus_request {
351 	u8 slave;
352 	u8 operation_cnt;
353 	struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
354 };
355 
356 struct mlxbf_i2c_resource {
357 	void __iomem *io;
358 	struct resource *params;
359 	struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
360 	u8 type;
361 };
362 
363 /* List of chip resources that are being accessed by the driver. */
364 enum {
365 	MLXBF_I2C_SMBUS_RES,
366 	MLXBF_I2C_MST_CAUSE_RES,
367 	MLXBF_I2C_SLV_CAUSE_RES,
368 	MLXBF_I2C_COALESCE_RES,
369 	MLXBF_I2C_COREPLL_RES,
370 	MLXBF_I2C_GPIO_RES,
371 	MLXBF_I2C_END_RES,
372 };
373 
374 /* Helper macro to define an I2C resource parameters. */
375 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
376 	{ \
377 		.start = (addr), \
378 		.end = (addr) + (size) - 1, \
379 		.name = (str) \
380 	}
381 
382 static struct resource mlxbf_i2c_coalesce_tyu_params =
383 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
384 				     MLXBF_I2C_COALESCE_TYU_SIZE,
385 				     "COALESCE_MEM");
386 static struct resource mlxbf_i2c_corepll_tyu_params =
387 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
388 				     MLXBF_I2C_COREPLL_TYU_SIZE,
389 				     "COREPLL_MEM");
390 static struct resource mlxbf_i2c_corepll_yu_params =
391 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
392 				     MLXBF_I2C_COREPLL_YU_SIZE,
393 				     "COREPLL_MEM");
394 static struct resource mlxbf_i2c_gpio_tyu_params =
395 		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
396 				     MLXBF_I2C_GPIO_TYU_SIZE,
397 				     "GPIO_MEM");
398 
399 static struct mutex mlxbf_i2c_coalesce_lock;
400 static struct mutex mlxbf_i2c_corepll_lock;
401 static struct mutex mlxbf_i2c_gpio_lock;
402 
403 /* Mellanox BlueField chip type. */
404 enum mlxbf_i2c_chip_type {
405 	MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
406 	MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
407 };
408 
409 struct mlxbf_i2c_chip_info {
410 	enum mlxbf_i2c_chip_type type;
411 	/* Chip shared resources that are being used by the I2C controller. */
412 	struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
413 
414 	/* Callback to calculate the core PLL frequency. */
415 	u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
416 };
417 
418 struct mlxbf_i2c_priv {
419 	const struct mlxbf_i2c_chip_info *chip;
420 	struct i2c_adapter adap;
421 	struct mlxbf_i2c_resource *smbus;
422 	struct mlxbf_i2c_resource *mst_cause;
423 	struct mlxbf_i2c_resource *slv_cause;
424 	struct mlxbf_i2c_resource *coalesce;
425 	u64 frequency; /* Core frequency in Hz. */
426 	int bus; /* Physical bus identifier. */
427 	int irq;
428 	struct i2c_client *slave;
429 };
430 
431 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
432 	[MLXBF_I2C_CHIP_TYPE_1] = {
433 		.params = &mlxbf_i2c_coalesce_tyu_params,
434 		.lock = &mlxbf_i2c_coalesce_lock,
435 		.type = MLXBF_I2C_COALESCE_RES
436 	},
437 	{}
438 };
439 
440 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
441 	[MLXBF_I2C_CHIP_TYPE_1] = {
442 		.params = &mlxbf_i2c_corepll_tyu_params,
443 		.lock = &mlxbf_i2c_corepll_lock,
444 		.type = MLXBF_I2C_COREPLL_RES
445 	},
446 	[MLXBF_I2C_CHIP_TYPE_2] = {
447 		.params = &mlxbf_i2c_corepll_yu_params,
448 		.lock = &mlxbf_i2c_corepll_lock,
449 		.type = MLXBF_I2C_COREPLL_RES,
450 	}
451 };
452 
453 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
454 	[MLXBF_I2C_CHIP_TYPE_1] = {
455 		.params = &mlxbf_i2c_gpio_tyu_params,
456 		.lock = &mlxbf_i2c_gpio_lock,
457 		.type = MLXBF_I2C_GPIO_RES
458 	},
459 	{}
460 };
461 
462 static u8 mlxbf_i2c_bus_count;
463 
464 static struct mutex mlxbf_i2c_bus_lock;
465 
466 /* Polling frequency in microseconds. */
467 #define MLXBF_I2C_POLL_FREQ_IN_USEC        200
468 
469 #define MLXBF_I2C_SHIFT_0   0
470 #define MLXBF_I2C_SHIFT_8   8
471 #define MLXBF_I2C_SHIFT_16  16
472 #define MLXBF_I2C_SHIFT_24  24
473 
474 #define MLXBF_I2C_MASK_8    GENMASK(7, 0)
475 #define MLXBF_I2C_MASK_16   GENMASK(15, 0)
476 
477 /*
478  * Function to poll a set of bits at a specific address; it checks whether
479  * the bits are equal to zero when eq_zero is set to 'true', and not equal
480  * to zero when eq_zero is set to 'false'.
481  * Note that the timeout is given in microseconds.
482  */
483 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
484 			    bool eq_zero, u32  timeout)
485 {
486 	u32 bits;
487 
488 	timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
489 
490 	do {
491 		bits = readl(io + addr) & mask;
492 		if (eq_zero ? bits == 0 : bits != 0)
493 			return eq_zero ? 1 : bits;
494 		udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
495 	} while (timeout-- != 0);
496 
497 	return 0;
498 }
499 
500 /*
501  * SW must make sure that the SMBus Master GW is idle before starting
502  * a transaction. Accordingly, this function polls the Master FSM stop
503  * bit; it returns false when the bit is asserted, true if not.
504  */
505 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
506 {
507 	u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
508 	u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
509 	u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
510 
511 	if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
512 		return true;
513 
514 	return false;
515 }
516 
517 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
518 						u32 cause_status)
519 {
520 	/*
521 	 * When transaction ended with STOP, all bytes were transmitted,
522 	 * and no NACK received, then the transaction ended successfully.
523 	 * On the other hand, when the GW is configured with the stop bit
524 	 * de-asserted then the SMBus expects the following GW configuration
525 	 * for transfer continuation.
526 	 */
527 	if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
528 	    ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
529 	     (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
530 	     !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
531 		return true;
532 
533 	return false;
534 }
535 
536 /*
537  * Poll SMBus master status and return transaction status,
538  * i.e. whether succeeded or failed. I2C and SMBus fault codes
539  * are returned as negative numbers from most calls, with zero
540  * or some positive number indicating a non-fault return.
541  */
542 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
543 {
544 	u32 master_status_bits;
545 	u32 cause_status_bits;
546 
547 	/*
548 	 * GW busy bit is raised by the driver and cleared by the HW
549 	 * when the transaction is completed. The busy bit is a good
550 	 * indicator of transaction status. So poll the busy bit, and
551 	 * then read the cause and master status bits to determine if
552 	 * errors occurred during the transaction.
553 	 */
554 	mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
555 			 MLXBF_I2C_MASTER_BUSY_BIT, true,
556 			 MLXBF_I2C_SMBUS_TIMEOUT);
557 
558 	/* Read cause status bits. */
559 	cause_status_bits = readl(priv->mst_cause->io +
560 					MLXBF_I2C_CAUSE_ARBITER);
561 	cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
562 
563 	/*
564 	 * Parse both Cause and Master GW bits, then return transaction status.
565 	 */
566 
567 	master_status_bits = readl(priv->smbus->io +
568 					MLXBF_I2C_SMBUS_MASTER_STATUS);
569 	master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
570 
571 	if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
572 						cause_status_bits))
573 		return 0;
574 
575 	/*
576 	 * In case of timeout on GW busy, the ISR will clear busy bit but
577 	 * transaction ended bits cause will not be set so the transaction
578 	 * fails. Then, we must check Master GW status bits.
579 	 */
580 	if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
581 	    (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
582 				  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
583 		return -EIO;
584 
585 	if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
586 		return -EAGAIN;
587 
588 	return -ETIMEDOUT;
589 }
590 
591 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
592 				       const u8 *data, u8 length, u32 addr)
593 {
594 	u8 offset, aligned_length;
595 	u32 data32;
596 
597 	aligned_length = round_up(length, 4);
598 
599 	/*
600 	 * Copy data bytes from 4-byte aligned source buffer.
601 	 * Data copied to the Master GW Data Descriptor MUST be shifted
602 	 * left so the data starts at the MSB of the descriptor registers
603 	 * as required by the underlying hardware. Enable byte swapping
604 	 * when writing data bytes to the 32 * 32-bit HW Data registers
605 	 * a.k.a Master GW Data Descriptor.
606 	 */
607 	for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
608 		data32 = *((u32 *)(data + offset));
609 		iowrite32be(data32, priv->smbus->io + addr + offset);
610 	}
611 }
612 
613 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
614 				      u8 *data, u8 length, u32 addr)
615 {
616 	u32 data32, mask;
617 	u8 byte, offset;
618 
619 	mask = sizeof(u32) - 1;
620 
621 	/*
622 	 * Data bytes in the Master GW Data Descriptor are shifted left
623 	 * so the data starts at the MSB of the descriptor registers as
624 	 * set by the underlying hardware. Enable byte swapping while
625 	 * reading data bytes from the 32 * 32-bit HW Data registers
626 	 * a.k.a Master GW Data Descriptor.
627 	 */
628 
629 	for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
630 		data32 = ioread32be(priv->smbus->io + addr + offset);
631 		*((u32 *)(data + offset)) = data32;
632 	}
633 
634 	if (!(length & mask))
635 		return;
636 
637 	data32 = ioread32be(priv->smbus->io + addr + offset);
638 
639 	for (byte = 0; byte < (length & mask); byte++) {
640 		data[offset + byte] = data32 & GENMASK(7, 0);
641 		data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
642 	}
643 }
644 
645 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
646 				  u8 len, u8 block_en, u8 pec_en, bool read)
647 {
648 	u32 command;
649 
650 	/* Set Master GW control word. */
651 	if (read) {
652 		command = MLXBF_I2C_MASTER_ENABLE_READ;
653 		command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
654 	} else {
655 		command = MLXBF_I2C_MASTER_ENABLE_WRITE;
656 		command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
657 	}
658 	command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
659 	command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
660 	command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
661 
662 	/* Clear status bits. */
663 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
664 	/* Set the cause data. */
665 	writel(~0x0, priv->mst_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
666 	/* Zero PEC byte. */
667 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
668 	/* Zero byte count. */
669 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
670 
671 	/* GW activation. */
672 	writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
673 
674 	/*
675 	 * Poll master status and check status bits. An ACK is sent when
676 	 * completing writing data to the bus (Master 'byte_count_done' bit
677 	 * is set to 1).
678 	 */
679 	return mlxbf_i2c_smbus_check_status(priv);
680 }
681 
682 static int
683 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
684 				  struct mlxbf_i2c_smbus_request *request)
685 {
686 	u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
687 	u8 op_idx, data_idx, data_len, write_len, read_len;
688 	struct mlxbf_i2c_smbus_operation *operation;
689 	u8 read_en, write_en, block_en, pec_en;
690 	u8 slave, flags, addr;
691 	u8 *read_buf;
692 	int ret = 0;
693 
694 	if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
695 		return -EINVAL;
696 
697 	read_buf = NULL;
698 	data_idx = 0;
699 	read_en = 0;
700 	write_en = 0;
701 	write_len = 0;
702 	read_len = 0;
703 	block_en = 0;
704 	pec_en = 0;
705 	slave = request->slave & GENMASK(6, 0);
706 	addr = slave << 1;
707 
708 	/* First of all, check whether the HW is idle. */
709 	if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv)))
710 		return -EBUSY;
711 
712 	/* Set first byte. */
713 	data_desc[data_idx++] = addr;
714 
715 	for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
716 		operation = &request->operation[op_idx];
717 		flags = operation->flags;
718 
719 		/*
720 		 * Note that read and write operations might be handled by a
721 		 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
722 		 * then write command byte and set the optional SMBus specific
723 		 * bits such as block_en and pec_en. These bits MUST be
724 		 * submitted by the first operation only.
725 		 */
726 		if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
727 			block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
728 			pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
729 		}
730 
731 		if (flags & MLXBF_I2C_F_WRITE) {
732 			write_en = 1;
733 			write_len += operation->length;
734 			if (data_idx + operation->length >
735 					MLXBF_I2C_MASTER_DATA_DESC_SIZE)
736 				return -ENOBUFS;
737 			memcpy(data_desc + data_idx,
738 			       operation->buffer, operation->length);
739 			data_idx += operation->length;
740 		}
741 		/*
742 		 * We assume that read operations are performed only once per
743 		 * SMBus transaction. *TBD* protect this statement so it won't
744 		 * be executed twice? or return an error if we try to read more
745 		 * than once?
746 		 */
747 		if (flags & MLXBF_I2C_F_READ) {
748 			read_en = 1;
749 			/* Subtract 1 as required by HW. */
750 			read_len = operation->length - 1;
751 			read_buf = operation->buffer;
752 		}
753 	}
754 
755 	/* Set Master GW data descriptor. */
756 	data_len = write_len + 1; /* Add one byte of the slave address. */
757 	/*
758 	 * Note that data_len cannot be 0. Indeed, the slave address byte
759 	 * must be written to the data registers.
760 	 */
761 	mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
762 				   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
763 
764 	if (write_en) {
765 		ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
766 					 pec_en, 0);
767 		if (ret)
768 			return ret;
769 	}
770 
771 	if (read_en) {
772 		/* Write slave address to Master GW data descriptor. */
773 		mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
774 					   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
775 		ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
776 					 pec_en, 1);
777 		if (!ret) {
778 			/* Get Master GW data descriptor. */
779 			mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
780 					     MLXBF_I2C_MASTER_DATA_DESC_ADDR);
781 
782 			/* Get data from Master GW data descriptor. */
783 			memcpy(read_buf, data_desc, read_len + 1);
784 		}
785 
786 		/*
787 		 * After a read operation the SMBus FSM ps (present state)
788 		 * needs to be 'manually' reset. This should be removed in
789 		 * next tag integration.
790 		 */
791 		writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
792 			priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
793 	}
794 
795 	return ret;
796 }
797 
798 /* I2C SMBus protocols. */
799 
800 static void
801 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
802 			      u8 read)
803 {
804 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
805 
806 	request->operation[0].length = 0;
807 	request->operation[0].flags = MLXBF_I2C_F_WRITE;
808 	request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
809 }
810 
811 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
812 				      u8 *data, bool read, bool pec_check)
813 {
814 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
815 
816 	request->operation[0].length = 1;
817 	request->operation[0].length += pec_check;
818 
819 	request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
820 	request->operation[0].flags |= read ?
821 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
822 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
823 
824 	request->operation[0].buffer = data;
825 }
826 
827 static void
828 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
829 			       u8 *command, u8 *data, bool read, bool pec_check)
830 {
831 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
832 
833 	request->operation[0].length = 1;
834 	request->operation[0].flags =
835 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
836 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
837 	request->operation[0].buffer = command;
838 
839 	request->operation[1].length = 1;
840 	request->operation[1].length += pec_check;
841 	request->operation[1].flags = read ?
842 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
843 	request->operation[1].buffer = data;
844 }
845 
846 static void
847 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
848 			       u8 *command, u8 *data, bool read, bool pec_check)
849 {
850 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
851 
852 	request->operation[0].length = 1;
853 	request->operation[0].flags =
854 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
855 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
856 	request->operation[0].buffer = command;
857 
858 	request->operation[1].length = 2;
859 	request->operation[1].length += pec_check;
860 	request->operation[1].flags = read ?
861 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
862 	request->operation[1].buffer = data;
863 }
864 
865 static void
866 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
867 			       u8 *command, u8 *data, u8 *data_len, bool read,
868 			       bool pec_check)
869 {
870 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
871 
872 	request->operation[0].length = 1;
873 	request->operation[0].flags =
874 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
875 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
876 	request->operation[0].buffer = command;
877 
878 	/*
879 	 * As specified in the standard, the max number of bytes to read/write
880 	 * per block operation is 32 bytes. In Golan code, the controller can
881 	 * read up to 128 bytes and write up to 127 bytes.
882 	 */
883 	request->operation[1].length =
884 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
885 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
886 	request->operation[1].flags = read ?
887 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
888 	/*
889 	 * Skip the first data byte, which corresponds to the number of bytes
890 	 * to read/write.
891 	 */
892 	request->operation[1].buffer = data + 1;
893 
894 	*data_len = request->operation[1].length;
895 
896 	/* Set the number of byte to read. This will be used by userspace. */
897 	if (read)
898 		data[0] = *data_len;
899 }
900 
901 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
902 				       u8 *command, u8 *data, u8 *data_len,
903 				       bool read, bool pec_check)
904 {
905 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
906 
907 	request->operation[0].length = 1;
908 	request->operation[0].flags =
909 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
910 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
911 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
912 	request->operation[0].buffer = command;
913 
914 	request->operation[1].length =
915 	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
916 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
917 	request->operation[1].flags = read ?
918 				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
919 	request->operation[1].buffer = data + 1;
920 
921 	*data_len = request->operation[1].length;
922 
923 	/* Set the number of bytes to read. This will be used by userspace. */
924 	if (read)
925 		data[0] = *data_len;
926 }
927 
928 static void
929 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
930 				  u8 *command, u8 *data, bool pec_check)
931 {
932 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
933 
934 	request->operation[0].length = 1;
935 	request->operation[0].flags =
936 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
937 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
938 	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
939 	request->operation[0].buffer = command;
940 
941 	request->operation[1].length = 2;
942 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
943 	request->operation[1].buffer = data;
944 
945 	request->operation[2].length = 3;
946 	request->operation[2].flags = MLXBF_I2C_F_READ;
947 	request->operation[2].buffer = data;
948 }
949 
950 static void
951 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
952 				      u8 *command, u8 *data, u8 *data_len,
953 				      bool pec_check)
954 {
955 	u32 length;
956 
957 	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
958 
959 	request->operation[0].length = 1;
960 	request->operation[0].flags =
961 			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
962 	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
963 	request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
964 	request->operation[0].buffer = command;
965 
966 	length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
967 	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
968 
969 	request->operation[1].length = length - pec_check;
970 	request->operation[1].flags = MLXBF_I2C_F_WRITE;
971 	request->operation[1].buffer = data;
972 
973 	request->operation[2].length = length;
974 	request->operation[2].flags = MLXBF_I2C_F_READ;
975 	request->operation[2].buffer = data;
976 
977 	*data_len = length; /* including PEC byte. */
978 }
979 
980 /* Initialization functions. */
981 
982 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
983 {
984 	return priv->chip->type == type;
985 }
986 
987 static struct mlxbf_i2c_resource *
988 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
989 {
990 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
991 	struct mlxbf_i2c_resource *res;
992 	u8 res_idx = 0;
993 
994 	for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
995 		res = chip->shared_res[res_idx];
996 		if (res && res->type == type)
997 			return res;
998 	}
999 
1000 	return NULL;
1001 }
1002 
1003 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1004 				   struct mlxbf_i2c_resource **res,
1005 				   u8 type)
1006 {
1007 	struct mlxbf_i2c_resource *tmp_res;
1008 	struct device *dev = &pdev->dev;
1009 
1010 	if (!res || *res || type >= MLXBF_I2C_END_RES)
1011 		return -EINVAL;
1012 
1013 	tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1014 			       GFP_KERNEL);
1015 	if (!tmp_res)
1016 		return -ENOMEM;
1017 
1018 	tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1019 	if (!tmp_res->params) {
1020 		devm_kfree(dev, tmp_res);
1021 		return -EIO;
1022 	}
1023 
1024 	tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1025 	if (IS_ERR(tmp_res->io)) {
1026 		devm_kfree(dev, tmp_res);
1027 		return PTR_ERR(tmp_res->io);
1028 	}
1029 
1030 	tmp_res->type = type;
1031 
1032 	*res = tmp_res;
1033 
1034 	return 0;
1035 }
1036 
1037 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1038 			       bool minimum)
1039 {
1040 	u64 frequency;
1041 	u32 ticks;
1042 
1043 	/*
1044 	 * Compute ticks as follow:
1045 	 *
1046 	 *           Ticks
1047 	 * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1048 	 *         Frequency
1049 	 */
1050 	frequency = priv->frequency;
1051 	ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1052 	/*
1053 	 * The number of ticks is rounded down and if minimum is equal to 1
1054 	 * then add one tick.
1055 	 */
1056 	if (minimum)
1057 		ticks++;
1058 
1059 	return ticks;
1060 }
1061 
1062 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1063 			       u32 mask, u8 shift)
1064 {
1065 	u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1066 
1067 	return val;
1068 }
1069 
1070 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1071 				  const struct mlxbf_i2c_timings *timings)
1072 {
1073 	u32 timer;
1074 
1075 	timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1076 				    false, MLXBF_I2C_MASK_16,
1077 				    MLXBF_I2C_SHIFT_0);
1078 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1079 				     false, MLXBF_I2C_MASK_16,
1080 				     MLXBF_I2C_SHIFT_16);
1081 	writel(timer, priv->smbus->io +
1082 		MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1083 
1084 	timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1085 				    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1086 	timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1087 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1088 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1089 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1090 	timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1091 				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1092 	writel(timer, priv->smbus->io +
1093 		MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1094 
1095 	timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1096 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1097 	timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1098 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1099 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1100 
1101 	timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1102 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1103 	timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1104 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1105 	writel(timer, priv->smbus->io +
1106 		MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1107 
1108 	timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1109 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1110 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1111 
1112 	timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1113 				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1114 	timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1115 				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1116 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1117 
1118 	timer = timings->timeout;
1119 	writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1120 }
1121 
1122 enum mlxbf_i2c_timings_config {
1123 	MLXBF_I2C_TIMING_CONFIG_100KHZ,
1124 	MLXBF_I2C_TIMING_CONFIG_400KHZ,
1125 	MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1126 };
1127 
1128 /*
1129  * Note that the mlxbf_i2c_timings->timeout value is not related to the
1130  * bus frequency, it is impacted by the time it takes the driver to
1131  * complete data transmission before transaction abort.
1132  */
1133 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1134 	[MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1135 		.scl_high = 4810,
1136 		.scl_low = 5000,
1137 		.hold_start = 4000,
1138 		.setup_start = 4800,
1139 		.setup_stop = 4000,
1140 		.setup_data = 250,
1141 		.sda_rise = 50,
1142 		.sda_fall = 50,
1143 		.scl_rise = 50,
1144 		.scl_fall = 50,
1145 		.hold_data = 300,
1146 		.buf = 20000,
1147 		.thigh_max = 5000,
1148 		.timeout = 106500
1149 	},
1150 	[MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1151 		.scl_high = 1011,
1152 		.scl_low = 1300,
1153 		.hold_start = 600,
1154 		.setup_start = 700,
1155 		.setup_stop = 600,
1156 		.setup_data = 100,
1157 		.sda_rise = 50,
1158 		.sda_fall = 50,
1159 		.scl_rise = 50,
1160 		.scl_fall = 50,
1161 		.hold_data = 300,
1162 		.buf = 20000,
1163 		.thigh_max = 5000,
1164 		.timeout = 106500
1165 	},
1166 	[MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1167 		.scl_high = 600,
1168 		.scl_low = 1300,
1169 		.hold_start = 600,
1170 		.setup_start = 600,
1171 		.setup_stop = 600,
1172 		.setup_data = 100,
1173 		.sda_rise = 50,
1174 		.sda_fall = 50,
1175 		.scl_rise = 50,
1176 		.scl_fall = 50,
1177 		.hold_data = 300,
1178 		.buf = 20000,
1179 		.thigh_max = 5000,
1180 		.timeout = 106500
1181 	}
1182 };
1183 
1184 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1185 				  struct mlxbf_i2c_priv *priv)
1186 {
1187 	enum mlxbf_i2c_timings_config config_idx;
1188 	struct device *dev = &pdev->dev;
1189 	u32 config_khz;
1190 
1191 	int ret;
1192 
1193 	ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1194 	if (ret < 0)
1195 		config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1196 
1197 	switch (config_khz) {
1198 	default:
1199 		/* Default settings is 100 KHz. */
1200 		pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1201 			config_khz);
1202 		fallthrough;
1203 	case I2C_MAX_STANDARD_MODE_FREQ:
1204 		config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1205 		break;
1206 
1207 	case I2C_MAX_FAST_MODE_FREQ:
1208 		config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1209 		break;
1210 
1211 	case I2C_MAX_FAST_MODE_PLUS_FREQ:
1212 		config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1213 		break;
1214 	}
1215 
1216 	mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1217 
1218 	return 0;
1219 }
1220 
1221 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1222 			      struct mlxbf_i2c_priv *priv)
1223 {
1224 	struct mlxbf_i2c_resource *gpio_res;
1225 	struct device *dev = &pdev->dev;
1226 	struct resource	*params;
1227 	resource_size_t size;
1228 
1229 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1230 	if (!gpio_res)
1231 		return -EPERM;
1232 
1233 	/*
1234 	 * The GPIO region in TYU space is shared among I2C busses.
1235 	 * This function MUST be serialized to avoid racing when
1236 	 * claiming the memory region and/or setting up the GPIO.
1237 	 */
1238 	lockdep_assert_held(gpio_res->lock);
1239 
1240 	/* Check whether the memory map exist. */
1241 	if (gpio_res->io)
1242 		return 0;
1243 
1244 	params = gpio_res->params;
1245 	size = resource_size(params);
1246 
1247 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1248 		return -EFAULT;
1249 
1250 	gpio_res->io = devm_ioremap(dev, params->start, size);
1251 	if (!gpio_res->io) {
1252 		devm_release_mem_region(dev, params->start, size);
1253 		return -ENOMEM;
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1260 				  struct mlxbf_i2c_priv *priv)
1261 {
1262 	struct mlxbf_i2c_resource *gpio_res;
1263 	struct device *dev = &pdev->dev;
1264 	struct resource	*params;
1265 
1266 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1267 	if (!gpio_res)
1268 		return 0;
1269 
1270 	mutex_lock(gpio_res->lock);
1271 
1272 	if (gpio_res->io) {
1273 		/* Release the GPIO resource. */
1274 		params = gpio_res->params;
1275 		devm_iounmap(dev, gpio_res->io);
1276 		devm_release_mem_region(dev, params->start,
1277 					resource_size(params));
1278 	}
1279 
1280 	mutex_unlock(gpio_res->lock);
1281 
1282 	return 0;
1283 }
1284 
1285 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1286 				 struct mlxbf_i2c_priv *priv)
1287 {
1288 	struct mlxbf_i2c_resource *corepll_res;
1289 	struct device *dev = &pdev->dev;
1290 	struct resource *params;
1291 	resource_size_t size;
1292 
1293 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1294 						    MLXBF_I2C_COREPLL_RES);
1295 	if (!corepll_res)
1296 		return -EPERM;
1297 
1298 	/*
1299 	 * The COREPLL region in TYU space is shared among I2C busses.
1300 	 * This function MUST be serialized to avoid racing when
1301 	 * claiming the memory region.
1302 	 */
1303 	lockdep_assert_held(corepll_res->lock);
1304 
1305 	/* Check whether the memory map exist. */
1306 	if (corepll_res->io)
1307 		return 0;
1308 
1309 	params = corepll_res->params;
1310 	size = resource_size(params);
1311 
1312 	if (!devm_request_mem_region(dev, params->start, size, params->name))
1313 		return -EFAULT;
1314 
1315 	corepll_res->io = devm_ioremap(dev, params->start, size);
1316 	if (!corepll_res->io) {
1317 		devm_release_mem_region(dev, params->start, size);
1318 		return -ENOMEM;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1325 				     struct mlxbf_i2c_priv *priv)
1326 {
1327 	struct mlxbf_i2c_resource *corepll_res;
1328 	struct device *dev = &pdev->dev;
1329 	struct resource *params;
1330 
1331 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1332 						    MLXBF_I2C_COREPLL_RES);
1333 
1334 	mutex_lock(corepll_res->lock);
1335 
1336 	if (corepll_res->io) {
1337 		/* Release the CorePLL resource. */
1338 		params = corepll_res->params;
1339 		devm_iounmap(dev, corepll_res->io);
1340 		devm_release_mem_region(dev, params->start,
1341 					resource_size(params));
1342 	}
1343 
1344 	mutex_unlock(corepll_res->lock);
1345 
1346 	return 0;
1347 }
1348 
1349 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1350 				 struct mlxbf_i2c_priv *priv)
1351 {
1352 	struct mlxbf_i2c_resource *gpio_res;
1353 	struct device *dev = &pdev->dev;
1354 	u32 config_reg;
1355 	int ret;
1356 
1357 	/* This configuration is only needed for BlueField 1. */
1358 	if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1359 		return 0;
1360 
1361 	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1362 	if (!gpio_res)
1363 		return -EPERM;
1364 
1365 	/*
1366 	 * The GPIO region in TYU space is shared among I2C busses.
1367 	 * This function MUST be serialized to avoid racing when
1368 	 * claiming the memory region and/or setting up the GPIO.
1369 	 */
1370 
1371 	mutex_lock(gpio_res->lock);
1372 
1373 	ret = mlxbf_i2c_get_gpio(pdev, priv);
1374 	if (ret < 0) {
1375 		dev_err(dev, "Failed to get gpio resource");
1376 		mutex_unlock(gpio_res->lock);
1377 		return ret;
1378 	}
1379 
1380 	/*
1381 	 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1382 	 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1383 	 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1384 	 * instead of HW_OE.
1385 	 * For now, we do not reset the GPIO state when the driver is removed.
1386 	 * First, it is not necessary to disable the bus since we are using
1387 	 * the same busses. Then, some busses might be shared among Linux and
1388 	 * platform firmware; disabling the bus might compromise the system
1389 	 * functionality.
1390 	 */
1391 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1392 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1393 							 config_reg);
1394 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1395 
1396 	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1397 	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1398 							config_reg);
1399 	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1400 
1401 	mutex_unlock(gpio_res->lock);
1402 
1403 	return 0;
1404 }
1405 
1406 static u64 mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1407 {
1408 	u64 core_frequency;
1409 	u8 core_od, core_r;
1410 	u32 corepll_val;
1411 	u16 core_f;
1412 
1413 	corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1414 
1415 	/* Get Core PLL configuration bits. */
1416 	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_TYU_MASK, corepll_val);
1417 	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK, corepll_val);
1418 	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_TYU_MASK, corepll_val);
1419 
1420 	/*
1421 	 * Compute PLL output frequency as follow:
1422 	 *
1423 	 *                                       CORE_F + 1
1424 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1425 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1426 	 *
1427 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1428 	 * and PadFrequency, respectively.
1429 	 */
1430 	core_frequency = MLXBF_I2C_PLL_IN_FREQ * (++core_f);
1431 	core_frequency /= (++core_r) * (++core_od);
1432 
1433 	return core_frequency;
1434 }
1435 
1436 static u64 mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1437 {
1438 	u32 corepll_reg1_val, corepll_reg2_val;
1439 	u64 corepll_frequency;
1440 	u8 core_od, core_r;
1441 	u32 core_f;
1442 
1443 	corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1444 	corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1445 
1446 	/* Get Core PLL configuration bits */
1447 	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_YU_MASK, corepll_reg1_val);
1448 	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_YU_MASK, corepll_reg1_val);
1449 	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_YU_MASK, corepll_reg2_val);
1450 
1451 	/*
1452 	 * Compute PLL output frequency as follow:
1453 	 *
1454 	 *                                     CORE_F / 16384
1455 	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1456 	 *                              (CORE_R + 1) * (CORE_OD + 1)
1457 	 *
1458 	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1459 	 * and PadFrequency, respectively.
1460 	 */
1461 	corepll_frequency = (MLXBF_I2C_PLL_IN_FREQ * core_f) / MLNXBF_I2C_COREPLL_CONST;
1462 	corepll_frequency /= (++core_r) * (++core_od);
1463 
1464 	return corepll_frequency;
1465 }
1466 
1467 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1468 					    struct mlxbf_i2c_priv *priv)
1469 {
1470 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1471 	struct mlxbf_i2c_resource *corepll_res;
1472 	struct device *dev = &pdev->dev;
1473 	u64 *freq = &priv->frequency;
1474 	int ret;
1475 
1476 	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1477 						    MLXBF_I2C_COREPLL_RES);
1478 	if (!corepll_res)
1479 		return -EPERM;
1480 
1481 	/*
1482 	 * First, check whether the TYU core Clock frequency is set.
1483 	 * The TYU core frequency is the same for all I2C busses; when
1484 	 * the first device gets probed the frequency is determined and
1485 	 * stored into a globally visible variable. So, first of all,
1486 	 * check whether the frequency is already set. Here, we assume
1487 	 * that the frequency is expected to be greater than 0.
1488 	 */
1489 	mutex_lock(corepll_res->lock);
1490 	if (!mlxbf_i2c_corepll_frequency) {
1491 		if (!chip->calculate_freq) {
1492 			mutex_unlock(corepll_res->lock);
1493 			return -EPERM;
1494 		}
1495 
1496 		ret = mlxbf_i2c_get_corepll(pdev, priv);
1497 		if (ret < 0) {
1498 			dev_err(dev, "Failed to get corePLL resource");
1499 			mutex_unlock(corepll_res->lock);
1500 			return ret;
1501 		}
1502 
1503 		mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1504 	}
1505 	mutex_unlock(corepll_res->lock);
1506 
1507 	*freq = mlxbf_i2c_corepll_frequency;
1508 
1509 	return 0;
1510 }
1511 
1512 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1513 {
1514 	u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1515 	u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1516 	bool avail, disabled;
1517 
1518 	disabled = false;
1519 	avail = false;
1520 
1521 	if (!priv)
1522 		return -EPERM;
1523 
1524 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1525 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1526 
1527 	/*
1528 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1529 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1530 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1531 	 */
1532 	for (reg = 0; reg < reg_cnt; reg++) {
1533 		slave_reg = readl(priv->smbus->io +
1534 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1535 		/*
1536 		 * Each register holds 4 slave addresses. So, we have to keep
1537 		 * the byte order consistent with the value read in order to
1538 		 * update the register correctly, if needed.
1539 		 */
1540 		slave_reg_tmp = slave_reg;
1541 		for (byte = 0; byte < 4; byte++) {
1542 			addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1543 
1544 			/*
1545 			 * Mark the first available slave address slot, i.e. its
1546 			 * enabled bit should be unset. This slot might be used
1547 			 * later on to register our slave.
1548 			 */
1549 			if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1550 				avail = true;
1551 				reg_avail = reg;
1552 				byte_avail = byte;
1553 				slave_reg_avail = slave_reg;
1554 			}
1555 
1556 			/*
1557 			 * Parse slave address bytes and check whether the
1558 			 * slave address already exists and it's enabled,
1559 			 * i.e. most significant bit is set.
1560 			 */
1561 			if ((addr_tmp & slave_addr_mask) == addr) {
1562 				if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1563 					return 0;
1564 				disabled = true;
1565 				break;
1566 			}
1567 
1568 			/* Parse next byte. */
1569 			slave_reg_tmp >>= 8;
1570 		}
1571 
1572 		/* Exit the loop if the slave address is found. */
1573 		if (disabled)
1574 			break;
1575 	}
1576 
1577 	if (!avail && !disabled)
1578 		return -EINVAL; /* No room for a new slave address. */
1579 
1580 	if (avail && !disabled) {
1581 		reg = reg_avail;
1582 		byte = byte_avail;
1583 		/* Set the slave address. */
1584 		slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1585 		slave_reg_avail |= addr << (byte * 8);
1586 		slave_reg = slave_reg_avail;
1587 	}
1588 
1589 	/* Enable the slave address and update the register. */
1590 	slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1591 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1592 		reg * 0x4);
1593 
1594 	return 0;
1595 }
1596 
1597 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1598 {
1599 	u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1600 	u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1601 	struct i2c_client *client = priv->slave;
1602 	bool exist;
1603 
1604 	exist = false;
1605 
1606 	addr = client->addr;
1607 	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1608 	slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1609 
1610 	/*
1611 	 * Read the slave registers. There are 4 * 32-bit slave registers.
1612 	 * Each slave register can hold up to 4 * 8-bit slave configuration
1613 	 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1614 	 */
1615 	for (reg = 0; reg < reg_cnt; reg++) {
1616 		slave_reg = readl(priv->smbus->io +
1617 				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1618 
1619 		/* Check whether the address slots are empty. */
1620 		if (slave_reg == 0)
1621 			continue;
1622 
1623 		/*
1624 		 * Each register holds 4 slave addresses. So, we have to keep
1625 		 * the byte order consistent with the value read in order to
1626 		 * update the register correctly, if needed.
1627 		 */
1628 		slave_reg_tmp = slave_reg;
1629 		slave_byte = 0;
1630 		while (slave_reg_tmp != 0) {
1631 			addr_tmp = slave_reg_tmp & slave_addr_mask;
1632 			/*
1633 			 * Parse slave address bytes and check whether the
1634 			 * slave address already exists.
1635 			 */
1636 			if (addr_tmp == addr) {
1637 				exist = true;
1638 				break;
1639 			}
1640 
1641 			/* Parse next byte. */
1642 			slave_reg_tmp >>= 8;
1643 			slave_byte += 1;
1644 		}
1645 
1646 		/* Exit the loop if the slave address is found. */
1647 		if (exist)
1648 			break;
1649 	}
1650 
1651 	if (!exist)
1652 		return 0; /* Slave is not registered, nothing to do. */
1653 
1654 	/* Cleanup the slave address slot. */
1655 	slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1656 	writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1657 		reg * 0x4);
1658 
1659 	return 0;
1660 }
1661 
1662 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1663 				   struct mlxbf_i2c_priv *priv)
1664 {
1665 	struct mlxbf_i2c_resource *coalesce_res;
1666 	struct resource *params;
1667 	resource_size_t size;
1668 	int ret = 0;
1669 
1670 	/*
1671 	 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1672 	 * resource in the next generations of BlueField.
1673 	 */
1674 	if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1675 		coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1676 						MLXBF_I2C_COALESCE_RES);
1677 		if (!coalesce_res)
1678 			return -EPERM;
1679 
1680 		/*
1681 		 * The Cause Coalesce group in TYU space is shared among
1682 		 * I2C busses. This function MUST be serialized to avoid
1683 		 * racing when claiming the memory region.
1684 		 */
1685 		lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1686 
1687 		/* Check whether the memory map exist. */
1688 		if (coalesce_res->io) {
1689 			priv->coalesce = coalesce_res;
1690 			return 0;
1691 		}
1692 
1693 		params = coalesce_res->params;
1694 		size = resource_size(params);
1695 
1696 		if (!request_mem_region(params->start, size, params->name))
1697 			return -EFAULT;
1698 
1699 		coalesce_res->io = ioremap(params->start, size);
1700 		if (!coalesce_res->io) {
1701 			release_mem_region(params->start, size);
1702 			return -ENOMEM;
1703 		}
1704 
1705 		priv->coalesce = coalesce_res;
1706 
1707 	} else {
1708 		ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1709 					      MLXBF_I2C_COALESCE_RES);
1710 	}
1711 
1712 	return ret;
1713 }
1714 
1715 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1716 				      struct mlxbf_i2c_priv *priv)
1717 {
1718 	struct mlxbf_i2c_resource *coalesce_res;
1719 	struct device *dev = &pdev->dev;
1720 	struct resource *params;
1721 	resource_size_t size;
1722 
1723 	coalesce_res = priv->coalesce;
1724 
1725 	if (coalesce_res->io) {
1726 		params = coalesce_res->params;
1727 		size = resource_size(params);
1728 		if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1729 			mutex_lock(coalesce_res->lock);
1730 			iounmap(coalesce_res->io);
1731 			release_mem_region(params->start, size);
1732 			mutex_unlock(coalesce_res->lock);
1733 		} else {
1734 			devm_release_mem_region(dev, params->start, size);
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1742 				struct mlxbf_i2c_priv *priv)
1743 {
1744 	struct device *dev = &pdev->dev;
1745 	u32 int_reg;
1746 	int ret;
1747 
1748 	/* Reset FSM. */
1749 	writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1750 
1751 	/*
1752 	 * Enable slave cause interrupt bits. Drive
1753 	 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1754 	 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1755 	 * masters issue a Read and Write, respectively. But, clear all
1756 	 * interrupts first.
1757 	 */
1758 	writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1759 	int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1760 	int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1761 	writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1762 
1763 	/* Finally, set the 'ready' bit to start handling transactions. */
1764 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1765 
1766 	/* Initialize the cause coalesce resource. */
1767 	ret = mlxbf_i2c_init_coalesce(pdev, priv);
1768 	if (ret < 0) {
1769 		dev_err(dev, "failed to initialize cause coalesce\n");
1770 		return ret;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1777 				   bool *write)
1778 {
1779 	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1780 	u32 coalesce0_reg, cause_reg;
1781 	u8 slave_shift, is_set;
1782 
1783 	*write = false;
1784 	*read = false;
1785 
1786 	slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1787 				MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1788 				priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1789 
1790 	coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1791 	is_set = coalesce0_reg & (1 << slave_shift);
1792 
1793 	if (!is_set)
1794 		return false;
1795 
1796 	/* Check the source of the interrupt, i.e. whether a Read or Write. */
1797 	cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1798 	if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1799 		*read = true;
1800 	else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1801 		*write = true;
1802 
1803 	/* Clear cause bits. */
1804 	writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1805 
1806 	return true;
1807 }
1808 
1809 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1810 					    u32 timeout)
1811 {
1812 	u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1813 	u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1814 
1815 	if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1816 		return true;
1817 
1818 	return false;
1819 }
1820 
1821 /* Send byte to 'external' smbus master. */
1822 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1823 {
1824 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1825 	u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1826 	struct i2c_client *slave = priv->slave;
1827 	u32 control32, data32;
1828 	int ret;
1829 
1830 	if (!slave)
1831 		return -EINVAL;
1832 
1833 	addr = 0;
1834 	byte = 0;
1835 	desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1836 
1837 	/*
1838 	 * Read bytes received from the external master. These bytes should
1839 	 * be located in the first data descriptor register of the slave GW.
1840 	 * These bytes are the slave address byte and the internal register
1841 	 * address, if supplied.
1842 	 */
1843 	if (recv_bytes > 0) {
1844 		data32 = ioread32be(priv->smbus->io +
1845 					MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1846 
1847 		/* Parse the received bytes. */
1848 		switch (recv_bytes) {
1849 		case 2:
1850 			byte = (data32 >> 8) & GENMASK(7, 0);
1851 			fallthrough;
1852 		case 1:
1853 			addr = (data32 & GENMASK(7, 0)) >> 1;
1854 		}
1855 
1856 		/* Check whether it's our slave address. */
1857 		if (slave->addr != addr)
1858 			return -EINVAL;
1859 	}
1860 
1861 	/*
1862 	 * I2C read transactions may start by a WRITE followed by a READ.
1863 	 * Indeed, most slave devices would expect the internal address
1864 	 * following the slave address byte. So, write that byte first,
1865 	 * and then, send the requested data bytes to the master.
1866 	 */
1867 	if (recv_bytes > 1) {
1868 		i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1869 		value = byte;
1870 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1871 				      &value);
1872 		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1873 
1874 		if (ret < 0)
1875 			return ret;
1876 	}
1877 
1878 	/*
1879 	 * Now, send data to the master; currently, the driver supports
1880 	 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1881 	 * hardware can send up to 128 bytes per transfer. That is the
1882 	 * size of its data registers.
1883 	 */
1884 	i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1885 
1886 	for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1887 		data_desc[byte_cnt] = value;
1888 		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1889 	}
1890 
1891 	/* Send a stop condition to the backend. */
1892 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1893 
1894 	/* Handle the actual transfer. */
1895 
1896 	/* Set the number of bytes to write to master. */
1897 	write_size = (byte_cnt - 1) & 0x7f;
1898 
1899 	/* Write data to Slave GW data descriptor. */
1900 	mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1901 				   MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1902 
1903 	pec_en = 0; /* Disable PEC since it is not supported. */
1904 
1905 	/* Prepare control word. */
1906 	control32 = MLXBF_I2C_SLAVE_ENABLE;
1907 	control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1908 	control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1909 
1910 	writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1911 
1912 	/*
1913 	 * Wait until the transfer is completed; the driver will wait
1914 	 * until the GW is idle, a cause will rise on fall of GW busy.
1915 	 */
1916 	mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1917 
1918 	/* Release the Slave GW. */
1919 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1920 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1921 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1922 
1923 	return 0;
1924 }
1925 
1926 /* Receive bytes from 'external' smbus master. */
1927 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1928 {
1929 	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1930 	struct i2c_client *slave = priv->slave;
1931 	u8 value, byte, addr;
1932 	int ret = 0;
1933 
1934 	if (!slave)
1935 		return -EINVAL;
1936 
1937 	/* Read data from Slave GW data descriptor. */
1938 	mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1939 				  MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1940 
1941 	/* Check whether its our slave address. */
1942 	addr = data_desc[0] >> 1;
1943 	if (slave->addr != addr)
1944 		return -EINVAL;
1945 
1946 	/*
1947 	 * Notify the slave backend; another I2C master wants to write data
1948 	 * to us. This event is sent once the slave address and the write bit
1949 	 * is detected.
1950 	 */
1951 	i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1952 
1953 	/* Send the received data to the slave backend. */
1954 	for (byte = 1; byte < recv_bytes; byte++) {
1955 		value = data_desc[byte];
1956 		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1957 				      &value);
1958 		if (ret < 0)
1959 			break;
1960 	}
1961 
1962 	/* Send a stop condition to the backend. */
1963 	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1964 
1965 	/* Release the Slave GW. */
1966 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1967 	writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1968 	writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1969 
1970 	return ret;
1971 }
1972 
1973 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
1974 {
1975 	struct mlxbf_i2c_priv *priv = ptr;
1976 	bool read, write, irq_is_set;
1977 	u32 rw_bytes_reg;
1978 	u8 recv_bytes;
1979 
1980 	/*
1981 	 * Read TYU interrupt register and determine the source of the
1982 	 * interrupt. Based on the source of the interrupt one of the
1983 	 * following actions are performed:
1984 	 *  - Receive data and send response to master.
1985 	 *  - Send data and release slave GW.
1986 	 *
1987 	 * Handle read/write transaction only. CRmaster and Iarp requests
1988 	 * are ignored for now.
1989 	 */
1990 	irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
1991 	if (!irq_is_set || (!read && !write)) {
1992 		/* Nothing to do here, interrupt was not from this device. */
1993 		return IRQ_NONE;
1994 	}
1995 
1996 	/*
1997 	 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
1998 	 * bytes from/to master. These are defined by 8-bits each. If the lower
1999 	 * 8 bits are set, then the master expect to read N bytes from the
2000 	 * slave, if the higher 8 bits are sent then the slave expect N bytes
2001 	 * from the master.
2002 	 */
2003 	rw_bytes_reg = readl(priv->smbus->io +
2004 				MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2005 	recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2006 
2007 	/*
2008 	 * For now, the slave supports 128 bytes transfer. Discard remaining
2009 	 * data bytes if the master wrote more than
2010 	 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2011 	 * data descriptor.
2012 	 *
2013 	 * Note that we will never expect to transfer more than 128 bytes; as
2014 	 * specified in the SMBus standard, block transactions cannot exceed
2015 	 * 32 bytes.
2016 	 */
2017 	recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2018 		MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2019 
2020 	if (read)
2021 		mlxbf_smbus_irq_send(priv, recv_bytes);
2022 	else
2023 		mlxbf_smbus_irq_recv(priv, recv_bytes);
2024 
2025 	return IRQ_HANDLED;
2026 }
2027 
2028 /* Return negative errno on error. */
2029 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2030 				unsigned short flags, char read_write,
2031 				u8 command, int size,
2032 				union i2c_smbus_data *data)
2033 {
2034 	struct mlxbf_i2c_smbus_request request = { 0 };
2035 	struct mlxbf_i2c_priv *priv;
2036 	bool read, pec;
2037 	u8 byte_cnt;
2038 
2039 	request.slave = addr;
2040 
2041 	read = (read_write == I2C_SMBUS_READ);
2042 	pec = flags & I2C_FUNC_SMBUS_PEC;
2043 
2044 	switch (size) {
2045 	case I2C_SMBUS_QUICK:
2046 		mlxbf_i2c_smbus_quick_command(&request, read);
2047 		dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2048 		break;
2049 
2050 	case I2C_SMBUS_BYTE:
2051 		mlxbf_i2c_smbus_byte_func(&request,
2052 					  read ? &data->byte : &command, read,
2053 					  pec);
2054 		dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2055 			read ? "read" : "write", addr);
2056 		break;
2057 
2058 	case I2C_SMBUS_BYTE_DATA:
2059 		mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2060 					       read, pec);
2061 		dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2062 			read ? "read" : "write", command, addr);
2063 		break;
2064 
2065 	case I2C_SMBUS_WORD_DATA:
2066 		mlxbf_i2c_smbus_data_word_func(&request, &command,
2067 					       (u8 *)&data->word, read, pec);
2068 		dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2069 			read ? "read" : "write", command, addr);
2070 		break;
2071 
2072 	case I2C_SMBUS_I2C_BLOCK_DATA:
2073 		byte_cnt = data->block[0];
2074 		mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2075 					       &byte_cnt, read, pec);
2076 		dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2077 			read ? "read" : "write", byte_cnt, command, addr);
2078 		break;
2079 
2080 	case I2C_SMBUS_BLOCK_DATA:
2081 		byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2082 		mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2083 					   &byte_cnt, read, pec);
2084 		dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2085 			read ? "read" : "write", byte_cnt, command, addr);
2086 		break;
2087 
2088 	case I2C_FUNC_SMBUS_PROC_CALL:
2089 		mlxbf_i2c_smbus_process_call_func(&request, &command,
2090 						  (u8 *)&data->word, pec);
2091 		dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2092 			command, addr);
2093 		break;
2094 
2095 	case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2096 		byte_cnt = data->block[0];
2097 		mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2098 						      data->block, &byte_cnt,
2099 						      pec);
2100 		dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2101 			byte_cnt, addr);
2102 		break;
2103 
2104 	default:
2105 		dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2106 			size);
2107 		return -EOPNOTSUPP;
2108 	}
2109 
2110 	priv = i2c_get_adapdata(adap);
2111 
2112 	return mlxbf_i2c_smbus_start_transaction(priv, &request);
2113 }
2114 
2115 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2116 {
2117 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2118 	int ret;
2119 
2120 	if (priv->slave)
2121 		return -EBUSY;
2122 
2123 	/*
2124 	 * Do not support ten bit chip address and do not use Packet Error
2125 	 * Checking (PEC).
2126 	 */
2127 	if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2128 		return -EAFNOSUPPORT;
2129 
2130 	ret = mlxbf_slave_enable(priv, slave->addr);
2131 	if (ret < 0)
2132 		return ret;
2133 
2134 	priv->slave = slave;
2135 
2136 	return 0;
2137 }
2138 
2139 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2140 {
2141 	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2142 	int ret;
2143 
2144 	WARN_ON(!priv->slave);
2145 
2146 	/* Unregister slave, i.e. disable the slave address in hardware. */
2147 	ret = mlxbf_slave_disable(priv);
2148 	if (ret < 0)
2149 		return ret;
2150 
2151 	priv->slave = NULL;
2152 
2153 	return 0;
2154 }
2155 
2156 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2157 {
2158 	return MLXBF_I2C_FUNC_ALL;
2159 }
2160 
2161 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2162 	[MLXBF_I2C_CHIP_TYPE_1] = {
2163 		.type = MLXBF_I2C_CHIP_TYPE_1,
2164 		.shared_res = {
2165 			[0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2166 			[1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2167 			[2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2168 		},
2169 		.calculate_freq = mlxbf_i2c_calculate_freq_from_tyu
2170 	},
2171 	[MLXBF_I2C_CHIP_TYPE_2] = {
2172 		.type = MLXBF_I2C_CHIP_TYPE_2,
2173 		.shared_res = {
2174 			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2175 		},
2176 		.calculate_freq = mlxbf_i2c_calculate_freq_from_yu
2177 	}
2178 };
2179 
2180 static const struct i2c_algorithm mlxbf_i2c_algo = {
2181 	.smbus_xfer = mlxbf_i2c_smbus_xfer,
2182 	.functionality = mlxbf_i2c_functionality,
2183 	.reg_slave = mlxbf_i2c_reg_slave,
2184 	.unreg_slave = mlxbf_i2c_unreg_slave,
2185 };
2186 
2187 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2188 	.max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2189 	.max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2190 };
2191 
2192 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2193 	{
2194 		.compatible = "mellanox,i2c-mlxbf1",
2195 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2196 	},
2197 	{
2198 		.compatible = "mellanox,i2c-mlxbf2",
2199 		.data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2200 	},
2201 	{},
2202 };
2203 
2204 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2205 
2206 #ifdef CONFIG_ACPI
2207 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2208 	{ "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2209 	{ "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2210 	{},
2211 };
2212 
2213 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2214 
2215 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2216 {
2217 	const struct acpi_device_id *aid;
2218 	u64 bus_id;
2219 	int ret;
2220 
2221 	if (acpi_disabled)
2222 		return -ENOENT;
2223 
2224 	aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2225 	if (!aid)
2226 		return -ENODEV;
2227 
2228 	priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2229 
2230 	ret = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &bus_id);
2231 	if (ret) {
2232 		dev_err(dev, "Cannot retrieve UID\n");
2233 		return ret;
2234 	}
2235 
2236 	priv->bus = bus_id;
2237 
2238 	return 0;
2239 }
2240 #else
2241 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2242 {
2243 	return -ENOENT;
2244 }
2245 #endif /* CONFIG_ACPI */
2246 
2247 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2248 {
2249 	const struct of_device_id *oid;
2250 	int bus_id = -1;
2251 
2252 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2253 		oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2254 		if (!oid)
2255 			return -ENODEV;
2256 
2257 		priv->chip = oid->data;
2258 
2259 		bus_id = of_alias_get_id(dev->of_node, "i2c");
2260 		if (bus_id >= 0)
2261 			priv->bus = bus_id;
2262 	}
2263 
2264 	if (bus_id < 0) {
2265 		dev_err(dev, "Cannot get bus id");
2266 		return bus_id;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int mlxbf_i2c_probe(struct platform_device *pdev)
2273 {
2274 	struct device *dev = &pdev->dev;
2275 	struct mlxbf_i2c_priv *priv;
2276 	struct i2c_adapter *adap;
2277 	int irq, ret;
2278 
2279 	priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2280 	if (!priv)
2281 		return -ENOMEM;
2282 
2283 	ret = mlxbf_i2c_acpi_probe(dev, priv);
2284 	if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2285 		ret = mlxbf_i2c_of_probe(dev, priv);
2286 
2287 	if (ret < 0)
2288 		return ret;
2289 
2290 	ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2291 				      MLXBF_I2C_SMBUS_RES);
2292 	if (ret < 0) {
2293 		dev_err(dev, "Cannot fetch smbus resource info");
2294 		return ret;
2295 	}
2296 
2297 	ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2298 				      MLXBF_I2C_MST_CAUSE_RES);
2299 	if (ret < 0) {
2300 		dev_err(dev, "Cannot fetch cause master resource info");
2301 		return ret;
2302 	}
2303 
2304 	ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2305 				      MLXBF_I2C_SLV_CAUSE_RES);
2306 	if (ret < 0) {
2307 		dev_err(dev, "Cannot fetch cause slave resource info");
2308 		return ret;
2309 	}
2310 
2311 	adap = &priv->adap;
2312 	adap->owner = THIS_MODULE;
2313 	adap->class = I2C_CLASS_HWMON;
2314 	adap->algo = &mlxbf_i2c_algo;
2315 	adap->quirks = &mlxbf_i2c_quirks;
2316 	adap->dev.parent = dev;
2317 	adap->dev.of_node = dev->of_node;
2318 	adap->nr = priv->bus;
2319 
2320 	snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2321 	i2c_set_adapdata(adap, priv);
2322 
2323 	/* Read Core PLL frequency. */
2324 	ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2325 	if (ret < 0) {
2326 		dev_err(dev, "cannot get core clock frequency\n");
2327 		/* Set to default value. */
2328 		priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2329 	}
2330 
2331 	/*
2332 	 * Initialize master.
2333 	 * Note that a physical bus might be shared among Linux and firmware
2334 	 * (e.g., ATF). Thus, the bus should be initialized and ready and
2335 	 * bus initialization would be unnecessary. This requires additional
2336 	 * knowledge about physical busses. But, since an extra initialization
2337 	 * does not really hurt, then keep the code as is.
2338 	 */
2339 	ret = mlxbf_i2c_init_master(pdev, priv);
2340 	if (ret < 0) {
2341 		dev_err(dev, "failed to initialize smbus master %d",
2342 			priv->bus);
2343 		return ret;
2344 	}
2345 
2346 	mlxbf_i2c_init_timings(pdev, priv);
2347 
2348 	mlxbf_i2c_init_slave(pdev, priv);
2349 
2350 	irq = platform_get_irq(pdev, 0);
2351 	if (irq < 0)
2352 		return irq;
2353 	ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2354 			       IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2355 			       dev_name(dev), priv);
2356 	if (ret < 0) {
2357 		dev_err(dev, "Cannot get irq %d\n", irq);
2358 		return ret;
2359 	}
2360 
2361 	priv->irq = irq;
2362 
2363 	platform_set_drvdata(pdev, priv);
2364 
2365 	ret = i2c_add_numbered_adapter(adap);
2366 	if (ret < 0)
2367 		return ret;
2368 
2369 	mutex_lock(&mlxbf_i2c_bus_lock);
2370 	mlxbf_i2c_bus_count++;
2371 	mutex_unlock(&mlxbf_i2c_bus_lock);
2372 
2373 	return 0;
2374 }
2375 
2376 static int mlxbf_i2c_remove(struct platform_device *pdev)
2377 {
2378 	struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2379 	struct device *dev = &pdev->dev;
2380 	struct resource *params;
2381 
2382 	params = priv->smbus->params;
2383 	devm_release_mem_region(dev, params->start, resource_size(params));
2384 
2385 	params = priv->mst_cause->params;
2386 	devm_release_mem_region(dev, params->start, resource_size(params));
2387 
2388 	params = priv->slv_cause->params;
2389 	devm_release_mem_region(dev, params->start, resource_size(params));
2390 
2391 	/*
2392 	 * Release shared resources. This should be done when releasing
2393 	 * the I2C controller.
2394 	 */
2395 	mutex_lock(&mlxbf_i2c_bus_lock);
2396 	if (--mlxbf_i2c_bus_count == 0) {
2397 		mlxbf_i2c_release_coalesce(pdev, priv);
2398 		mlxbf_i2c_release_corepll(pdev, priv);
2399 		mlxbf_i2c_release_gpio(pdev, priv);
2400 	}
2401 	mutex_unlock(&mlxbf_i2c_bus_lock);
2402 
2403 	devm_free_irq(dev, priv->irq, priv);
2404 
2405 	i2c_del_adapter(&priv->adap);
2406 
2407 	return 0;
2408 }
2409 
2410 static struct platform_driver mlxbf_i2c_driver = {
2411 	.probe = mlxbf_i2c_probe,
2412 	.remove = mlxbf_i2c_remove,
2413 	.driver = {
2414 		.name = "i2c-mlxbf",
2415 		.of_match_table = mlxbf_i2c_dt_ids,
2416 #ifdef CONFIG_ACPI
2417 		.acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2418 #endif /* CONFIG_ACPI  */
2419 	},
2420 };
2421 
2422 static int __init mlxbf_i2c_init(void)
2423 {
2424 	mutex_init(&mlxbf_i2c_coalesce_lock);
2425 	mutex_init(&mlxbf_i2c_corepll_lock);
2426 	mutex_init(&mlxbf_i2c_gpio_lock);
2427 
2428 	mutex_init(&mlxbf_i2c_bus_lock);
2429 
2430 	return platform_driver_register(&mlxbf_i2c_driver);
2431 }
2432 module_init(mlxbf_i2c_init);
2433 
2434 static void __exit mlxbf_i2c_exit(void)
2435 {
2436 	platform_driver_unregister(&mlxbf_i2c_driver);
2437 
2438 	mutex_destroy(&mlxbf_i2c_bus_lock);
2439 
2440 	mutex_destroy(&mlxbf_i2c_gpio_lock);
2441 	mutex_destroy(&mlxbf_i2c_corepll_lock);
2442 	mutex_destroy(&mlxbf_i2c_coalesce_lock);
2443 }
2444 module_exit(mlxbf_i2c_exit);
2445 
2446 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2447 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2448 MODULE_LICENSE("GPL v2");
2449