xref: /openbmc/linux/drivers/i2c/busses/i2c-img-scb.c (revision eb3fcf00)
1 /*
2  * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3  *
4  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * There are three ways that this I2C controller can be driven:
11  *
12  * - Raw control of the SDA and SCK signals.
13  *
14  *   This corresponds to MODE_RAW, which takes control of the signals
15  *   directly for a certain number of clock cycles (the INT_TIMING
16  *   interrupt can be used for timing).
17  *
18  * - Atomic commands. A low level I2C symbol (such as generate
19  *   start/stop/ack/nack bit, generate byte, receive byte, and receive
20  *   ACK) is given to the hardware, with detection of completion by bits
21  *   in the LINESTAT register.
22  *
23  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
24  *   state machine in the interrupt handler to compose/react to I2C
25  *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
26  *   which emits a simple fixed sequence of atomic mode commands.
27  *
28  *   Due to software control, the use of atomic commands usually results
29  *   in suboptimal use of the bus, with gaps between the I2C symbols while
30  *   the driver decides what to do next.
31  *
32  * - Automatic mode. A bus address, and whether to read/write is
33  *   specified, and the hardware takes care of the I2C state machine,
34  *   using a FIFO to send/receive bytes of data to an I2C slave. The
35  *   driver just has to keep the FIFO drained or filled in response to the
36  *   appropriate FIFO interrupts.
37  *
38  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39  *   with control of repeated start bits between I2C messages.
40  *
41  *   Use of automatic mode and the FIFO can make much more efficient use
42  *   of the bus compared to individual atomic commands, with potentially
43  *   no wasted time between I2C symbols or I2C messages.
44  *
45  * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46  * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47  * the bus), MODE_ATOMIC must be used since automatic mode is normally
48  * started by the writing of data into the FIFO.
49  *
50  * The other modes are used in specific circumstances where MODE_ATOMIC and
51  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53  * it is in a sane state.
54  *
55  * Notice that the driver implements a timer-based timeout mechanism.
56  * The reason for this mechanism is to reduce the number of interrupts
57  * received in automatic mode.
58  *
59  * The driver would get a slave event and transaction done interrupts for
60  * each atomic mode command that gets completed. However, these events are
61  * not needed in automatic mode, becase those atomic mode commands are
62  * managed automatically by the hardware.
63  *
64  * In practice, normal I2C transactions will be complete well before you
65  * get the timer interrupt, as the timer is re-scheduled during FIFO
66  * maintenance and disabled after the transaction is complete.
67  *
68  * In this way normal automatic mode operation isn't impacted by
69  * unnecessary interrupts, but the exceptional abort condition can still be
70  * detected (with a slight delay).
71  */
72 
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
80 #include <linux/io.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/slab.h>
86 #include <linux/timer.h>
87 
88 /* Register offsets */
89 
90 #define SCB_STATUS_REG			0x00
91 #define SCB_OVERRIDE_REG		0x04
92 #define SCB_READ_ADDR_REG		0x08
93 #define SCB_READ_COUNT_REG		0x0c
94 #define SCB_WRITE_ADDR_REG		0x10
95 #define SCB_READ_DATA_REG		0x14
96 #define SCB_WRITE_DATA_REG		0x18
97 #define SCB_FIFO_STATUS_REG		0x1c
98 #define SCB_CONTROL_SOFT_RESET		0x1f
99 #define SCB_CLK_SET_REG			0x3c
100 #define SCB_INT_STATUS_REG		0x40
101 #define SCB_INT_CLEAR_REG		0x44
102 #define SCB_INT_MASK_REG		0x48
103 #define SCB_CONTROL_REG			0x4c
104 #define SCB_TIME_TPL_REG		0x50
105 #define SCB_TIME_TPH_REG		0x54
106 #define SCB_TIME_TP2S_REG		0x58
107 #define SCB_TIME_TBI_REG		0x60
108 #define SCB_TIME_TSL_REG		0x64
109 #define SCB_TIME_TDL_REG		0x68
110 #define SCB_TIME_TSDL_REG		0x6c
111 #define SCB_TIME_TSDH_REG		0x70
112 #define SCB_READ_XADDR_REG		0x74
113 #define SCB_WRITE_XADDR_REG		0x78
114 #define SCB_WRITE_COUNT_REG		0x7c
115 #define SCB_CORE_REV_REG		0x80
116 #define SCB_TIME_TCKH_REG		0x84
117 #define SCB_TIME_TCKL_REG		0x88
118 #define SCB_FIFO_FLUSH_REG		0x8c
119 #define SCB_READ_FIFO_REG		0x94
120 #define SCB_CLEAR_REG			0x98
121 
122 /* SCB_CONTROL_REG bits */
123 
124 #define SCB_CONTROL_CLK_ENABLE		0x1e0
125 #define SCB_CONTROL_TRANSACTION_HALT	0x200
126 
127 #define FIFO_READ_FULL			BIT(0)
128 #define FIFO_READ_EMPTY			BIT(1)
129 #define FIFO_WRITE_FULL			BIT(2)
130 #define FIFO_WRITE_EMPTY		BIT(3)
131 
132 /* SCB_CLK_SET_REG bits */
133 #define SCB_FILT_DISABLE		BIT(31)
134 #define SCB_FILT_BYPASS			BIT(30)
135 #define SCB_FILT_INC_MASK		0x7f
136 #define SCB_FILT_INC_SHIFT		16
137 #define SCB_INC_MASK			0x7f
138 #define SCB_INC_SHIFT			8
139 
140 /* SCB_INT_*_REG bits */
141 
142 #define INT_BUS_INACTIVE		BIT(0)
143 #define INT_UNEXPECTED_START		BIT(1)
144 #define INT_SCLK_LOW_TIMEOUT		BIT(2)
145 #define INT_SDAT_LOW_TIMEOUT		BIT(3)
146 #define INT_WRITE_ACK_ERR		BIT(4)
147 #define INT_ADDR_ACK_ERR		BIT(5)
148 #define INT_FIFO_FULL			BIT(9)
149 #define INT_FIFO_FILLING		BIT(10)
150 #define INT_FIFO_EMPTY			BIT(11)
151 #define INT_FIFO_EMPTYING		BIT(12)
152 #define INT_TRANSACTION_DONE		BIT(15)
153 #define INT_SLAVE_EVENT			BIT(16)
154 #define INT_TIMING			BIT(18)
155 
156 #define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
157 #define INT_FIFO_EMPTY_EMPTYING	(INT_FIFO_EMPTY | INT_FIFO_EMPTYING)
158 
159 /* Level interrupts need clearing after handling instead of before */
160 #define INT_LEVEL			0x01e00
161 
162 /* Don't allow any interrupts while the clock may be off */
163 #define INT_ENABLE_MASK_INACTIVE	0x00000
164 
165 /* Interrupt masks for the different driver modes */
166 
167 #define INT_ENABLE_MASK_RAW		INT_TIMING
168 
169 #define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
170 					 INT_SLAVE_EVENT      | \
171 					 INT_ADDR_ACK_ERR     | \
172 					 INT_WRITE_ACK_ERR)
173 
174 #define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
175 					 INT_ADDR_ACK_ERR     | \
176 					 INT_WRITE_ACK_ERR    | \
177 					 INT_FIFO_FULL        | \
178 					 INT_FIFO_FILLING     | \
179 					 INT_FIFO_EMPTY       | \
180 					 INT_FIFO_EMPTYING)
181 
182 #define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
183 					 INT_ADDR_ACK_ERR     | \
184 					 INT_WRITE_ACK_ERR)
185 
186 /* SCB_STATUS_REG fields */
187 
188 #define LINESTAT_SCLK_LINE_STATUS	BIT(0)
189 #define LINESTAT_SCLK_EN		BIT(1)
190 #define LINESTAT_SDAT_LINE_STATUS	BIT(2)
191 #define LINESTAT_SDAT_EN		BIT(3)
192 #define LINESTAT_DET_START_STATUS	BIT(4)
193 #define LINESTAT_DET_STOP_STATUS	BIT(5)
194 #define LINESTAT_DET_ACK_STATUS		BIT(6)
195 #define LINESTAT_DET_NACK_STATUS	BIT(7)
196 #define LINESTAT_BUS_IDLE		BIT(8)
197 #define LINESTAT_T_DONE_STATUS		BIT(9)
198 #define LINESTAT_SCLK_OUT_STATUS	BIT(10)
199 #define LINESTAT_SDAT_OUT_STATUS	BIT(11)
200 #define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
201 #define LINESTAT_START_BIT_DET		BIT(13)
202 #define LINESTAT_STOP_BIT_DET		BIT(14)
203 #define LINESTAT_ACK_DET		BIT(15)
204 #define LINESTAT_NACK_DET		BIT(16)
205 #define LINESTAT_INPUT_HELD_V		BIT(17)
206 #define LINESTAT_ABORT_DET		BIT(18)
207 #define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208 #define LINESTAT_INPUT_DATA		0xff000000
209 #define LINESTAT_INPUT_DATA_SHIFT	24
210 
211 #define LINESTAT_CLEAR_SHIFT		13
212 #define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
213 
214 /* SCB_OVERRIDE_REG fields */
215 
216 #define OVERRIDE_SCLK_OVR		BIT(0)
217 #define OVERRIDE_SCLKEN_OVR		BIT(1)
218 #define OVERRIDE_SDAT_OVR		BIT(2)
219 #define OVERRIDE_SDATEN_OVR		BIT(3)
220 #define OVERRIDE_MASTER			BIT(9)
221 #define OVERRIDE_LINE_OVR_EN		BIT(10)
222 #define OVERRIDE_DIRECT			BIT(11)
223 #define OVERRIDE_CMD_SHIFT		4
224 #define OVERRIDE_CMD_MASK		0x1f
225 #define OVERRIDE_DATA_SHIFT		24
226 
227 #define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
228 					 OVERRIDE_SCLKEN_OVR)
229 #define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
230 					 OVERRIDE_SCLKEN_OVR | \
231 					 OVERRIDE_SCLK_OVR)
232 #define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
233 					 OVERRIDE_SDATEN_OVR)
234 #define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
235 					 OVERRIDE_SDATEN_OVR | \
236 					 OVERRIDE_SDAT_OVR)
237 
238 /* OVERRIDE_CMD values */
239 
240 #define CMD_PAUSE			0x00
241 #define CMD_GEN_DATA			0x01
242 #define CMD_GEN_START			0x02
243 #define CMD_GEN_STOP			0x03
244 #define CMD_GEN_ACK			0x04
245 #define CMD_GEN_NACK			0x05
246 #define CMD_RET_DATA			0x08
247 #define CMD_RET_ACK			0x09
248 
249 /* Fixed timing values */
250 
251 #define TIMEOUT_TBI			0x0
252 #define TIMEOUT_TSL			0xffff
253 #define TIMEOUT_TDL			0x0
254 
255 /* Transaction timeout */
256 
257 #define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
258 
259 /*
260  * Worst incs are 1 (innacurate) and 16*256 (irregular).
261  * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262  * in the middle of the valid range (0-127).
263  */
264 #define SCB_OPT_INC		64
265 
266 /* Setup the clock enable filtering for 25 ns */
267 #define SCB_FILT_GLITCH		25
268 
269 /*
270  * Bits to return from interrupt handler functions for different modes.
271  * This delays completion until we've finished with the registers, so that the
272  * function waiting for completion can safely disable the clock to save power.
273  */
274 #define ISR_COMPLETE_M		BIT(31)
275 #define ISR_FATAL_M		BIT(30)
276 #define ISR_WAITSTOP		BIT(29)
277 #define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
278 #define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279 #define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
280 
281 #define REL_SOC_IP_SCB_2_2_1	0x00020201
282 
283 enum img_i2c_mode {
284 	MODE_INACTIVE,
285 	MODE_RAW,
286 	MODE_ATOMIC,
287 	MODE_AUTOMATIC,
288 	MODE_SEQUENCE,
289 	MODE_FATAL,
290 	MODE_WAITSTOP,
291 	MODE_SUSPEND,
292 };
293 
294 /* Timing parameters for i2c modes (in ns) */
295 struct img_i2c_timings {
296 	const char *name;
297 	unsigned int max_bitrate;
298 	unsigned int tckh, tckl, tsdh, tsdl;
299 	unsigned int tp2s, tpl, tph;
300 };
301 
302 /* The timings array must be ordered from slower to faster */
303 static struct img_i2c_timings timings[] = {
304 	/* Standard mode */
305 	{
306 		.name = "standard",
307 		.max_bitrate = 100000,
308 		.tckh = 4000,
309 		.tckl = 4700,
310 		.tsdh = 4700,
311 		.tsdl = 8700,
312 		.tp2s = 4700,
313 		.tpl = 4700,
314 		.tph = 4000,
315 	},
316 	/* Fast mode */
317 	{
318 		.name = "fast",
319 		.max_bitrate = 400000,
320 		.tckh = 600,
321 		.tckl = 1300,
322 		.tsdh = 600,
323 		.tsdl = 1200,
324 		.tp2s = 1300,
325 		.tpl = 600,
326 		.tph = 600,
327 	},
328 };
329 
330 /* Reset dance */
331 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332 				  CMD_GEN_DATA, 0xff,
333 				  CMD_RET_ACK,
334 				  CMD_GEN_START,
335 				  CMD_GEN_STOP,
336 				  0 };
337 /* Just issue a stop (after an abort condition) */
338 static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
339 				  0 };
340 
341 /* We're interested in different interrupts depending on the mode */
342 static unsigned int img_i2c_int_enable_by_mode[] = {
343 	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
344 	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
345 	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
346 	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347 	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
348 	[MODE_FATAL]     = 0,
349 	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
350 	[MODE_SUSPEND]   = 0,
351 };
352 
353 /* Atomic command names */
354 static const char * const img_i2c_atomic_cmd_names[] = {
355 	[CMD_PAUSE]	= "PAUSE",
356 	[CMD_GEN_DATA]	= "GEN_DATA",
357 	[CMD_GEN_START]	= "GEN_START",
358 	[CMD_GEN_STOP]	= "GEN_STOP",
359 	[CMD_GEN_ACK]	= "GEN_ACK",
360 	[CMD_GEN_NACK]	= "GEN_NACK",
361 	[CMD_RET_DATA]	= "RET_DATA",
362 	[CMD_RET_ACK]	= "RET_ACK",
363 };
364 
365 struct img_i2c {
366 	struct i2c_adapter adap;
367 
368 	void __iomem *base;
369 
370 	/*
371 	 * The scb core clock is used to get the input frequency, and to disable
372 	 * it after every set of transactions to save some power.
373 	 */
374 	struct clk *scb_clk, *sys_clk;
375 	unsigned int bitrate;
376 	bool need_wr_rd_fence;
377 
378 	/* state */
379 	struct completion msg_complete;
380 	spinlock_t lock;	/* lock before doing anything with the state */
381 	struct i2c_msg msg;
382 
383 	/* After the last transaction, wait for a stop bit */
384 	bool last_msg;
385 	int msg_status;
386 
387 	enum img_i2c_mode mode;
388 	u32 int_enable;		/* depends on mode */
389 	u32 line_status;	/* line status over command */
390 
391 	/*
392 	 * To avoid slave event interrupts in automatic mode, use a timer to
393 	 * poll the abort condition if we don't get an interrupt for too long.
394 	 */
395 	struct timer_list check_timer;
396 	bool t_halt;
397 
398 	/* atomic mode state */
399 	bool at_t_done;
400 	bool at_slave_event;
401 	int at_cur_cmd;
402 	u8 at_cur_data;
403 
404 	/* Sequence: either reset or stop. See img_i2c_sequence. */
405 	u8 *seq;
406 
407 	/* raw mode */
408 	unsigned int raw_timeout;
409 };
410 
411 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
412 {
413 	writel(value, i2c->base + offset);
414 }
415 
416 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
417 {
418 	return readl(i2c->base + offset);
419 }
420 
421 /*
422  * The code to read from the master read fifo, and write to the master
423  * write fifo, checks a bit in an SCB register before every byte to
424  * ensure that the fifo is not full (write fifo) or empty (read fifo).
425  * Due to clock domain crossing inside the SCB block the updated value
426  * of this bit is only visible after 2 cycles.
427  *
428  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
429  * revision register), and it's called after reading from or writing to the
430  * fifos to ensure that subsequent reads of the fifo status bits do not read
431  * stale values.
432  */
433 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
434 {
435 	if (i2c->need_wr_rd_fence) {
436 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
437 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
438 	}
439 }
440 
441 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
442 {
443 	i2c->mode = mode;
444 	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
445 	i2c->line_status = 0;
446 }
447 
448 static void img_i2c_raw_op(struct img_i2c *i2c)
449 {
450 	i2c->raw_timeout = 0;
451 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
452 		OVERRIDE_SCLKEN_OVR |
453 		OVERRIDE_SDATEN_OVR |
454 		OVERRIDE_MASTER |
455 		OVERRIDE_LINE_OVR_EN |
456 		OVERRIDE_DIRECT |
457 		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
458 		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
459 }
460 
461 static const char *img_i2c_atomic_op_name(unsigned int cmd)
462 {
463 	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
464 		return "UNKNOWN";
465 	return img_i2c_atomic_cmd_names[cmd];
466 }
467 
468 /* Send a single atomic mode command to the hardware */
469 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
470 {
471 	i2c->at_cur_cmd = cmd;
472 	i2c->at_cur_data = data;
473 
474 	/* work around lack of data setup time when generating data */
475 	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
476 		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
477 
478 		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
479 			/* hold the data line down for a moment */
480 			img_i2c_switch_mode(i2c, MODE_RAW);
481 			img_i2c_raw_op(i2c);
482 			return;
483 		}
484 	}
485 
486 	dev_dbg(i2c->adap.dev.parent,
487 		"atomic cmd=%s (%d) data=%#x\n",
488 		img_i2c_atomic_op_name(cmd), cmd, data);
489 	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
490 	i2c->at_slave_event = false;
491 	i2c->line_status = 0;
492 
493 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
494 		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
495 		OVERRIDE_MASTER |
496 		OVERRIDE_DIRECT |
497 		(data << OVERRIDE_DATA_SHIFT));
498 }
499 
500 /* Start a transaction in atomic mode */
501 static void img_i2c_atomic_start(struct img_i2c *i2c)
502 {
503 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
504 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
505 	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
506 }
507 
508 static void img_i2c_soft_reset(struct img_i2c *i2c)
509 {
510 	i2c->t_halt = false;
511 	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
512 	img_i2c_writel(i2c, SCB_CONTROL_REG,
513 		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
514 }
515 
516 /* enable or release transaction halt for control of repeated starts */
517 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
518 {
519 	u32 val;
520 
521 	if (i2c->t_halt == t_halt)
522 		return;
523 	i2c->t_halt = t_halt;
524 	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
525 	if (t_halt)
526 		val |= SCB_CONTROL_TRANSACTION_HALT;
527 	else
528 		val &= ~SCB_CONTROL_TRANSACTION_HALT;
529 	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
530 }
531 
532 /* Drain data from the FIFO into the buffer (automatic mode) */
533 static void img_i2c_read_fifo(struct img_i2c *i2c)
534 {
535 	while (i2c->msg.len) {
536 		u32 fifo_status;
537 		u8 data;
538 
539 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
540 		if (fifo_status & FIFO_READ_EMPTY)
541 			break;
542 
543 		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
544 		*i2c->msg.buf = data;
545 
546 		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
547 		img_i2c_wr_rd_fence(i2c);
548 		i2c->msg.len--;
549 		i2c->msg.buf++;
550 	}
551 }
552 
553 /* Fill the FIFO with data from the buffer (automatic mode) */
554 static void img_i2c_write_fifo(struct img_i2c *i2c)
555 {
556 	while (i2c->msg.len) {
557 		u32 fifo_status;
558 
559 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
560 		if (fifo_status & FIFO_WRITE_FULL)
561 			break;
562 
563 		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
564 		img_i2c_wr_rd_fence(i2c);
565 		i2c->msg.len--;
566 		i2c->msg.buf++;
567 	}
568 
569 	/* Disable fifo emptying interrupt if nothing more to write */
570 	if (!i2c->msg.len)
571 		i2c->int_enable &= ~INT_FIFO_EMPTYING;
572 }
573 
574 /* Start a read transaction in automatic mode */
575 static void img_i2c_read(struct img_i2c *i2c)
576 {
577 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
578 	if (!i2c->last_msg)
579 		i2c->int_enable |= INT_SLAVE_EVENT;
580 
581 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
582 	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
583 	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
584 
585 	img_i2c_transaction_halt(i2c, false);
586 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
587 }
588 
589 /* Start a write transaction in automatic mode */
590 static void img_i2c_write(struct img_i2c *i2c)
591 {
592 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
593 	if (!i2c->last_msg)
594 		i2c->int_enable |= INT_SLAVE_EVENT;
595 
596 	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
597 	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
598 
599 	img_i2c_transaction_halt(i2c, false);
600 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
601 	img_i2c_write_fifo(i2c);
602 
603 	/* img_i2c_write_fifo() may modify int_enable */
604 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
605 }
606 
607 /*
608  * Indicate that the transaction is complete. This is called from the
609  * ISR to wake up the waiting thread, after which the ISR must not
610  * access any more SCB registers.
611  */
612 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
613 {
614 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
615 	if (status) {
616 		i2c->msg_status = status;
617 		img_i2c_transaction_halt(i2c, false);
618 	}
619 	complete(&i2c->msg_complete);
620 }
621 
622 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
623 					u32 int_status, u32 line_status)
624 {
625 	/* Stay in raw mode for this, so we don't just loop infinitely */
626 	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
627 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
628 	return 0;
629 }
630 
631 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
632 				u32 line_status)
633 {
634 	if (int_status & INT_TIMING) {
635 		if (i2c->raw_timeout == 0)
636 			return img_i2c_raw_atomic_delay_handler(i2c,
637 				int_status, line_status);
638 		--i2c->raw_timeout;
639 	}
640 	return 0;
641 }
642 
643 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
644 {
645 	static const unsigned int continue_bits[] = {
646 		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
647 		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
648 		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
649 		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
650 		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
651 	};
652 	int next_cmd = -1;
653 	u8 next_data = 0x00;
654 
655 	if (int_status & INT_SLAVE_EVENT)
656 		i2c->at_slave_event = true;
657 	if (int_status & INT_TRANSACTION_DONE)
658 		i2c->at_t_done = true;
659 
660 	if (!i2c->at_slave_event || !i2c->at_t_done)
661 		return 0;
662 
663 	/* wait if no continue bits are set */
664 	if (i2c->at_cur_cmd >= 0 &&
665 	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
666 		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
667 
668 		if (cont_bits) {
669 			cont_bits |= LINESTAT_ABORT_DET;
670 			if (!(i2c->line_status & cont_bits))
671 				return 0;
672 		}
673 	}
674 
675 	/* follow the sequence of commands in i2c->seq */
676 	next_cmd = *i2c->seq;
677 	/* stop on a nil */
678 	if (!next_cmd) {
679 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
680 		return ISR_COMPLETE(0);
681 	}
682 	/* when generating data, the next byte is the data */
683 	if (next_cmd == CMD_GEN_DATA) {
684 		++i2c->seq;
685 		next_data = *i2c->seq;
686 	}
687 	++i2c->seq;
688 	img_i2c_atomic_op(i2c, next_cmd, next_data);
689 
690 	return 0;
691 }
692 
693 static void img_i2c_reset_start(struct img_i2c *i2c)
694 {
695 	/* Initiate the magic dance */
696 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
697 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
698 	i2c->seq = img_i2c_reset_seq;
699 	i2c->at_slave_event = true;
700 	i2c->at_t_done = true;
701 	i2c->at_cur_cmd = -1;
702 
703 	/* img_i2c_reset_seq isn't empty so the following won't fail */
704 	img_i2c_sequence(i2c, 0);
705 }
706 
707 static void img_i2c_stop_start(struct img_i2c *i2c)
708 {
709 	/* Initiate a stop bit sequence */
710 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
711 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
712 	i2c->seq = img_i2c_stop_seq;
713 	i2c->at_slave_event = true;
714 	i2c->at_t_done = true;
715 	i2c->at_cur_cmd = -1;
716 
717 	/* img_i2c_stop_seq isn't empty so the following won't fail */
718 	img_i2c_sequence(i2c, 0);
719 }
720 
721 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
722 				   u32 int_status,
723 				   u32 line_status)
724 {
725 	int next_cmd = -1;
726 	u8 next_data = 0x00;
727 
728 	if (int_status & INT_SLAVE_EVENT)
729 		i2c->at_slave_event = true;
730 	if (int_status & INT_TRANSACTION_DONE)
731 		i2c->at_t_done = true;
732 
733 	if (!i2c->at_slave_event || !i2c->at_t_done)
734 		goto next_atomic_cmd;
735 	if (i2c->line_status & LINESTAT_ABORT_DET) {
736 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
737 		next_cmd = CMD_GEN_STOP;
738 		i2c->msg_status = -EIO;
739 		goto next_atomic_cmd;
740 	}
741 
742 	/* i2c->at_cur_cmd may have completed */
743 	switch (i2c->at_cur_cmd) {
744 	case CMD_GEN_START:
745 		next_cmd = CMD_GEN_DATA;
746 		next_data = (i2c->msg.addr << 1);
747 		if (i2c->msg.flags & I2C_M_RD)
748 			next_data |= 0x1;
749 		break;
750 	case CMD_GEN_DATA:
751 		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
752 			next_cmd = CMD_RET_ACK;
753 		break;
754 	case CMD_RET_ACK:
755 		if (i2c->line_status & LINESTAT_ACK_DET) {
756 			if (i2c->msg.len == 0) {
757 				next_cmd = CMD_GEN_STOP;
758 			} else if (i2c->msg.flags & I2C_M_RD) {
759 				next_cmd = CMD_RET_DATA;
760 			} else {
761 				next_cmd = CMD_GEN_DATA;
762 				next_data = *i2c->msg.buf;
763 				--i2c->msg.len;
764 				++i2c->msg.buf;
765 			}
766 		} else if (i2c->line_status & LINESTAT_NACK_DET) {
767 			i2c->msg_status = -EIO;
768 			next_cmd = CMD_GEN_STOP;
769 		}
770 		break;
771 	case CMD_RET_DATA:
772 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
773 			*i2c->msg.buf = (i2c->line_status &
774 						LINESTAT_INPUT_DATA)
775 					>> LINESTAT_INPUT_DATA_SHIFT;
776 			--i2c->msg.len;
777 			++i2c->msg.buf;
778 			if (i2c->msg.len)
779 				next_cmd = CMD_GEN_ACK;
780 			else
781 				next_cmd = CMD_GEN_NACK;
782 		}
783 		break;
784 	case CMD_GEN_ACK:
785 		if (i2c->line_status & LINESTAT_ACK_DET) {
786 			next_cmd = CMD_RET_DATA;
787 		} else {
788 			i2c->msg_status = -EIO;
789 			next_cmd = CMD_GEN_STOP;
790 		}
791 		break;
792 	case CMD_GEN_NACK:
793 		next_cmd = CMD_GEN_STOP;
794 		break;
795 	case CMD_GEN_STOP:
796 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
797 		return ISR_COMPLETE(0);
798 	default:
799 		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
800 			i2c->at_cur_cmd);
801 		i2c->msg_status = -EIO;
802 		next_cmd = CMD_GEN_STOP;
803 		break;
804 	}
805 
806 next_atomic_cmd:
807 	if (next_cmd != -1) {
808 		/* don't actually stop unless we're the last transaction */
809 		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
810 						!i2c->last_msg)
811 			return ISR_COMPLETE(0);
812 		img_i2c_atomic_op(i2c, next_cmd, next_data);
813 	}
814 	return 0;
815 }
816 
817 /*
818  * Timer function to check if something has gone wrong in automatic mode (so we
819  * don't have to handle so many interrupts just to catch an exception).
820  */
821 static void img_i2c_check_timer(unsigned long arg)
822 {
823 	struct img_i2c *i2c = (struct img_i2c *)arg;
824 	unsigned long flags;
825 	unsigned int line_status;
826 
827 	spin_lock_irqsave(&i2c->lock, flags);
828 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
829 
830 	/* check for an abort condition */
831 	if (line_status & LINESTAT_ABORT_DET) {
832 		dev_dbg(i2c->adap.dev.parent,
833 			"abort condition detected by check timer\n");
834 		/* enable slave event interrupt mask to trigger irq */
835 		img_i2c_writel(i2c, SCB_INT_MASK_REG,
836 			       i2c->int_enable | INT_SLAVE_EVENT);
837 	}
838 
839 	spin_unlock_irqrestore(&i2c->lock, flags);
840 }
841 
842 static unsigned int img_i2c_auto(struct img_i2c *i2c,
843 				 unsigned int int_status,
844 				 unsigned int line_status)
845 {
846 	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
847 		return ISR_COMPLETE(EIO);
848 
849 	if (line_status & LINESTAT_ABORT_DET) {
850 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
851 		/* empty the read fifo */
852 		if ((i2c->msg.flags & I2C_M_RD) &&
853 		    (int_status & INT_FIFO_FULL_FILLING))
854 			img_i2c_read_fifo(i2c);
855 		/* use atomic mode and try to force a stop bit */
856 		i2c->msg_status = -EIO;
857 		img_i2c_stop_start(i2c);
858 		return 0;
859 	}
860 
861 	/* Enable transaction halt on start bit */
862 	if (!i2c->last_msg && i2c->line_status & LINESTAT_START_BIT_DET) {
863 		img_i2c_transaction_halt(i2c, true);
864 		/* we're no longer interested in the slave event */
865 		i2c->int_enable &= ~INT_SLAVE_EVENT;
866 	}
867 
868 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
869 
870 	if (i2c->msg.flags & I2C_M_RD) {
871 		if (int_status & INT_FIFO_FULL_FILLING) {
872 			img_i2c_read_fifo(i2c);
873 			if (i2c->msg.len == 0)
874 				return ISR_WAITSTOP;
875 		}
876 	} else {
877 		if (int_status & INT_FIFO_EMPTY_EMPTYING) {
878 			/*
879 			 * The write fifo empty indicates that we're in the
880 			 * last byte so it's safe to start a new write
881 			 * transaction without losing any bytes from the
882 			 * previous one.
883 			 * see 2.3.7 Repeated Start Transactions.
884 			 */
885 			if ((int_status & INT_FIFO_EMPTY) &&
886 			    i2c->msg.len == 0)
887 				return ISR_WAITSTOP;
888 			img_i2c_write_fifo(i2c);
889 		}
890 	}
891 
892 	return 0;
893 }
894 
895 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
896 {
897 	struct img_i2c *i2c = (struct img_i2c *)dev_id;
898 	u32 int_status, line_status;
899 	/* We handle transaction completion AFTER accessing registers */
900 	unsigned int hret;
901 
902 	/* Read interrupt status register. */
903 	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
904 	/* Clear detected interrupts. */
905 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
906 
907 	/*
908 	 * Read line status and clear it until it actually is clear.  We have
909 	 * to be careful not to lose any line status bits that get latched.
910 	 */
911 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
912 	if (line_status & LINESTAT_LATCHED) {
913 		img_i2c_writel(i2c, SCB_CLEAR_REG,
914 			      (line_status & LINESTAT_LATCHED)
915 				>> LINESTAT_CLEAR_SHIFT);
916 		img_i2c_wr_rd_fence(i2c);
917 	}
918 
919 	spin_lock(&i2c->lock);
920 
921 	/* Keep track of line status bits received */
922 	i2c->line_status &= ~LINESTAT_INPUT_DATA;
923 	i2c->line_status |= line_status;
924 
925 	/*
926 	 * Certain interrupts indicate that sclk low timeout is not
927 	 * a problem. If any of these are set, just continue.
928 	 */
929 	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
930 	    !(int_status & (INT_SLAVE_EVENT |
931 			    INT_FIFO_EMPTY |
932 			    INT_FIFO_FULL))) {
933 		dev_crit(i2c->adap.dev.parent,
934 			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
935 			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
936 			 i2c->msg.addr);
937 		hret = ISR_FATAL(EIO);
938 		goto out;
939 	}
940 
941 	if (i2c->mode == MODE_ATOMIC)
942 		hret = img_i2c_atomic(i2c, int_status, line_status);
943 	else if (i2c->mode == MODE_AUTOMATIC)
944 		hret = img_i2c_auto(i2c, int_status, line_status);
945 	else if (i2c->mode == MODE_SEQUENCE)
946 		hret = img_i2c_sequence(i2c, int_status);
947 	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
948 			 (line_status & LINESTAT_STOP_BIT_DET))
949 		hret = ISR_COMPLETE(0);
950 	else if (i2c->mode == MODE_RAW)
951 		hret = img_i2c_raw(i2c, int_status, line_status);
952 	else
953 		hret = 0;
954 
955 	/* Clear detected level interrupts. */
956 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
957 
958 out:
959 	if (hret & ISR_WAITSTOP) {
960 		/*
961 		 * Only wait for stop on last message.
962 		 * Also we may already have detected the stop bit.
963 		 */
964 		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
965 			hret = ISR_COMPLETE(0);
966 		else
967 			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
968 	}
969 
970 	/* now we've finished using regs, handle transaction completion */
971 	if (hret & ISR_COMPLETE_M) {
972 		int status = -(hret & ISR_STATUS_M);
973 
974 		img_i2c_complete_transaction(i2c, status);
975 		if (hret & ISR_FATAL_M)
976 			img_i2c_switch_mode(i2c, MODE_FATAL);
977 	}
978 
979 	/* Enable interrupts (int_enable may be altered by changing mode) */
980 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
981 
982 	spin_unlock(&i2c->lock);
983 
984 	return IRQ_HANDLED;
985 }
986 
987 /* Force a bus reset sequence and wait for it to complete */
988 static int img_i2c_reset_bus(struct img_i2c *i2c)
989 {
990 	unsigned long flags;
991 	unsigned long time_left;
992 
993 	spin_lock_irqsave(&i2c->lock, flags);
994 	reinit_completion(&i2c->msg_complete);
995 	img_i2c_reset_start(i2c);
996 	spin_unlock_irqrestore(&i2c->lock, flags);
997 
998 	time_left = wait_for_completion_timeout(&i2c->msg_complete,
999 					      IMG_I2C_TIMEOUT);
1000 	if (time_left == 0)
1001 		return -ETIMEDOUT;
1002 	return 0;
1003 }
1004 
1005 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1006 			int num)
1007 {
1008 	struct img_i2c *i2c = i2c_get_adapdata(adap);
1009 	bool atomic = false;
1010 	int i, ret;
1011 	unsigned long time_left;
1012 
1013 	if (i2c->mode == MODE_SUSPEND) {
1014 		WARN(1, "refusing to service transaction in suspended state\n");
1015 		return -EIO;
1016 	}
1017 
1018 	if (i2c->mode == MODE_FATAL)
1019 		return -EIO;
1020 
1021 	for (i = 0; i < num; i++) {
1022 		if (likely(msgs[i].len))
1023 			continue;
1024 		/*
1025 		 * 0 byte reads are not possible because the slave could try
1026 		 * and pull the data line low, preventing a stop bit.
1027 		 */
1028 		if (unlikely(msgs[i].flags & I2C_M_RD))
1029 			return -EIO;
1030 		/*
1031 		 * 0 byte writes are possible and used for probing, but we
1032 		 * cannot do them in automatic mode, so use atomic mode
1033 		 * instead.
1034 		 */
1035 		atomic = true;
1036 	}
1037 
1038 	ret = clk_prepare_enable(i2c->scb_clk);
1039 	if (ret)
1040 		return ret;
1041 
1042 	for (i = 0; i < num; i++) {
1043 		struct i2c_msg *msg = &msgs[i];
1044 		unsigned long flags;
1045 
1046 		spin_lock_irqsave(&i2c->lock, flags);
1047 
1048 		/*
1049 		 * Make a copy of the message struct. We mustn't modify the
1050 		 * original or we'll confuse drivers and i2c-dev.
1051 		 */
1052 		i2c->msg = *msg;
1053 		i2c->msg_status = 0;
1054 
1055 		/*
1056 		 * After the last message we must have waited for a stop bit.
1057 		 * Not waiting can cause problems when the clock is disabled
1058 		 * before the stop bit is sent, and the linux I2C interface
1059 		 * requires separate transfers not to joined with repeated
1060 		 * start.
1061 		 */
1062 		i2c->last_msg = (i == num - 1);
1063 		reinit_completion(&i2c->msg_complete);
1064 
1065 		if (atomic)
1066 			img_i2c_atomic_start(i2c);
1067 		else if (msg->flags & I2C_M_RD)
1068 			img_i2c_read(i2c);
1069 		else
1070 			img_i2c_write(i2c);
1071 		spin_unlock_irqrestore(&i2c->lock, flags);
1072 
1073 		time_left = wait_for_completion_timeout(&i2c->msg_complete,
1074 						      IMG_I2C_TIMEOUT);
1075 		del_timer_sync(&i2c->check_timer);
1076 
1077 		if (time_left == 0) {
1078 			dev_err(adap->dev.parent, "i2c transfer timed out\n");
1079 			i2c->msg_status = -ETIMEDOUT;
1080 			break;
1081 		}
1082 
1083 		if (i2c->msg_status)
1084 			break;
1085 	}
1086 
1087 	clk_disable_unprepare(i2c->scb_clk);
1088 
1089 	return i2c->msg_status ? i2c->msg_status : num;
1090 }
1091 
1092 static u32 img_i2c_func(struct i2c_adapter *adap)
1093 {
1094 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1095 }
1096 
1097 static const struct i2c_algorithm img_i2c_algo = {
1098 	.master_xfer = img_i2c_xfer,
1099 	.functionality = img_i2c_func,
1100 };
1101 
1102 static int img_i2c_init(struct img_i2c *i2c)
1103 {
1104 	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1105 	unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1106 	struct img_i2c_timings timing;
1107 	u32 rev;
1108 
1109 	ret = clk_prepare_enable(i2c->scb_clk);
1110 	if (ret)
1111 		return ret;
1112 
1113 	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1114 	if ((rev & 0x00ffffff) < 0x00020200) {
1115 		dev_info(i2c->adap.dev.parent,
1116 			 "Unknown hardware revision (%d.%d.%d.%d)\n",
1117 			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1118 			 (rev >> 8) & 0xff, rev & 0xff);
1119 		clk_disable_unprepare(i2c->scb_clk);
1120 		return -EINVAL;
1121 	}
1122 
1123 	if (rev == REL_SOC_IP_SCB_2_2_1) {
1124 		i2c->need_wr_rd_fence = true;
1125 		dev_info(i2c->adap.dev.parent, "fence quirk enabled");
1126 	}
1127 
1128 	bitrate_khz = i2c->bitrate / 1000;
1129 	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1130 
1131 	/* Determine what mode we're in from the bitrate */
1132 	timing = timings[0];
1133 	for (i = 0; i < ARRAY_SIZE(timings); i++) {
1134 		if (i2c->bitrate <= timings[i].max_bitrate) {
1135 			timing = timings[i];
1136 			break;
1137 		}
1138 	}
1139 
1140 	/* Find the prescale that would give us that inc (approx delay = 0) */
1141 	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1142 	prescale = clamp_t(unsigned int, prescale, 1, 8);
1143 	clk_khz /= prescale;
1144 
1145 	/* Setup the clock increment value */
1146 	inc = (256 * 16 * bitrate_khz) / clk_khz;
1147 
1148 	/*
1149 	 * The clock generation logic allows to filter glitches on the bus.
1150 	 * This filter is able to remove bus glitches shorter than 50ns.
1151 	 * If the clock enable rate is greater than 20 MHz, no filtering
1152 	 * is required, so we need to disable it.
1153 	 * If it's between the 20-40 MHz range, there's no need to divide
1154 	 * the clock to get a filter.
1155 	 */
1156 	if (clk_khz < 20000) {
1157 		filt = SCB_FILT_DISABLE;
1158 	} else if (clk_khz < 40000) {
1159 		filt = SCB_FILT_BYPASS;
1160 	} else {
1161 		/* Calculate filter clock */
1162 		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1163 
1164 		/* Scale up if needed */
1165 		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1166 			inc++;
1167 
1168 		if (filt > SCB_FILT_INC_MASK)
1169 			filt = SCB_FILT_INC_MASK;
1170 
1171 		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1172 	}
1173 	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1174 	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1175 
1176 	/* Obtain the clock period of the fx16 clock in ns */
1177 	clk_period = (256 * 1000000) / (clk_khz * inc);
1178 
1179 	/* Calculate the bitrate in terms of internal clock pulses */
1180 	int_bitrate = 1000000 / (bitrate_khz * clk_period);
1181 	if ((1000000 % (bitrate_khz * clk_period)) >=
1182 	    ((bitrate_khz * clk_period) / 2))
1183 		int_bitrate++;
1184 
1185 	/* Setup TCKH value */
1186 	tckh = timing.tckh / clk_period;
1187 	if (timing.tckh % clk_period)
1188 		tckh++;
1189 
1190 	if (tckh > 0)
1191 		data = tckh - 1;
1192 	else
1193 		data = 0;
1194 
1195 	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, data);
1196 
1197 	/* Setup TCKL value */
1198 	tckl = int_bitrate - tckh;
1199 
1200 	if (tckl > 0)
1201 		data = tckl - 1;
1202 	else
1203 		data = 0;
1204 
1205 	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, data);
1206 
1207 	/* Setup TSDH value */
1208 	tsdh = timing.tsdh / clk_period;
1209 	if (timing.tsdh % clk_period)
1210 		tsdh++;
1211 
1212 	if (tsdh > 1)
1213 		data = tsdh - 1;
1214 	else
1215 		data = 0x01;
1216 	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1217 
1218 	/* This value is used later */
1219 	tsdh = data;
1220 
1221 	/* Setup TPL value */
1222 	data = timing.tpl / clk_period;
1223 	if (data > 0)
1224 		--data;
1225 	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1226 
1227 	/* Setup TPH value */
1228 	data = timing.tph / clk_period;
1229 	if (data > 0)
1230 		--data;
1231 	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1232 
1233 	/* Setup TSDL value to TPL + TSDH + 2 */
1234 	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1235 
1236 	/* Setup TP2S value */
1237 	data = timing.tp2s / clk_period;
1238 	if (data > 0)
1239 		--data;
1240 	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1241 
1242 	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1243 	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1244 	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1245 
1246 	/* Take module out of soft reset and enable clocks */
1247 	img_i2c_soft_reset(i2c);
1248 
1249 	/* Disable all interrupts */
1250 	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1251 
1252 	/* Clear all interrupts */
1253 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1254 
1255 	/* Clear the scb_line_status events */
1256 	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1257 
1258 	/* Enable interrupts */
1259 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1260 
1261 	/* Perform a synchronous sequence to reset the bus */
1262 	ret = img_i2c_reset_bus(i2c);
1263 
1264 	clk_disable_unprepare(i2c->scb_clk);
1265 
1266 	return ret;
1267 }
1268 
1269 static int img_i2c_probe(struct platform_device *pdev)
1270 {
1271 	struct device_node *node = pdev->dev.of_node;
1272 	struct img_i2c *i2c;
1273 	struct resource *res;
1274 	int irq, ret;
1275 	u32 val;
1276 
1277 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1278 	if (!i2c)
1279 		return -ENOMEM;
1280 
1281 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1282 	i2c->base = devm_ioremap_resource(&pdev->dev, res);
1283 	if (IS_ERR(i2c->base))
1284 		return PTR_ERR(i2c->base);
1285 
1286 	irq = platform_get_irq(pdev, 0);
1287 	if (irq < 0) {
1288 		dev_err(&pdev->dev, "can't get irq number\n");
1289 		return irq;
1290 	}
1291 
1292 	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1293 	if (IS_ERR(i2c->sys_clk)) {
1294 		dev_err(&pdev->dev, "can't get system clock\n");
1295 		return PTR_ERR(i2c->sys_clk);
1296 	}
1297 
1298 	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1299 	if (IS_ERR(i2c->scb_clk)) {
1300 		dev_err(&pdev->dev, "can't get core clock\n");
1301 		return PTR_ERR(i2c->scb_clk);
1302 	}
1303 
1304 	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1305 			       pdev->name, i2c);
1306 	if (ret) {
1307 		dev_err(&pdev->dev, "can't request irq %d\n", irq);
1308 		return ret;
1309 	}
1310 
1311 	/* Set up the exception check timer */
1312 	init_timer(&i2c->check_timer);
1313 	i2c->check_timer.function = img_i2c_check_timer;
1314 	i2c->check_timer.data = (unsigned long)i2c;
1315 
1316 	i2c->bitrate = timings[0].max_bitrate;
1317 	if (!of_property_read_u32(node, "clock-frequency", &val))
1318 		i2c->bitrate = val;
1319 
1320 	i2c_set_adapdata(&i2c->adap, i2c);
1321 	i2c->adap.dev.parent = &pdev->dev;
1322 	i2c->adap.dev.of_node = node;
1323 	i2c->adap.owner = THIS_MODULE;
1324 	i2c->adap.algo = &img_i2c_algo;
1325 	i2c->adap.retries = 5;
1326 	i2c->adap.nr = pdev->id;
1327 	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1328 
1329 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
1330 	spin_lock_init(&i2c->lock);
1331 	init_completion(&i2c->msg_complete);
1332 
1333 	platform_set_drvdata(pdev, i2c);
1334 
1335 	ret = clk_prepare_enable(i2c->sys_clk);
1336 	if (ret)
1337 		return ret;
1338 
1339 	ret = img_i2c_init(i2c);
1340 	if (ret)
1341 		goto disable_clk;
1342 
1343 	ret = i2c_add_numbered_adapter(&i2c->adap);
1344 	if (ret < 0) {
1345 		dev_err(&pdev->dev, "failed to add adapter\n");
1346 		goto disable_clk;
1347 	}
1348 
1349 	return 0;
1350 
1351 disable_clk:
1352 	clk_disable_unprepare(i2c->sys_clk);
1353 	return ret;
1354 }
1355 
1356 static int img_i2c_remove(struct platform_device *dev)
1357 {
1358 	struct img_i2c *i2c = platform_get_drvdata(dev);
1359 
1360 	i2c_del_adapter(&i2c->adap);
1361 	clk_disable_unprepare(i2c->sys_clk);
1362 
1363 	return 0;
1364 }
1365 
1366 #ifdef CONFIG_PM_SLEEP
1367 static int img_i2c_suspend(struct device *dev)
1368 {
1369 	struct img_i2c *i2c = dev_get_drvdata(dev);
1370 
1371 	img_i2c_switch_mode(i2c, MODE_SUSPEND);
1372 
1373 	clk_disable_unprepare(i2c->sys_clk);
1374 
1375 	return 0;
1376 }
1377 
1378 static int img_i2c_resume(struct device *dev)
1379 {
1380 	struct img_i2c *i2c = dev_get_drvdata(dev);
1381 	int ret;
1382 
1383 	ret = clk_prepare_enable(i2c->sys_clk);
1384 	if (ret)
1385 		return ret;
1386 
1387 	img_i2c_init(i2c);
1388 
1389 	return 0;
1390 }
1391 #endif /* CONFIG_PM_SLEEP */
1392 
1393 static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1394 
1395 static const struct of_device_id img_scb_i2c_match[] = {
1396 	{ .compatible = "img,scb-i2c" },
1397 	{ }
1398 };
1399 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1400 
1401 static struct platform_driver img_scb_i2c_driver = {
1402 	.driver = {
1403 		.name		= "img-i2c-scb",
1404 		.of_match_table	= img_scb_i2c_match,
1405 		.pm		= &img_i2c_pm,
1406 	},
1407 	.probe = img_i2c_probe,
1408 	.remove = img_i2c_remove,
1409 };
1410 module_platform_driver(img_scb_i2c_driver);
1411 
1412 MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1413 MODULE_DESCRIPTION("IMG host I2C driver");
1414 MODULE_LICENSE("GPL v2");
1415