xref: /openbmc/linux/drivers/i2c/busses/i2c-img-scb.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3  *
4  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * There are three ways that this I2C controller can be driven:
11  *
12  * - Raw control of the SDA and SCK signals.
13  *
14  *   This corresponds to MODE_RAW, which takes control of the signals
15  *   directly for a certain number of clock cycles (the INT_TIMING
16  *   interrupt can be used for timing).
17  *
18  * - Atomic commands. A low level I2C symbol (such as generate
19  *   start/stop/ack/nack bit, generate byte, receive byte, and receive
20  *   ACK) is given to the hardware, with detection of completion by bits
21  *   in the LINESTAT register.
22  *
23  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
24  *   state machine in the interrupt handler to compose/react to I2C
25  *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
26  *   which emits a simple fixed sequence of atomic mode commands.
27  *
28  *   Due to software control, the use of atomic commands usually results
29  *   in suboptimal use of the bus, with gaps between the I2C symbols while
30  *   the driver decides what to do next.
31  *
32  * - Automatic mode. A bus address, and whether to read/write is
33  *   specified, and the hardware takes care of the I2C state machine,
34  *   using a FIFO to send/receive bytes of data to an I2C slave. The
35  *   driver just has to keep the FIFO drained or filled in response to the
36  *   appropriate FIFO interrupts.
37  *
38  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39  *   with control of repeated start bits between I2C messages.
40  *
41  *   Use of automatic mode and the FIFO can make much more efficient use
42  *   of the bus compared to individual atomic commands, with potentially
43  *   no wasted time between I2C symbols or I2C messages.
44  *
45  * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46  * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47  * the bus), MODE_ATOMIC must be used since automatic mode is normally
48  * started by the writing of data into the FIFO.
49  *
50  * The other modes are used in specific circumstances where MODE_ATOMIC and
51  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53  * it is in a sane state.
54  *
55  * Notice that the driver implements a timer-based timeout mechanism.
56  * The reason for this mechanism is to reduce the number of interrupts
57  * received in automatic mode.
58  *
59  * The driver would get a slave event and transaction done interrupts for
60  * each atomic mode command that gets completed. However, these events are
61  * not needed in automatic mode, becase those atomic mode commands are
62  * managed automatically by the hardware.
63  *
64  * In practice, normal I2C transactions will be complete well before you
65  * get the timer interrupt, as the timer is re-scheduled during FIFO
66  * maintenance and disabled after the transaction is complete.
67  *
68  * In this way normal automatic mode operation isn't impacted by
69  * unnecessary interrupts, but the exceptional abort condition can still be
70  * detected (with a slight delay).
71  */
72 
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
80 #include <linux/io.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/slab.h>
86 #include <linux/timer.h>
87 
88 /* Register offsets */
89 
90 #define SCB_STATUS_REG			0x00
91 #define SCB_OVERRIDE_REG		0x04
92 #define SCB_READ_ADDR_REG		0x08
93 #define SCB_READ_COUNT_REG		0x0c
94 #define SCB_WRITE_ADDR_REG		0x10
95 #define SCB_READ_DATA_REG		0x14
96 #define SCB_WRITE_DATA_REG		0x18
97 #define SCB_FIFO_STATUS_REG		0x1c
98 #define SCB_CONTROL_SOFT_RESET		0x1f
99 #define SCB_CLK_SET_REG			0x3c
100 #define SCB_INT_STATUS_REG		0x40
101 #define SCB_INT_CLEAR_REG		0x44
102 #define SCB_INT_MASK_REG		0x48
103 #define SCB_CONTROL_REG			0x4c
104 #define SCB_TIME_TPL_REG		0x50
105 #define SCB_TIME_TPH_REG		0x54
106 #define SCB_TIME_TP2S_REG		0x58
107 #define SCB_TIME_TBI_REG		0x60
108 #define SCB_TIME_TSL_REG		0x64
109 #define SCB_TIME_TDL_REG		0x68
110 #define SCB_TIME_TSDL_REG		0x6c
111 #define SCB_TIME_TSDH_REG		0x70
112 #define SCB_READ_XADDR_REG		0x74
113 #define SCB_WRITE_XADDR_REG		0x78
114 #define SCB_WRITE_COUNT_REG		0x7c
115 #define SCB_CORE_REV_REG		0x80
116 #define SCB_TIME_TCKH_REG		0x84
117 #define SCB_TIME_TCKL_REG		0x88
118 #define SCB_FIFO_FLUSH_REG		0x8c
119 #define SCB_READ_FIFO_REG		0x94
120 #define SCB_CLEAR_REG			0x98
121 
122 /* SCB_CONTROL_REG bits */
123 
124 #define SCB_CONTROL_CLK_ENABLE		0x1e0
125 #define SCB_CONTROL_TRANSACTION_HALT	0x200
126 
127 #define FIFO_READ_FULL			BIT(0)
128 #define FIFO_READ_EMPTY			BIT(1)
129 #define FIFO_WRITE_FULL			BIT(2)
130 #define FIFO_WRITE_EMPTY		BIT(3)
131 
132 /* SCB_CLK_SET_REG bits */
133 #define SCB_FILT_DISABLE		BIT(31)
134 #define SCB_FILT_BYPASS			BIT(30)
135 #define SCB_FILT_INC_MASK		0x7f
136 #define SCB_FILT_INC_SHIFT		16
137 #define SCB_INC_MASK			0x7f
138 #define SCB_INC_SHIFT			8
139 
140 /* SCB_INT_*_REG bits */
141 
142 #define INT_BUS_INACTIVE		BIT(0)
143 #define INT_UNEXPECTED_START		BIT(1)
144 #define INT_SCLK_LOW_TIMEOUT		BIT(2)
145 #define INT_SDAT_LOW_TIMEOUT		BIT(3)
146 #define INT_WRITE_ACK_ERR		BIT(4)
147 #define INT_ADDR_ACK_ERR		BIT(5)
148 #define INT_FIFO_FULL			BIT(9)
149 #define INT_FIFO_FILLING		BIT(10)
150 #define INT_FIFO_EMPTY			BIT(11)
151 #define INT_FIFO_EMPTYING		BIT(12)
152 #define INT_TRANSACTION_DONE		BIT(15)
153 #define INT_SLAVE_EVENT			BIT(16)
154 #define INT_MASTER_HALTED		BIT(17)
155 #define INT_TIMING			BIT(18)
156 #define INT_STOP_DETECTED		BIT(19)
157 
158 #define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
159 
160 /* Level interrupts need clearing after handling instead of before */
161 #define INT_LEVEL			0x01e00
162 
163 /* Don't allow any interrupts while the clock may be off */
164 #define INT_ENABLE_MASK_INACTIVE	0x00000
165 
166 /* Interrupt masks for the different driver modes */
167 
168 #define INT_ENABLE_MASK_RAW		INT_TIMING
169 
170 #define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
171 					 INT_SLAVE_EVENT      | \
172 					 INT_ADDR_ACK_ERR     | \
173 					 INT_WRITE_ACK_ERR)
174 
175 #define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
176 					 INT_ADDR_ACK_ERR     | \
177 					 INT_WRITE_ACK_ERR    | \
178 					 INT_FIFO_FULL        | \
179 					 INT_FIFO_FILLING     | \
180 					 INT_FIFO_EMPTY       | \
181 					 INT_MASTER_HALTED    | \
182 					 INT_STOP_DETECTED)
183 
184 #define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
185 					 INT_ADDR_ACK_ERR     | \
186 					 INT_WRITE_ACK_ERR)
187 
188 /* SCB_STATUS_REG fields */
189 
190 #define LINESTAT_SCLK_LINE_STATUS	BIT(0)
191 #define LINESTAT_SCLK_EN		BIT(1)
192 #define LINESTAT_SDAT_LINE_STATUS	BIT(2)
193 #define LINESTAT_SDAT_EN		BIT(3)
194 #define LINESTAT_DET_START_STATUS	BIT(4)
195 #define LINESTAT_DET_STOP_STATUS	BIT(5)
196 #define LINESTAT_DET_ACK_STATUS		BIT(6)
197 #define LINESTAT_DET_NACK_STATUS	BIT(7)
198 #define LINESTAT_BUS_IDLE		BIT(8)
199 #define LINESTAT_T_DONE_STATUS		BIT(9)
200 #define LINESTAT_SCLK_OUT_STATUS	BIT(10)
201 #define LINESTAT_SDAT_OUT_STATUS	BIT(11)
202 #define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
203 #define LINESTAT_START_BIT_DET		BIT(13)
204 #define LINESTAT_STOP_BIT_DET		BIT(14)
205 #define LINESTAT_ACK_DET		BIT(15)
206 #define LINESTAT_NACK_DET		BIT(16)
207 #define LINESTAT_INPUT_HELD_V		BIT(17)
208 #define LINESTAT_ABORT_DET		BIT(18)
209 #define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
210 #define LINESTAT_INPUT_DATA		0xff000000
211 #define LINESTAT_INPUT_DATA_SHIFT	24
212 
213 #define LINESTAT_CLEAR_SHIFT		13
214 #define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
215 
216 /* SCB_OVERRIDE_REG fields */
217 
218 #define OVERRIDE_SCLK_OVR		BIT(0)
219 #define OVERRIDE_SCLKEN_OVR		BIT(1)
220 #define OVERRIDE_SDAT_OVR		BIT(2)
221 #define OVERRIDE_SDATEN_OVR		BIT(3)
222 #define OVERRIDE_MASTER			BIT(9)
223 #define OVERRIDE_LINE_OVR_EN		BIT(10)
224 #define OVERRIDE_DIRECT			BIT(11)
225 #define OVERRIDE_CMD_SHIFT		4
226 #define OVERRIDE_CMD_MASK		0x1f
227 #define OVERRIDE_DATA_SHIFT		24
228 
229 #define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
230 					 OVERRIDE_SCLKEN_OVR)
231 #define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
232 					 OVERRIDE_SCLKEN_OVR | \
233 					 OVERRIDE_SCLK_OVR)
234 #define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
235 					 OVERRIDE_SDATEN_OVR)
236 #define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
237 					 OVERRIDE_SDATEN_OVR | \
238 					 OVERRIDE_SDAT_OVR)
239 
240 /* OVERRIDE_CMD values */
241 
242 #define CMD_PAUSE			0x00
243 #define CMD_GEN_DATA			0x01
244 #define CMD_GEN_START			0x02
245 #define CMD_GEN_STOP			0x03
246 #define CMD_GEN_ACK			0x04
247 #define CMD_GEN_NACK			0x05
248 #define CMD_RET_DATA			0x08
249 #define CMD_RET_ACK			0x09
250 
251 /* Fixed timing values */
252 
253 #define TIMEOUT_TBI			0x0
254 #define TIMEOUT_TSL			0xffff
255 #define TIMEOUT_TDL			0x0
256 
257 /* Transaction timeout */
258 
259 #define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
260 
261 /*
262  * Worst incs are 1 (innacurate) and 16*256 (irregular).
263  * So a sensible inc is the logarithmic mean: 64 (2^6), which is
264  * in the middle of the valid range (0-127).
265  */
266 #define SCB_OPT_INC		64
267 
268 /* Setup the clock enable filtering for 25 ns */
269 #define SCB_FILT_GLITCH		25
270 
271 /*
272  * Bits to return from interrupt handler functions for different modes.
273  * This delays completion until we've finished with the registers, so that the
274  * function waiting for completion can safely disable the clock to save power.
275  */
276 #define ISR_COMPLETE_M		BIT(31)
277 #define ISR_FATAL_M		BIT(30)
278 #define ISR_WAITSTOP		BIT(29)
279 #define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
280 #define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
281 #define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
282 
283 enum img_i2c_mode {
284 	MODE_INACTIVE,
285 	MODE_RAW,
286 	MODE_ATOMIC,
287 	MODE_AUTOMATIC,
288 	MODE_SEQUENCE,
289 	MODE_FATAL,
290 	MODE_WAITSTOP,
291 	MODE_SUSPEND,
292 };
293 
294 /* Timing parameters for i2c modes (in ns) */
295 struct img_i2c_timings {
296 	const char *name;
297 	unsigned int max_bitrate;
298 	unsigned int tckh, tckl, tsdh, tsdl;
299 	unsigned int tp2s, tpl, tph;
300 };
301 
302 /* The timings array must be ordered from slower to faster */
303 static struct img_i2c_timings timings[] = {
304 	/* Standard mode */
305 	{
306 		.name = "standard",
307 		.max_bitrate = 100000,
308 		.tckh = 4000,
309 		.tckl = 4700,
310 		.tsdh = 4700,
311 		.tsdl = 8700,
312 		.tp2s = 4700,
313 		.tpl = 4700,
314 		.tph = 4000,
315 	},
316 	/* Fast mode */
317 	{
318 		.name = "fast",
319 		.max_bitrate = 400000,
320 		.tckh = 600,
321 		.tckl = 1300,
322 		.tsdh = 600,
323 		.tsdl = 1200,
324 		.tp2s = 1300,
325 		.tpl = 600,
326 		.tph = 600,
327 	},
328 };
329 
330 /* Reset dance */
331 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332 				  CMD_GEN_DATA, 0xff,
333 				  CMD_RET_ACK,
334 				  CMD_GEN_START,
335 				  CMD_GEN_STOP,
336 				  0 };
337 /* Just issue a stop (after an abort condition) */
338 static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
339 				  0 };
340 
341 /* We're interested in different interrupts depending on the mode */
342 static unsigned int img_i2c_int_enable_by_mode[] = {
343 	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
344 	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
345 	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
346 	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347 	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
348 	[MODE_FATAL]     = 0,
349 	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
350 	[MODE_SUSPEND]   = 0,
351 };
352 
353 /* Atomic command names */
354 static const char * const img_i2c_atomic_cmd_names[] = {
355 	[CMD_PAUSE]	= "PAUSE",
356 	[CMD_GEN_DATA]	= "GEN_DATA",
357 	[CMD_GEN_START]	= "GEN_START",
358 	[CMD_GEN_STOP]	= "GEN_STOP",
359 	[CMD_GEN_ACK]	= "GEN_ACK",
360 	[CMD_GEN_NACK]	= "GEN_NACK",
361 	[CMD_RET_DATA]	= "RET_DATA",
362 	[CMD_RET_ACK]	= "RET_ACK",
363 };
364 
365 struct img_i2c {
366 	struct i2c_adapter adap;
367 
368 	void __iomem *base;
369 
370 	/*
371 	 * The scb core clock is used to get the input frequency, and to disable
372 	 * it after every set of transactions to save some power.
373 	 */
374 	struct clk *scb_clk, *sys_clk;
375 	unsigned int bitrate;
376 	bool need_wr_rd_fence;
377 
378 	/* state */
379 	struct completion msg_complete;
380 	spinlock_t lock;	/* lock before doing anything with the state */
381 	struct i2c_msg msg;
382 
383 	/* After the last transaction, wait for a stop bit */
384 	bool last_msg;
385 	int msg_status;
386 
387 	enum img_i2c_mode mode;
388 	u32 int_enable;		/* depends on mode */
389 	u32 line_status;	/* line status over command */
390 
391 	/*
392 	 * To avoid slave event interrupts in automatic mode, use a timer to
393 	 * poll the abort condition if we don't get an interrupt for too long.
394 	 */
395 	struct timer_list check_timer;
396 	bool t_halt;
397 
398 	/* atomic mode state */
399 	bool at_t_done;
400 	bool at_slave_event;
401 	int at_cur_cmd;
402 	u8 at_cur_data;
403 
404 	/* Sequence: either reset or stop. See img_i2c_sequence. */
405 	u8 *seq;
406 
407 	/* raw mode */
408 	unsigned int raw_timeout;
409 };
410 
411 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
412 {
413 	writel(value, i2c->base + offset);
414 }
415 
416 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
417 {
418 	return readl(i2c->base + offset);
419 }
420 
421 /*
422  * The code to read from the master read fifo, and write to the master
423  * write fifo, checks a bit in an SCB register before every byte to
424  * ensure that the fifo is not full (write fifo) or empty (read fifo).
425  * Due to clock domain crossing inside the SCB block the updated value
426  * of this bit is only visible after 2 cycles.
427  *
428  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
429  * revision register), and it's called after reading from or writing to the
430  * fifos to ensure that subsequent reads of the fifo status bits do not read
431  * stale values.
432  */
433 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
434 {
435 	if (i2c->need_wr_rd_fence) {
436 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
437 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
438 	}
439 }
440 
441 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
442 {
443 	i2c->mode = mode;
444 	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
445 	i2c->line_status = 0;
446 }
447 
448 static void img_i2c_raw_op(struct img_i2c *i2c)
449 {
450 	i2c->raw_timeout = 0;
451 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
452 		OVERRIDE_SCLKEN_OVR |
453 		OVERRIDE_SDATEN_OVR |
454 		OVERRIDE_MASTER |
455 		OVERRIDE_LINE_OVR_EN |
456 		OVERRIDE_DIRECT |
457 		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
458 		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
459 }
460 
461 static const char *img_i2c_atomic_op_name(unsigned int cmd)
462 {
463 	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
464 		return "UNKNOWN";
465 	return img_i2c_atomic_cmd_names[cmd];
466 }
467 
468 /* Send a single atomic mode command to the hardware */
469 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
470 {
471 	i2c->at_cur_cmd = cmd;
472 	i2c->at_cur_data = data;
473 
474 	/* work around lack of data setup time when generating data */
475 	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
476 		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
477 
478 		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
479 			/* hold the data line down for a moment */
480 			img_i2c_switch_mode(i2c, MODE_RAW);
481 			img_i2c_raw_op(i2c);
482 			return;
483 		}
484 	}
485 
486 	dev_dbg(i2c->adap.dev.parent,
487 		"atomic cmd=%s (%d) data=%#x\n",
488 		img_i2c_atomic_op_name(cmd), cmd, data);
489 	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
490 	i2c->at_slave_event = false;
491 	i2c->line_status = 0;
492 
493 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
494 		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
495 		OVERRIDE_MASTER |
496 		OVERRIDE_DIRECT |
497 		(data << OVERRIDE_DATA_SHIFT));
498 }
499 
500 /* Start a transaction in atomic mode */
501 static void img_i2c_atomic_start(struct img_i2c *i2c)
502 {
503 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
504 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
505 	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
506 }
507 
508 static void img_i2c_soft_reset(struct img_i2c *i2c)
509 {
510 	i2c->t_halt = false;
511 	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
512 	img_i2c_writel(i2c, SCB_CONTROL_REG,
513 		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
514 }
515 
516 /*
517  * Enable or release transaction halt for control of repeated starts.
518  * In version 3.3 of the IP when transaction halt is set, an interrupt
519  * will be generated after each byte of a transfer instead of after
520  * every transfer but before the stop bit.
521  * Due to this behaviour we have to be careful that every time we
522  * release the transaction halt we have to re-enable it straight away
523  * so that we only process a single byte, not doing so will result in
524  * all remaining bytes been processed and a stop bit being issued,
525  * which will prevent us having a repeated start.
526  */
527 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
528 {
529 	u32 val;
530 
531 	if (i2c->t_halt == t_halt)
532 		return;
533 	i2c->t_halt = t_halt;
534 	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
535 	if (t_halt)
536 		val |= SCB_CONTROL_TRANSACTION_HALT;
537 	else
538 		val &= ~SCB_CONTROL_TRANSACTION_HALT;
539 	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
540 }
541 
542 /* Drain data from the FIFO into the buffer (automatic mode) */
543 static void img_i2c_read_fifo(struct img_i2c *i2c)
544 {
545 	while (i2c->msg.len) {
546 		u32 fifo_status;
547 		u8 data;
548 
549 		img_i2c_wr_rd_fence(i2c);
550 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
551 		if (fifo_status & FIFO_READ_EMPTY)
552 			break;
553 
554 		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
555 		*i2c->msg.buf = data;
556 
557 		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
558 		i2c->msg.len--;
559 		i2c->msg.buf++;
560 	}
561 }
562 
563 /* Fill the FIFO with data from the buffer (automatic mode) */
564 static void img_i2c_write_fifo(struct img_i2c *i2c)
565 {
566 	while (i2c->msg.len) {
567 		u32 fifo_status;
568 
569 		img_i2c_wr_rd_fence(i2c);
570 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
571 		if (fifo_status & FIFO_WRITE_FULL)
572 			break;
573 
574 		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
575 		i2c->msg.len--;
576 		i2c->msg.buf++;
577 	}
578 
579 	/* Disable fifo emptying interrupt if nothing more to write */
580 	if (!i2c->msg.len)
581 		i2c->int_enable &= ~INT_FIFO_EMPTYING;
582 }
583 
584 /* Start a read transaction in automatic mode */
585 static void img_i2c_read(struct img_i2c *i2c)
586 {
587 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
588 	if (!i2c->last_msg)
589 		i2c->int_enable |= INT_SLAVE_EVENT;
590 
591 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
592 	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
593 	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
594 
595 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
596 }
597 
598 /* Start a write transaction in automatic mode */
599 static void img_i2c_write(struct img_i2c *i2c)
600 {
601 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
602 	if (!i2c->last_msg)
603 		i2c->int_enable |= INT_SLAVE_EVENT;
604 
605 	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
606 	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
607 
608 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
609 	img_i2c_write_fifo(i2c);
610 
611 	/* img_i2c_write_fifo() may modify int_enable */
612 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
613 }
614 
615 /*
616  * Indicate that the transaction is complete. This is called from the
617  * ISR to wake up the waiting thread, after which the ISR must not
618  * access any more SCB registers.
619  */
620 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
621 {
622 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
623 	if (status) {
624 		i2c->msg_status = status;
625 		img_i2c_transaction_halt(i2c, false);
626 	}
627 	complete(&i2c->msg_complete);
628 }
629 
630 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
631 					u32 int_status, u32 line_status)
632 {
633 	/* Stay in raw mode for this, so we don't just loop infinitely */
634 	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
635 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
636 	return 0;
637 }
638 
639 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
640 				u32 line_status)
641 {
642 	if (int_status & INT_TIMING) {
643 		if (i2c->raw_timeout == 0)
644 			return img_i2c_raw_atomic_delay_handler(i2c,
645 				int_status, line_status);
646 		--i2c->raw_timeout;
647 	}
648 	return 0;
649 }
650 
651 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
652 {
653 	static const unsigned int continue_bits[] = {
654 		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
655 		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
656 		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
657 		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
658 		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
659 	};
660 	int next_cmd = -1;
661 	u8 next_data = 0x00;
662 
663 	if (int_status & INT_SLAVE_EVENT)
664 		i2c->at_slave_event = true;
665 	if (int_status & INT_TRANSACTION_DONE)
666 		i2c->at_t_done = true;
667 
668 	if (!i2c->at_slave_event || !i2c->at_t_done)
669 		return 0;
670 
671 	/* wait if no continue bits are set */
672 	if (i2c->at_cur_cmd >= 0 &&
673 	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
674 		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
675 
676 		if (cont_bits) {
677 			cont_bits |= LINESTAT_ABORT_DET;
678 			if (!(i2c->line_status & cont_bits))
679 				return 0;
680 		}
681 	}
682 
683 	/* follow the sequence of commands in i2c->seq */
684 	next_cmd = *i2c->seq;
685 	/* stop on a nil */
686 	if (!next_cmd) {
687 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
688 		return ISR_COMPLETE(0);
689 	}
690 	/* when generating data, the next byte is the data */
691 	if (next_cmd == CMD_GEN_DATA) {
692 		++i2c->seq;
693 		next_data = *i2c->seq;
694 	}
695 	++i2c->seq;
696 	img_i2c_atomic_op(i2c, next_cmd, next_data);
697 
698 	return 0;
699 }
700 
701 static void img_i2c_reset_start(struct img_i2c *i2c)
702 {
703 	/* Initiate the magic dance */
704 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
705 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
706 	i2c->seq = img_i2c_reset_seq;
707 	i2c->at_slave_event = true;
708 	i2c->at_t_done = true;
709 	i2c->at_cur_cmd = -1;
710 
711 	/* img_i2c_reset_seq isn't empty so the following won't fail */
712 	img_i2c_sequence(i2c, 0);
713 }
714 
715 static void img_i2c_stop_start(struct img_i2c *i2c)
716 {
717 	/* Initiate a stop bit sequence */
718 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
719 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
720 	i2c->seq = img_i2c_stop_seq;
721 	i2c->at_slave_event = true;
722 	i2c->at_t_done = true;
723 	i2c->at_cur_cmd = -1;
724 
725 	/* img_i2c_stop_seq isn't empty so the following won't fail */
726 	img_i2c_sequence(i2c, 0);
727 }
728 
729 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
730 				   u32 int_status,
731 				   u32 line_status)
732 {
733 	int next_cmd = -1;
734 	u8 next_data = 0x00;
735 
736 	if (int_status & INT_SLAVE_EVENT)
737 		i2c->at_slave_event = true;
738 	if (int_status & INT_TRANSACTION_DONE)
739 		i2c->at_t_done = true;
740 
741 	if (!i2c->at_slave_event || !i2c->at_t_done)
742 		goto next_atomic_cmd;
743 	if (i2c->line_status & LINESTAT_ABORT_DET) {
744 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
745 		next_cmd = CMD_GEN_STOP;
746 		i2c->msg_status = -EIO;
747 		goto next_atomic_cmd;
748 	}
749 
750 	/* i2c->at_cur_cmd may have completed */
751 	switch (i2c->at_cur_cmd) {
752 	case CMD_GEN_START:
753 		next_cmd = CMD_GEN_DATA;
754 		next_data = i2c_8bit_addr_from_msg(&i2c->msg);
755 		break;
756 	case CMD_GEN_DATA:
757 		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
758 			next_cmd = CMD_RET_ACK;
759 		break;
760 	case CMD_RET_ACK:
761 		if (i2c->line_status & LINESTAT_ACK_DET ||
762 		    (i2c->line_status & LINESTAT_NACK_DET &&
763 		    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
764 			if (i2c->msg.len == 0) {
765 				next_cmd = CMD_GEN_STOP;
766 			} else if (i2c->msg.flags & I2C_M_RD) {
767 				next_cmd = CMD_RET_DATA;
768 			} else {
769 				next_cmd = CMD_GEN_DATA;
770 				next_data = *i2c->msg.buf;
771 				--i2c->msg.len;
772 				++i2c->msg.buf;
773 			}
774 		} else if (i2c->line_status & LINESTAT_NACK_DET) {
775 			i2c->msg_status = -EIO;
776 			next_cmd = CMD_GEN_STOP;
777 		}
778 		break;
779 	case CMD_RET_DATA:
780 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
781 			*i2c->msg.buf = (i2c->line_status &
782 						LINESTAT_INPUT_DATA)
783 					>> LINESTAT_INPUT_DATA_SHIFT;
784 			--i2c->msg.len;
785 			++i2c->msg.buf;
786 			if (i2c->msg.len)
787 				next_cmd = CMD_GEN_ACK;
788 			else
789 				next_cmd = CMD_GEN_NACK;
790 		}
791 		break;
792 	case CMD_GEN_ACK:
793 		if (i2c->line_status & LINESTAT_ACK_DET) {
794 			next_cmd = CMD_RET_DATA;
795 		} else {
796 			i2c->msg_status = -EIO;
797 			next_cmd = CMD_GEN_STOP;
798 		}
799 		break;
800 	case CMD_GEN_NACK:
801 		next_cmd = CMD_GEN_STOP;
802 		break;
803 	case CMD_GEN_STOP:
804 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
805 		return ISR_COMPLETE(0);
806 	default:
807 		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
808 			i2c->at_cur_cmd);
809 		i2c->msg_status = -EIO;
810 		next_cmd = CMD_GEN_STOP;
811 		break;
812 	}
813 
814 next_atomic_cmd:
815 	if (next_cmd != -1) {
816 		/* don't actually stop unless we're the last transaction */
817 		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
818 						!i2c->last_msg)
819 			return ISR_COMPLETE(0);
820 		img_i2c_atomic_op(i2c, next_cmd, next_data);
821 	}
822 	return 0;
823 }
824 
825 /*
826  * Timer function to check if something has gone wrong in automatic mode (so we
827  * don't have to handle so many interrupts just to catch an exception).
828  */
829 static void img_i2c_check_timer(unsigned long arg)
830 {
831 	struct img_i2c *i2c = (struct img_i2c *)arg;
832 	unsigned long flags;
833 	unsigned int line_status;
834 
835 	spin_lock_irqsave(&i2c->lock, flags);
836 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
837 
838 	/* check for an abort condition */
839 	if (line_status & LINESTAT_ABORT_DET) {
840 		dev_dbg(i2c->adap.dev.parent,
841 			"abort condition detected by check timer\n");
842 		/* enable slave event interrupt mask to trigger irq */
843 		img_i2c_writel(i2c, SCB_INT_MASK_REG,
844 			       i2c->int_enable | INT_SLAVE_EVENT);
845 	}
846 
847 	spin_unlock_irqrestore(&i2c->lock, flags);
848 }
849 
850 static unsigned int img_i2c_auto(struct img_i2c *i2c,
851 				 unsigned int int_status,
852 				 unsigned int line_status)
853 {
854 	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
855 		return ISR_COMPLETE(EIO);
856 
857 	if (line_status & LINESTAT_ABORT_DET) {
858 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
859 		/* empty the read fifo */
860 		if ((i2c->msg.flags & I2C_M_RD) &&
861 		    (int_status & INT_FIFO_FULL_FILLING))
862 			img_i2c_read_fifo(i2c);
863 		/* use atomic mode and try to force a stop bit */
864 		i2c->msg_status = -EIO;
865 		img_i2c_stop_start(i2c);
866 		return 0;
867 	}
868 
869 	/* Enable transaction halt on start bit */
870 	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
871 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
872 		/* we're no longer interested in the slave event */
873 		i2c->int_enable &= ~INT_SLAVE_EVENT;
874 	}
875 
876 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
877 
878 	if (int_status & INT_STOP_DETECTED) {
879 		/* Drain remaining data in FIFO and complete transaction */
880 		if (i2c->msg.flags & I2C_M_RD)
881 			img_i2c_read_fifo(i2c);
882 		return ISR_COMPLETE(0);
883 	}
884 
885 	if (i2c->msg.flags & I2C_M_RD) {
886 		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
887 			img_i2c_read_fifo(i2c);
888 			if (i2c->msg.len == 0)
889 				return ISR_WAITSTOP;
890 		}
891 	} else {
892 		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
893 			if ((int_status & INT_FIFO_EMPTY) &&
894 			    i2c->msg.len == 0)
895 				return ISR_WAITSTOP;
896 			img_i2c_write_fifo(i2c);
897 		}
898 	}
899 	if (int_status & INT_MASTER_HALTED) {
900 		/*
901 		 * Release and then enable transaction halt, to
902 		 * allow only a single byte to proceed.
903 		 */
904 		img_i2c_transaction_halt(i2c, false);
905 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
906 	}
907 
908 	return 0;
909 }
910 
911 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
912 {
913 	struct img_i2c *i2c = (struct img_i2c *)dev_id;
914 	u32 int_status, line_status;
915 	/* We handle transaction completion AFTER accessing registers */
916 	unsigned int hret;
917 
918 	/* Read interrupt status register. */
919 	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
920 	/* Clear detected interrupts. */
921 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
922 
923 	/*
924 	 * Read line status and clear it until it actually is clear.  We have
925 	 * to be careful not to lose any line status bits that get latched.
926 	 */
927 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
928 	if (line_status & LINESTAT_LATCHED) {
929 		img_i2c_writel(i2c, SCB_CLEAR_REG,
930 			      (line_status & LINESTAT_LATCHED)
931 				>> LINESTAT_CLEAR_SHIFT);
932 		img_i2c_wr_rd_fence(i2c);
933 	}
934 
935 	spin_lock(&i2c->lock);
936 
937 	/* Keep track of line status bits received */
938 	i2c->line_status &= ~LINESTAT_INPUT_DATA;
939 	i2c->line_status |= line_status;
940 
941 	/*
942 	 * Certain interrupts indicate that sclk low timeout is not
943 	 * a problem. If any of these are set, just continue.
944 	 */
945 	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
946 	    !(int_status & (INT_SLAVE_EVENT |
947 			    INT_FIFO_EMPTY |
948 			    INT_FIFO_FULL))) {
949 		dev_crit(i2c->adap.dev.parent,
950 			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
951 			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
952 			 i2c->msg.addr);
953 		hret = ISR_FATAL(EIO);
954 		goto out;
955 	}
956 
957 	if (i2c->mode == MODE_ATOMIC)
958 		hret = img_i2c_atomic(i2c, int_status, line_status);
959 	else if (i2c->mode == MODE_AUTOMATIC)
960 		hret = img_i2c_auto(i2c, int_status, line_status);
961 	else if (i2c->mode == MODE_SEQUENCE)
962 		hret = img_i2c_sequence(i2c, int_status);
963 	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
964 			 (line_status & LINESTAT_STOP_BIT_DET))
965 		hret = ISR_COMPLETE(0);
966 	else if (i2c->mode == MODE_RAW)
967 		hret = img_i2c_raw(i2c, int_status, line_status);
968 	else
969 		hret = 0;
970 
971 	/* Clear detected level interrupts. */
972 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
973 
974 out:
975 	if (hret & ISR_WAITSTOP) {
976 		/*
977 		 * Only wait for stop on last message.
978 		 * Also we may already have detected the stop bit.
979 		 */
980 		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
981 			hret = ISR_COMPLETE(0);
982 		else
983 			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
984 	}
985 
986 	/* now we've finished using regs, handle transaction completion */
987 	if (hret & ISR_COMPLETE_M) {
988 		int status = -(hret & ISR_STATUS_M);
989 
990 		img_i2c_complete_transaction(i2c, status);
991 		if (hret & ISR_FATAL_M)
992 			img_i2c_switch_mode(i2c, MODE_FATAL);
993 	}
994 
995 	/* Enable interrupts (int_enable may be altered by changing mode) */
996 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
997 
998 	spin_unlock(&i2c->lock);
999 
1000 	return IRQ_HANDLED;
1001 }
1002 
1003 /* Force a bus reset sequence and wait for it to complete */
1004 static int img_i2c_reset_bus(struct img_i2c *i2c)
1005 {
1006 	unsigned long flags;
1007 	unsigned long time_left;
1008 
1009 	spin_lock_irqsave(&i2c->lock, flags);
1010 	reinit_completion(&i2c->msg_complete);
1011 	img_i2c_reset_start(i2c);
1012 	spin_unlock_irqrestore(&i2c->lock, flags);
1013 
1014 	time_left = wait_for_completion_timeout(&i2c->msg_complete,
1015 					      IMG_I2C_TIMEOUT);
1016 	if (time_left == 0)
1017 		return -ETIMEDOUT;
1018 	return 0;
1019 }
1020 
1021 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1022 			int num)
1023 {
1024 	struct img_i2c *i2c = i2c_get_adapdata(adap);
1025 	bool atomic = false;
1026 	int i, ret;
1027 	unsigned long time_left;
1028 
1029 	if (i2c->mode == MODE_SUSPEND) {
1030 		WARN(1, "refusing to service transaction in suspended state\n");
1031 		return -EIO;
1032 	}
1033 
1034 	if (i2c->mode == MODE_FATAL)
1035 		return -EIO;
1036 
1037 	for (i = 0; i < num; i++) {
1038 		/*
1039 		 * 0 byte reads are not possible because the slave could try
1040 		 * and pull the data line low, preventing a stop bit.
1041 		 */
1042 		if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1043 			return -EIO;
1044 		/*
1045 		 * 0 byte writes are possible and used for probing, but we
1046 		 * cannot do them in automatic mode, so use atomic mode
1047 		 * instead.
1048 		 *
1049 		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1050 		 * in atomic mode.
1051 		 */
1052 		if (!msgs[i].len ||
1053 		    (msgs[i].flags & I2C_M_IGNORE_NAK))
1054 			atomic = true;
1055 	}
1056 
1057 	ret = clk_prepare_enable(i2c->scb_clk);
1058 	if (ret)
1059 		return ret;
1060 
1061 	for (i = 0; i < num; i++) {
1062 		struct i2c_msg *msg = &msgs[i];
1063 		unsigned long flags;
1064 
1065 		spin_lock_irqsave(&i2c->lock, flags);
1066 
1067 		/*
1068 		 * Make a copy of the message struct. We mustn't modify the
1069 		 * original or we'll confuse drivers and i2c-dev.
1070 		 */
1071 		i2c->msg = *msg;
1072 		i2c->msg_status = 0;
1073 
1074 		/*
1075 		 * After the last message we must have waited for a stop bit.
1076 		 * Not waiting can cause problems when the clock is disabled
1077 		 * before the stop bit is sent, and the linux I2C interface
1078 		 * requires separate transfers not to joined with repeated
1079 		 * start.
1080 		 */
1081 		i2c->last_msg = (i == num - 1);
1082 		reinit_completion(&i2c->msg_complete);
1083 
1084 		/*
1085 		 * Clear line status and all interrupts before starting a
1086 		 * transfer, as we may have unserviced interrupts from
1087 		 * previous transfers that might be handled in the context
1088 		 * of the new transfer.
1089 		 */
1090 		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1091 		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1092 
1093 		if (atomic) {
1094 			img_i2c_atomic_start(i2c);
1095 		} else {
1096 			/*
1097 			 * Enable transaction halt if not the last message in
1098 			 * the queue so that we can control repeated starts.
1099 			 */
1100 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1101 
1102 			if (msg->flags & I2C_M_RD)
1103 				img_i2c_read(i2c);
1104 			else
1105 				img_i2c_write(i2c);
1106 
1107 			/*
1108 			 * Release and then enable transaction halt, to
1109 			 * allow only a single byte to proceed.
1110 			 * This doesn't have an effect on the initial transfer
1111 			 * but will allow the following transfers to start
1112 			 * processing if the previous transfer was marked as
1113 			 * complete while the i2c block was halted.
1114 			 */
1115 			img_i2c_transaction_halt(i2c, false);
1116 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1117 		}
1118 		spin_unlock_irqrestore(&i2c->lock, flags);
1119 
1120 		time_left = wait_for_completion_timeout(&i2c->msg_complete,
1121 						      IMG_I2C_TIMEOUT);
1122 		del_timer_sync(&i2c->check_timer);
1123 
1124 		if (time_left == 0) {
1125 			dev_err(adap->dev.parent, "i2c transfer timed out\n");
1126 			i2c->msg_status = -ETIMEDOUT;
1127 			break;
1128 		}
1129 
1130 		if (i2c->msg_status)
1131 			break;
1132 	}
1133 
1134 	clk_disable_unprepare(i2c->scb_clk);
1135 
1136 	return i2c->msg_status ? i2c->msg_status : num;
1137 }
1138 
1139 static u32 img_i2c_func(struct i2c_adapter *adap)
1140 {
1141 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1142 }
1143 
1144 static const struct i2c_algorithm img_i2c_algo = {
1145 	.master_xfer = img_i2c_xfer,
1146 	.functionality = img_i2c_func,
1147 };
1148 
1149 static int img_i2c_init(struct img_i2c *i2c)
1150 {
1151 	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1152 	unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1153 	struct img_i2c_timings timing;
1154 	u32 rev;
1155 
1156 	ret = clk_prepare_enable(i2c->scb_clk);
1157 	if (ret)
1158 		return ret;
1159 
1160 	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1161 	if ((rev & 0x00ffffff) < 0x00020200) {
1162 		dev_info(i2c->adap.dev.parent,
1163 			 "Unknown hardware revision (%d.%d.%d.%d)\n",
1164 			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1165 			 (rev >> 8) & 0xff, rev & 0xff);
1166 		clk_disable_unprepare(i2c->scb_clk);
1167 		return -EINVAL;
1168 	}
1169 
1170 	/* Fencing enabled by default. */
1171 	i2c->need_wr_rd_fence = true;
1172 
1173 	/* Determine what mode we're in from the bitrate */
1174 	timing = timings[0];
1175 	for (i = 0; i < ARRAY_SIZE(timings); i++) {
1176 		if (i2c->bitrate <= timings[i].max_bitrate) {
1177 			timing = timings[i];
1178 			break;
1179 		}
1180 	}
1181 	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1182 		dev_warn(i2c->adap.dev.parent,
1183 			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1184 			 i2c->bitrate,
1185 			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1186 		timing = timings[ARRAY_SIZE(timings) - 1];
1187 		i2c->bitrate = timing.max_bitrate;
1188 	}
1189 
1190 	bitrate_khz = i2c->bitrate / 1000;
1191 	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1192 
1193 	/* Find the prescale that would give us that inc (approx delay = 0) */
1194 	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1195 	prescale = clamp_t(unsigned int, prescale, 1, 8);
1196 	clk_khz /= prescale;
1197 
1198 	/* Setup the clock increment value */
1199 	inc = (256 * 16 * bitrate_khz) / clk_khz;
1200 
1201 	/*
1202 	 * The clock generation logic allows to filter glitches on the bus.
1203 	 * This filter is able to remove bus glitches shorter than 50ns.
1204 	 * If the clock enable rate is greater than 20 MHz, no filtering
1205 	 * is required, so we need to disable it.
1206 	 * If it's between the 20-40 MHz range, there's no need to divide
1207 	 * the clock to get a filter.
1208 	 */
1209 	if (clk_khz < 20000) {
1210 		filt = SCB_FILT_DISABLE;
1211 	} else if (clk_khz < 40000) {
1212 		filt = SCB_FILT_BYPASS;
1213 	} else {
1214 		/* Calculate filter clock */
1215 		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1216 
1217 		/* Scale up if needed */
1218 		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1219 			inc++;
1220 
1221 		if (filt > SCB_FILT_INC_MASK)
1222 			filt = SCB_FILT_INC_MASK;
1223 
1224 		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1225 	}
1226 	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1227 	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1228 
1229 	/* Obtain the clock period of the fx16 clock in ns */
1230 	clk_period = (256 * 1000000) / (clk_khz * inc);
1231 
1232 	/* Calculate the bitrate in terms of internal clock pulses */
1233 	int_bitrate = 1000000 / (bitrate_khz * clk_period);
1234 	if ((1000000 % (bitrate_khz * clk_period)) >=
1235 	    ((bitrate_khz * clk_period) / 2))
1236 		int_bitrate++;
1237 
1238 	/*
1239 	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1240 	 * values from there if they don't meet minimum timing requirements
1241 	 */
1242 	tckh = int_bitrate / 2;
1243 	tckl = int_bitrate - tckh;
1244 
1245 	/* Adjust TCKH and TCKL values */
1246 	data = DIV_ROUND_UP(timing.tckl, clk_period);
1247 
1248 	if (tckl < data) {
1249 		tckl = data;
1250 		tckh = int_bitrate - tckl;
1251 	}
1252 
1253 	if (tckh > 0)
1254 		--tckh;
1255 
1256 	if (tckl > 0)
1257 		--tckl;
1258 
1259 	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1260 	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1261 
1262 	/* Setup TSDH value */
1263 	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1264 
1265 	if (tsdh > 1)
1266 		data = tsdh - 1;
1267 	else
1268 		data = 0x01;
1269 	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1270 
1271 	/* This value is used later */
1272 	tsdh = data;
1273 
1274 	/* Setup TPL value */
1275 	data = timing.tpl / clk_period;
1276 	if (data > 0)
1277 		--data;
1278 	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1279 
1280 	/* Setup TPH value */
1281 	data = timing.tph / clk_period;
1282 	if (data > 0)
1283 		--data;
1284 	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1285 
1286 	/* Setup TSDL value to TPL + TSDH + 2 */
1287 	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1288 
1289 	/* Setup TP2S value */
1290 	data = timing.tp2s / clk_period;
1291 	if (data > 0)
1292 		--data;
1293 	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1294 
1295 	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1296 	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1297 	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1298 
1299 	/* Take module out of soft reset and enable clocks */
1300 	img_i2c_soft_reset(i2c);
1301 
1302 	/* Disable all interrupts */
1303 	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1304 
1305 	/* Clear all interrupts */
1306 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1307 
1308 	/* Clear the scb_line_status events */
1309 	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1310 
1311 	/* Enable interrupts */
1312 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1313 
1314 	/* Perform a synchronous sequence to reset the bus */
1315 	ret = img_i2c_reset_bus(i2c);
1316 
1317 	clk_disable_unprepare(i2c->scb_clk);
1318 
1319 	return ret;
1320 }
1321 
1322 static int img_i2c_probe(struct platform_device *pdev)
1323 {
1324 	struct device_node *node = pdev->dev.of_node;
1325 	struct img_i2c *i2c;
1326 	struct resource *res;
1327 	int irq, ret;
1328 	u32 val;
1329 
1330 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1331 	if (!i2c)
1332 		return -ENOMEM;
1333 
1334 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1335 	i2c->base = devm_ioremap_resource(&pdev->dev, res);
1336 	if (IS_ERR(i2c->base))
1337 		return PTR_ERR(i2c->base);
1338 
1339 	irq = platform_get_irq(pdev, 0);
1340 	if (irq < 0) {
1341 		dev_err(&pdev->dev, "can't get irq number\n");
1342 		return irq;
1343 	}
1344 
1345 	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1346 	if (IS_ERR(i2c->sys_clk)) {
1347 		dev_err(&pdev->dev, "can't get system clock\n");
1348 		return PTR_ERR(i2c->sys_clk);
1349 	}
1350 
1351 	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1352 	if (IS_ERR(i2c->scb_clk)) {
1353 		dev_err(&pdev->dev, "can't get core clock\n");
1354 		return PTR_ERR(i2c->scb_clk);
1355 	}
1356 
1357 	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1358 			       pdev->name, i2c);
1359 	if (ret) {
1360 		dev_err(&pdev->dev, "can't request irq %d\n", irq);
1361 		return ret;
1362 	}
1363 
1364 	/* Set up the exception check timer */
1365 	setup_timer(&i2c->check_timer, img_i2c_check_timer,
1366 		    (unsigned long)i2c);
1367 
1368 	i2c->bitrate = timings[0].max_bitrate;
1369 	if (!of_property_read_u32(node, "clock-frequency", &val))
1370 		i2c->bitrate = val;
1371 
1372 	i2c_set_adapdata(&i2c->adap, i2c);
1373 	i2c->adap.dev.parent = &pdev->dev;
1374 	i2c->adap.dev.of_node = node;
1375 	i2c->adap.owner = THIS_MODULE;
1376 	i2c->adap.algo = &img_i2c_algo;
1377 	i2c->adap.retries = 5;
1378 	i2c->adap.nr = pdev->id;
1379 	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1380 
1381 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
1382 	spin_lock_init(&i2c->lock);
1383 	init_completion(&i2c->msg_complete);
1384 
1385 	platform_set_drvdata(pdev, i2c);
1386 
1387 	ret = clk_prepare_enable(i2c->sys_clk);
1388 	if (ret)
1389 		return ret;
1390 
1391 	ret = img_i2c_init(i2c);
1392 	if (ret)
1393 		goto disable_clk;
1394 
1395 	ret = i2c_add_numbered_adapter(&i2c->adap);
1396 	if (ret < 0)
1397 		goto disable_clk;
1398 
1399 	return 0;
1400 
1401 disable_clk:
1402 	clk_disable_unprepare(i2c->sys_clk);
1403 	return ret;
1404 }
1405 
1406 static int img_i2c_remove(struct platform_device *dev)
1407 {
1408 	struct img_i2c *i2c = platform_get_drvdata(dev);
1409 
1410 	i2c_del_adapter(&i2c->adap);
1411 	clk_disable_unprepare(i2c->sys_clk);
1412 
1413 	return 0;
1414 }
1415 
1416 #ifdef CONFIG_PM_SLEEP
1417 static int img_i2c_suspend(struct device *dev)
1418 {
1419 	struct img_i2c *i2c = dev_get_drvdata(dev);
1420 
1421 	img_i2c_switch_mode(i2c, MODE_SUSPEND);
1422 
1423 	clk_disable_unprepare(i2c->sys_clk);
1424 
1425 	return 0;
1426 }
1427 
1428 static int img_i2c_resume(struct device *dev)
1429 {
1430 	struct img_i2c *i2c = dev_get_drvdata(dev);
1431 	int ret;
1432 
1433 	ret = clk_prepare_enable(i2c->sys_clk);
1434 	if (ret)
1435 		return ret;
1436 
1437 	img_i2c_init(i2c);
1438 
1439 	return 0;
1440 }
1441 #endif /* CONFIG_PM_SLEEP */
1442 
1443 static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1444 
1445 static const struct of_device_id img_scb_i2c_match[] = {
1446 	{ .compatible = "img,scb-i2c" },
1447 	{ }
1448 };
1449 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1450 
1451 static struct platform_driver img_scb_i2c_driver = {
1452 	.driver = {
1453 		.name		= "img-i2c-scb",
1454 		.of_match_table	= img_scb_i2c_match,
1455 		.pm		= &img_i2c_pm,
1456 	},
1457 	.probe = img_i2c_probe,
1458 	.remove = img_i2c_remove,
1459 };
1460 module_platform_driver(img_scb_i2c_driver);
1461 
1462 MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1463 MODULE_DESCRIPTION("IMG host I2C driver");
1464 MODULE_LICENSE("GPL v2");
1465