xref: /openbmc/linux/drivers/i2c/busses/i2c-img-scb.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3  *
4  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * There are three ways that this I2C controller can be driven:
11  *
12  * - Raw control of the SDA and SCK signals.
13  *
14  *   This corresponds to MODE_RAW, which takes control of the signals
15  *   directly for a certain number of clock cycles (the INT_TIMING
16  *   interrupt can be used for timing).
17  *
18  * - Atomic commands. A low level I2C symbol (such as generate
19  *   start/stop/ack/nack bit, generate byte, receive byte, and receive
20  *   ACK) is given to the hardware, with detection of completion by bits
21  *   in the LINESTAT register.
22  *
23  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
24  *   state machine in the interrupt handler to compose/react to I2C
25  *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
26  *   which emits a simple fixed sequence of atomic mode commands.
27  *
28  *   Due to software control, the use of atomic commands usually results
29  *   in suboptimal use of the bus, with gaps between the I2C symbols while
30  *   the driver decides what to do next.
31  *
32  * - Automatic mode. A bus address, and whether to read/write is
33  *   specified, and the hardware takes care of the I2C state machine,
34  *   using a FIFO to send/receive bytes of data to an I2C slave. The
35  *   driver just has to keep the FIFO drained or filled in response to the
36  *   appropriate FIFO interrupts.
37  *
38  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39  *   with control of repeated start bits between I2C messages.
40  *
41  *   Use of automatic mode and the FIFO can make much more efficient use
42  *   of the bus compared to individual atomic commands, with potentially
43  *   no wasted time between I2C symbols or I2C messages.
44  *
45  * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46  * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47  * the bus), MODE_ATOMIC must be used since automatic mode is normally
48  * started by the writing of data into the FIFO.
49  *
50  * The other modes are used in specific circumstances where MODE_ATOMIC and
51  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53  * it is in a sane state.
54  *
55  * Notice that the driver implements a timer-based timeout mechanism.
56  * The reason for this mechanism is to reduce the number of interrupts
57  * received in automatic mode.
58  *
59  * The driver would get a slave event and transaction done interrupts for
60  * each atomic mode command that gets completed. However, these events are
61  * not needed in automatic mode, becase those atomic mode commands are
62  * managed automatically by the hardware.
63  *
64  * In practice, normal I2C transactions will be complete well before you
65  * get the timer interrupt, as the timer is re-scheduled during FIFO
66  * maintenance and disabled after the transaction is complete.
67  *
68  * In this way normal automatic mode operation isn't impacted by
69  * unnecessary interrupts, but the exceptional abort condition can still be
70  * detected (with a slight delay).
71  */
72 
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
80 #include <linux/io.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/pm_runtime.h>
86 #include <linux/slab.h>
87 #include <linux/timer.h>
88 
89 /* Register offsets */
90 
91 #define SCB_STATUS_REG			0x00
92 #define SCB_OVERRIDE_REG		0x04
93 #define SCB_READ_ADDR_REG		0x08
94 #define SCB_READ_COUNT_REG		0x0c
95 #define SCB_WRITE_ADDR_REG		0x10
96 #define SCB_READ_DATA_REG		0x14
97 #define SCB_WRITE_DATA_REG		0x18
98 #define SCB_FIFO_STATUS_REG		0x1c
99 #define SCB_CONTROL_SOFT_RESET		0x1f
100 #define SCB_CLK_SET_REG			0x3c
101 #define SCB_INT_STATUS_REG		0x40
102 #define SCB_INT_CLEAR_REG		0x44
103 #define SCB_INT_MASK_REG		0x48
104 #define SCB_CONTROL_REG			0x4c
105 #define SCB_TIME_TPL_REG		0x50
106 #define SCB_TIME_TPH_REG		0x54
107 #define SCB_TIME_TP2S_REG		0x58
108 #define SCB_TIME_TBI_REG		0x60
109 #define SCB_TIME_TSL_REG		0x64
110 #define SCB_TIME_TDL_REG		0x68
111 #define SCB_TIME_TSDL_REG		0x6c
112 #define SCB_TIME_TSDH_REG		0x70
113 #define SCB_READ_XADDR_REG		0x74
114 #define SCB_WRITE_XADDR_REG		0x78
115 #define SCB_WRITE_COUNT_REG		0x7c
116 #define SCB_CORE_REV_REG		0x80
117 #define SCB_TIME_TCKH_REG		0x84
118 #define SCB_TIME_TCKL_REG		0x88
119 #define SCB_FIFO_FLUSH_REG		0x8c
120 #define SCB_READ_FIFO_REG		0x94
121 #define SCB_CLEAR_REG			0x98
122 
123 /* SCB_CONTROL_REG bits */
124 
125 #define SCB_CONTROL_CLK_ENABLE		0x1e0
126 #define SCB_CONTROL_TRANSACTION_HALT	0x200
127 
128 #define FIFO_READ_FULL			BIT(0)
129 #define FIFO_READ_EMPTY			BIT(1)
130 #define FIFO_WRITE_FULL			BIT(2)
131 #define FIFO_WRITE_EMPTY		BIT(3)
132 
133 /* SCB_CLK_SET_REG bits */
134 #define SCB_FILT_DISABLE		BIT(31)
135 #define SCB_FILT_BYPASS			BIT(30)
136 #define SCB_FILT_INC_MASK		0x7f
137 #define SCB_FILT_INC_SHIFT		16
138 #define SCB_INC_MASK			0x7f
139 #define SCB_INC_SHIFT			8
140 
141 /* SCB_INT_*_REG bits */
142 
143 #define INT_BUS_INACTIVE		BIT(0)
144 #define INT_UNEXPECTED_START		BIT(1)
145 #define INT_SCLK_LOW_TIMEOUT		BIT(2)
146 #define INT_SDAT_LOW_TIMEOUT		BIT(3)
147 #define INT_WRITE_ACK_ERR		BIT(4)
148 #define INT_ADDR_ACK_ERR		BIT(5)
149 #define INT_FIFO_FULL			BIT(9)
150 #define INT_FIFO_FILLING		BIT(10)
151 #define INT_FIFO_EMPTY			BIT(11)
152 #define INT_FIFO_EMPTYING		BIT(12)
153 #define INT_TRANSACTION_DONE		BIT(15)
154 #define INT_SLAVE_EVENT			BIT(16)
155 #define INT_MASTER_HALTED		BIT(17)
156 #define INT_TIMING			BIT(18)
157 #define INT_STOP_DETECTED		BIT(19)
158 
159 #define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
160 
161 /* Level interrupts need clearing after handling instead of before */
162 #define INT_LEVEL			0x01e00
163 
164 /* Don't allow any interrupts while the clock may be off */
165 #define INT_ENABLE_MASK_INACTIVE	0x00000
166 
167 /* Interrupt masks for the different driver modes */
168 
169 #define INT_ENABLE_MASK_RAW		INT_TIMING
170 
171 #define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
172 					 INT_SLAVE_EVENT      | \
173 					 INT_ADDR_ACK_ERR     | \
174 					 INT_WRITE_ACK_ERR)
175 
176 #define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
177 					 INT_ADDR_ACK_ERR     | \
178 					 INT_WRITE_ACK_ERR    | \
179 					 INT_FIFO_FULL        | \
180 					 INT_FIFO_FILLING     | \
181 					 INT_FIFO_EMPTY       | \
182 					 INT_MASTER_HALTED    | \
183 					 INT_STOP_DETECTED)
184 
185 #define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
186 					 INT_ADDR_ACK_ERR     | \
187 					 INT_WRITE_ACK_ERR)
188 
189 /* SCB_STATUS_REG fields */
190 
191 #define LINESTAT_SCLK_LINE_STATUS	BIT(0)
192 #define LINESTAT_SCLK_EN		BIT(1)
193 #define LINESTAT_SDAT_LINE_STATUS	BIT(2)
194 #define LINESTAT_SDAT_EN		BIT(3)
195 #define LINESTAT_DET_START_STATUS	BIT(4)
196 #define LINESTAT_DET_STOP_STATUS	BIT(5)
197 #define LINESTAT_DET_ACK_STATUS		BIT(6)
198 #define LINESTAT_DET_NACK_STATUS	BIT(7)
199 #define LINESTAT_BUS_IDLE		BIT(8)
200 #define LINESTAT_T_DONE_STATUS		BIT(9)
201 #define LINESTAT_SCLK_OUT_STATUS	BIT(10)
202 #define LINESTAT_SDAT_OUT_STATUS	BIT(11)
203 #define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
204 #define LINESTAT_START_BIT_DET		BIT(13)
205 #define LINESTAT_STOP_BIT_DET		BIT(14)
206 #define LINESTAT_ACK_DET		BIT(15)
207 #define LINESTAT_NACK_DET		BIT(16)
208 #define LINESTAT_INPUT_HELD_V		BIT(17)
209 #define LINESTAT_ABORT_DET		BIT(18)
210 #define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
211 #define LINESTAT_INPUT_DATA		0xff000000
212 #define LINESTAT_INPUT_DATA_SHIFT	24
213 
214 #define LINESTAT_CLEAR_SHIFT		13
215 #define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
216 
217 /* SCB_OVERRIDE_REG fields */
218 
219 #define OVERRIDE_SCLK_OVR		BIT(0)
220 #define OVERRIDE_SCLKEN_OVR		BIT(1)
221 #define OVERRIDE_SDAT_OVR		BIT(2)
222 #define OVERRIDE_SDATEN_OVR		BIT(3)
223 #define OVERRIDE_MASTER			BIT(9)
224 #define OVERRIDE_LINE_OVR_EN		BIT(10)
225 #define OVERRIDE_DIRECT			BIT(11)
226 #define OVERRIDE_CMD_SHIFT		4
227 #define OVERRIDE_CMD_MASK		0x1f
228 #define OVERRIDE_DATA_SHIFT		24
229 
230 #define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
231 					 OVERRIDE_SCLKEN_OVR)
232 #define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
233 					 OVERRIDE_SCLKEN_OVR | \
234 					 OVERRIDE_SCLK_OVR)
235 #define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
236 					 OVERRIDE_SDATEN_OVR)
237 #define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
238 					 OVERRIDE_SDATEN_OVR | \
239 					 OVERRIDE_SDAT_OVR)
240 
241 /* OVERRIDE_CMD values */
242 
243 #define CMD_PAUSE			0x00
244 #define CMD_GEN_DATA			0x01
245 #define CMD_GEN_START			0x02
246 #define CMD_GEN_STOP			0x03
247 #define CMD_GEN_ACK			0x04
248 #define CMD_GEN_NACK			0x05
249 #define CMD_RET_DATA			0x08
250 #define CMD_RET_ACK			0x09
251 
252 /* Fixed timing values */
253 
254 #define TIMEOUT_TBI			0x0
255 #define TIMEOUT_TSL			0xffff
256 #define TIMEOUT_TDL			0x0
257 
258 /* Transaction timeout */
259 
260 #define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
261 
262 /*
263  * Worst incs are 1 (innacurate) and 16*256 (irregular).
264  * So a sensible inc is the logarithmic mean: 64 (2^6), which is
265  * in the middle of the valid range (0-127).
266  */
267 #define SCB_OPT_INC		64
268 
269 /* Setup the clock enable filtering for 25 ns */
270 #define SCB_FILT_GLITCH		25
271 
272 /*
273  * Bits to return from interrupt handler functions for different modes.
274  * This delays completion until we've finished with the registers, so that the
275  * function waiting for completion can safely disable the clock to save power.
276  */
277 #define ISR_COMPLETE_M		BIT(31)
278 #define ISR_FATAL_M		BIT(30)
279 #define ISR_WAITSTOP		BIT(29)
280 #define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
281 #define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
282 #define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
283 
284 #define IMG_I2C_PM_TIMEOUT	1000 /* ms */
285 
286 enum img_i2c_mode {
287 	MODE_INACTIVE,
288 	MODE_RAW,
289 	MODE_ATOMIC,
290 	MODE_AUTOMATIC,
291 	MODE_SEQUENCE,
292 	MODE_FATAL,
293 	MODE_WAITSTOP,
294 	MODE_SUSPEND,
295 };
296 
297 /* Timing parameters for i2c modes (in ns) */
298 struct img_i2c_timings {
299 	const char *name;
300 	unsigned int max_bitrate;
301 	unsigned int tckh, tckl, tsdh, tsdl;
302 	unsigned int tp2s, tpl, tph;
303 };
304 
305 /* The timings array must be ordered from slower to faster */
306 static struct img_i2c_timings timings[] = {
307 	/* Standard mode */
308 	{
309 		.name = "standard",
310 		.max_bitrate = 100000,
311 		.tckh = 4000,
312 		.tckl = 4700,
313 		.tsdh = 4700,
314 		.tsdl = 8700,
315 		.tp2s = 4700,
316 		.tpl = 4700,
317 		.tph = 4000,
318 	},
319 	/* Fast mode */
320 	{
321 		.name = "fast",
322 		.max_bitrate = 400000,
323 		.tckh = 600,
324 		.tckl = 1300,
325 		.tsdh = 600,
326 		.tsdl = 1200,
327 		.tp2s = 1300,
328 		.tpl = 600,
329 		.tph = 600,
330 	},
331 };
332 
333 /* Reset dance */
334 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
335 				  CMD_GEN_DATA, 0xff,
336 				  CMD_RET_ACK,
337 				  CMD_GEN_START,
338 				  CMD_GEN_STOP,
339 				  0 };
340 /* Just issue a stop (after an abort condition) */
341 static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
342 				  0 };
343 
344 /* We're interested in different interrupts depending on the mode */
345 static unsigned int img_i2c_int_enable_by_mode[] = {
346 	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
347 	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
348 	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
349 	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
350 	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
351 	[MODE_FATAL]     = 0,
352 	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
353 	[MODE_SUSPEND]   = 0,
354 };
355 
356 /* Atomic command names */
357 static const char * const img_i2c_atomic_cmd_names[] = {
358 	[CMD_PAUSE]	= "PAUSE",
359 	[CMD_GEN_DATA]	= "GEN_DATA",
360 	[CMD_GEN_START]	= "GEN_START",
361 	[CMD_GEN_STOP]	= "GEN_STOP",
362 	[CMD_GEN_ACK]	= "GEN_ACK",
363 	[CMD_GEN_NACK]	= "GEN_NACK",
364 	[CMD_RET_DATA]	= "RET_DATA",
365 	[CMD_RET_ACK]	= "RET_ACK",
366 };
367 
368 struct img_i2c {
369 	struct i2c_adapter adap;
370 
371 	void __iomem *base;
372 
373 	/*
374 	 * The scb core clock is used to get the input frequency, and to disable
375 	 * it after every set of transactions to save some power.
376 	 */
377 	struct clk *scb_clk, *sys_clk;
378 	unsigned int bitrate;
379 	bool need_wr_rd_fence;
380 
381 	/* state */
382 	struct completion msg_complete;
383 	spinlock_t lock;	/* lock before doing anything with the state */
384 	struct i2c_msg msg;
385 
386 	/* After the last transaction, wait for a stop bit */
387 	bool last_msg;
388 	int msg_status;
389 
390 	enum img_i2c_mode mode;
391 	u32 int_enable;		/* depends on mode */
392 	u32 line_status;	/* line status over command */
393 
394 	/*
395 	 * To avoid slave event interrupts in automatic mode, use a timer to
396 	 * poll the abort condition if we don't get an interrupt for too long.
397 	 */
398 	struct timer_list check_timer;
399 	bool t_halt;
400 
401 	/* atomic mode state */
402 	bool at_t_done;
403 	bool at_slave_event;
404 	int at_cur_cmd;
405 	u8 at_cur_data;
406 
407 	/* Sequence: either reset or stop. See img_i2c_sequence. */
408 	u8 *seq;
409 
410 	/* raw mode */
411 	unsigned int raw_timeout;
412 };
413 
414 static int img_i2c_runtime_suspend(struct device *dev);
415 static int img_i2c_runtime_resume(struct device *dev);
416 
417 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
418 {
419 	writel(value, i2c->base + offset);
420 }
421 
422 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
423 {
424 	return readl(i2c->base + offset);
425 }
426 
427 /*
428  * The code to read from the master read fifo, and write to the master
429  * write fifo, checks a bit in an SCB register before every byte to
430  * ensure that the fifo is not full (write fifo) or empty (read fifo).
431  * Due to clock domain crossing inside the SCB block the updated value
432  * of this bit is only visible after 2 cycles.
433  *
434  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
435  * revision register), and it's called after reading from or writing to the
436  * fifos to ensure that subsequent reads of the fifo status bits do not read
437  * stale values.
438  */
439 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
440 {
441 	if (i2c->need_wr_rd_fence) {
442 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
443 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
444 	}
445 }
446 
447 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
448 {
449 	i2c->mode = mode;
450 	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
451 	i2c->line_status = 0;
452 }
453 
454 static void img_i2c_raw_op(struct img_i2c *i2c)
455 {
456 	i2c->raw_timeout = 0;
457 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
458 		OVERRIDE_SCLKEN_OVR |
459 		OVERRIDE_SDATEN_OVR |
460 		OVERRIDE_MASTER |
461 		OVERRIDE_LINE_OVR_EN |
462 		OVERRIDE_DIRECT |
463 		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
464 		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
465 }
466 
467 static const char *img_i2c_atomic_op_name(unsigned int cmd)
468 {
469 	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
470 		return "UNKNOWN";
471 	return img_i2c_atomic_cmd_names[cmd];
472 }
473 
474 /* Send a single atomic mode command to the hardware */
475 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
476 {
477 	i2c->at_cur_cmd = cmd;
478 	i2c->at_cur_data = data;
479 
480 	/* work around lack of data setup time when generating data */
481 	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
482 		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
483 
484 		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
485 			/* hold the data line down for a moment */
486 			img_i2c_switch_mode(i2c, MODE_RAW);
487 			img_i2c_raw_op(i2c);
488 			return;
489 		}
490 	}
491 
492 	dev_dbg(i2c->adap.dev.parent,
493 		"atomic cmd=%s (%d) data=%#x\n",
494 		img_i2c_atomic_op_name(cmd), cmd, data);
495 	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
496 	i2c->at_slave_event = false;
497 	i2c->line_status = 0;
498 
499 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
500 		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
501 		OVERRIDE_MASTER |
502 		OVERRIDE_DIRECT |
503 		(data << OVERRIDE_DATA_SHIFT));
504 }
505 
506 /* Start a transaction in atomic mode */
507 static void img_i2c_atomic_start(struct img_i2c *i2c)
508 {
509 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
510 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
511 	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
512 }
513 
514 static void img_i2c_soft_reset(struct img_i2c *i2c)
515 {
516 	i2c->t_halt = false;
517 	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
518 	img_i2c_writel(i2c, SCB_CONTROL_REG,
519 		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
520 }
521 
522 /*
523  * Enable or release transaction halt for control of repeated starts.
524  * In version 3.3 of the IP when transaction halt is set, an interrupt
525  * will be generated after each byte of a transfer instead of after
526  * every transfer but before the stop bit.
527  * Due to this behaviour we have to be careful that every time we
528  * release the transaction halt we have to re-enable it straight away
529  * so that we only process a single byte, not doing so will result in
530  * all remaining bytes been processed and a stop bit being issued,
531  * which will prevent us having a repeated start.
532  */
533 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
534 {
535 	u32 val;
536 
537 	if (i2c->t_halt == t_halt)
538 		return;
539 	i2c->t_halt = t_halt;
540 	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
541 	if (t_halt)
542 		val |= SCB_CONTROL_TRANSACTION_HALT;
543 	else
544 		val &= ~SCB_CONTROL_TRANSACTION_HALT;
545 	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
546 }
547 
548 /* Drain data from the FIFO into the buffer (automatic mode) */
549 static void img_i2c_read_fifo(struct img_i2c *i2c)
550 {
551 	while (i2c->msg.len) {
552 		u32 fifo_status;
553 		u8 data;
554 
555 		img_i2c_wr_rd_fence(i2c);
556 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
557 		if (fifo_status & FIFO_READ_EMPTY)
558 			break;
559 
560 		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
561 		*i2c->msg.buf = data;
562 
563 		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
564 		i2c->msg.len--;
565 		i2c->msg.buf++;
566 	}
567 }
568 
569 /* Fill the FIFO with data from the buffer (automatic mode) */
570 static void img_i2c_write_fifo(struct img_i2c *i2c)
571 {
572 	while (i2c->msg.len) {
573 		u32 fifo_status;
574 
575 		img_i2c_wr_rd_fence(i2c);
576 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
577 		if (fifo_status & FIFO_WRITE_FULL)
578 			break;
579 
580 		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
581 		i2c->msg.len--;
582 		i2c->msg.buf++;
583 	}
584 
585 	/* Disable fifo emptying interrupt if nothing more to write */
586 	if (!i2c->msg.len)
587 		i2c->int_enable &= ~INT_FIFO_EMPTYING;
588 }
589 
590 /* Start a read transaction in automatic mode */
591 static void img_i2c_read(struct img_i2c *i2c)
592 {
593 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
594 	if (!i2c->last_msg)
595 		i2c->int_enable |= INT_SLAVE_EVENT;
596 
597 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
598 	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
599 	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
600 
601 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
602 }
603 
604 /* Start a write transaction in automatic mode */
605 static void img_i2c_write(struct img_i2c *i2c)
606 {
607 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
608 	if (!i2c->last_msg)
609 		i2c->int_enable |= INT_SLAVE_EVENT;
610 
611 	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
612 	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
613 
614 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
615 	img_i2c_write_fifo(i2c);
616 
617 	/* img_i2c_write_fifo() may modify int_enable */
618 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
619 }
620 
621 /*
622  * Indicate that the transaction is complete. This is called from the
623  * ISR to wake up the waiting thread, after which the ISR must not
624  * access any more SCB registers.
625  */
626 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
627 {
628 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
629 	if (status) {
630 		i2c->msg_status = status;
631 		img_i2c_transaction_halt(i2c, false);
632 	}
633 	complete(&i2c->msg_complete);
634 }
635 
636 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
637 					u32 int_status, u32 line_status)
638 {
639 	/* Stay in raw mode for this, so we don't just loop infinitely */
640 	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
641 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
642 	return 0;
643 }
644 
645 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
646 				u32 line_status)
647 {
648 	if (int_status & INT_TIMING) {
649 		if (i2c->raw_timeout == 0)
650 			return img_i2c_raw_atomic_delay_handler(i2c,
651 				int_status, line_status);
652 		--i2c->raw_timeout;
653 	}
654 	return 0;
655 }
656 
657 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
658 {
659 	static const unsigned int continue_bits[] = {
660 		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
661 		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
662 		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
663 		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
664 		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
665 	};
666 	int next_cmd = -1;
667 	u8 next_data = 0x00;
668 
669 	if (int_status & INT_SLAVE_EVENT)
670 		i2c->at_slave_event = true;
671 	if (int_status & INT_TRANSACTION_DONE)
672 		i2c->at_t_done = true;
673 
674 	if (!i2c->at_slave_event || !i2c->at_t_done)
675 		return 0;
676 
677 	/* wait if no continue bits are set */
678 	if (i2c->at_cur_cmd >= 0 &&
679 	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
680 		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
681 
682 		if (cont_bits) {
683 			cont_bits |= LINESTAT_ABORT_DET;
684 			if (!(i2c->line_status & cont_bits))
685 				return 0;
686 		}
687 	}
688 
689 	/* follow the sequence of commands in i2c->seq */
690 	next_cmd = *i2c->seq;
691 	/* stop on a nil */
692 	if (!next_cmd) {
693 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
694 		return ISR_COMPLETE(0);
695 	}
696 	/* when generating data, the next byte is the data */
697 	if (next_cmd == CMD_GEN_DATA) {
698 		++i2c->seq;
699 		next_data = *i2c->seq;
700 	}
701 	++i2c->seq;
702 	img_i2c_atomic_op(i2c, next_cmd, next_data);
703 
704 	return 0;
705 }
706 
707 static void img_i2c_reset_start(struct img_i2c *i2c)
708 {
709 	/* Initiate the magic dance */
710 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
711 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
712 	i2c->seq = img_i2c_reset_seq;
713 	i2c->at_slave_event = true;
714 	i2c->at_t_done = true;
715 	i2c->at_cur_cmd = -1;
716 
717 	/* img_i2c_reset_seq isn't empty so the following won't fail */
718 	img_i2c_sequence(i2c, 0);
719 }
720 
721 static void img_i2c_stop_start(struct img_i2c *i2c)
722 {
723 	/* Initiate a stop bit sequence */
724 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
725 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
726 	i2c->seq = img_i2c_stop_seq;
727 	i2c->at_slave_event = true;
728 	i2c->at_t_done = true;
729 	i2c->at_cur_cmd = -1;
730 
731 	/* img_i2c_stop_seq isn't empty so the following won't fail */
732 	img_i2c_sequence(i2c, 0);
733 }
734 
735 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
736 				   u32 int_status,
737 				   u32 line_status)
738 {
739 	int next_cmd = -1;
740 	u8 next_data = 0x00;
741 
742 	if (int_status & INT_SLAVE_EVENT)
743 		i2c->at_slave_event = true;
744 	if (int_status & INT_TRANSACTION_DONE)
745 		i2c->at_t_done = true;
746 
747 	if (!i2c->at_slave_event || !i2c->at_t_done)
748 		goto next_atomic_cmd;
749 	if (i2c->line_status & LINESTAT_ABORT_DET) {
750 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
751 		next_cmd = CMD_GEN_STOP;
752 		i2c->msg_status = -EIO;
753 		goto next_atomic_cmd;
754 	}
755 
756 	/* i2c->at_cur_cmd may have completed */
757 	switch (i2c->at_cur_cmd) {
758 	case CMD_GEN_START:
759 		next_cmd = CMD_GEN_DATA;
760 		next_data = i2c_8bit_addr_from_msg(&i2c->msg);
761 		break;
762 	case CMD_GEN_DATA:
763 		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
764 			next_cmd = CMD_RET_ACK;
765 		break;
766 	case CMD_RET_ACK:
767 		if (i2c->line_status & LINESTAT_ACK_DET ||
768 		    (i2c->line_status & LINESTAT_NACK_DET &&
769 		    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
770 			if (i2c->msg.len == 0) {
771 				next_cmd = CMD_GEN_STOP;
772 			} else if (i2c->msg.flags & I2C_M_RD) {
773 				next_cmd = CMD_RET_DATA;
774 			} else {
775 				next_cmd = CMD_GEN_DATA;
776 				next_data = *i2c->msg.buf;
777 				--i2c->msg.len;
778 				++i2c->msg.buf;
779 			}
780 		} else if (i2c->line_status & LINESTAT_NACK_DET) {
781 			i2c->msg_status = -EIO;
782 			next_cmd = CMD_GEN_STOP;
783 		}
784 		break;
785 	case CMD_RET_DATA:
786 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
787 			*i2c->msg.buf = (i2c->line_status &
788 						LINESTAT_INPUT_DATA)
789 					>> LINESTAT_INPUT_DATA_SHIFT;
790 			--i2c->msg.len;
791 			++i2c->msg.buf;
792 			if (i2c->msg.len)
793 				next_cmd = CMD_GEN_ACK;
794 			else
795 				next_cmd = CMD_GEN_NACK;
796 		}
797 		break;
798 	case CMD_GEN_ACK:
799 		if (i2c->line_status & LINESTAT_ACK_DET) {
800 			next_cmd = CMD_RET_DATA;
801 		} else {
802 			i2c->msg_status = -EIO;
803 			next_cmd = CMD_GEN_STOP;
804 		}
805 		break;
806 	case CMD_GEN_NACK:
807 		next_cmd = CMD_GEN_STOP;
808 		break;
809 	case CMD_GEN_STOP:
810 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
811 		return ISR_COMPLETE(0);
812 	default:
813 		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
814 			i2c->at_cur_cmd);
815 		i2c->msg_status = -EIO;
816 		next_cmd = CMD_GEN_STOP;
817 		break;
818 	}
819 
820 next_atomic_cmd:
821 	if (next_cmd != -1) {
822 		/* don't actually stop unless we're the last transaction */
823 		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
824 						!i2c->last_msg)
825 			return ISR_COMPLETE(0);
826 		img_i2c_atomic_op(i2c, next_cmd, next_data);
827 	}
828 	return 0;
829 }
830 
831 /*
832  * Timer function to check if something has gone wrong in automatic mode (so we
833  * don't have to handle so many interrupts just to catch an exception).
834  */
835 static void img_i2c_check_timer(struct timer_list *t)
836 {
837 	struct img_i2c *i2c = from_timer(i2c, t, check_timer);
838 	unsigned long flags;
839 	unsigned int line_status;
840 
841 	spin_lock_irqsave(&i2c->lock, flags);
842 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
843 
844 	/* check for an abort condition */
845 	if (line_status & LINESTAT_ABORT_DET) {
846 		dev_dbg(i2c->adap.dev.parent,
847 			"abort condition detected by check timer\n");
848 		/* enable slave event interrupt mask to trigger irq */
849 		img_i2c_writel(i2c, SCB_INT_MASK_REG,
850 			       i2c->int_enable | INT_SLAVE_EVENT);
851 	}
852 
853 	spin_unlock_irqrestore(&i2c->lock, flags);
854 }
855 
856 static unsigned int img_i2c_auto(struct img_i2c *i2c,
857 				 unsigned int int_status,
858 				 unsigned int line_status)
859 {
860 	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
861 		return ISR_COMPLETE(EIO);
862 
863 	if (line_status & LINESTAT_ABORT_DET) {
864 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
865 		/* empty the read fifo */
866 		if ((i2c->msg.flags & I2C_M_RD) &&
867 		    (int_status & INT_FIFO_FULL_FILLING))
868 			img_i2c_read_fifo(i2c);
869 		/* use atomic mode and try to force a stop bit */
870 		i2c->msg_status = -EIO;
871 		img_i2c_stop_start(i2c);
872 		return 0;
873 	}
874 
875 	/* Enable transaction halt on start bit */
876 	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
877 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
878 		/* we're no longer interested in the slave event */
879 		i2c->int_enable &= ~INT_SLAVE_EVENT;
880 	}
881 
882 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
883 
884 	if (int_status & INT_STOP_DETECTED) {
885 		/* Drain remaining data in FIFO and complete transaction */
886 		if (i2c->msg.flags & I2C_M_RD)
887 			img_i2c_read_fifo(i2c);
888 		return ISR_COMPLETE(0);
889 	}
890 
891 	if (i2c->msg.flags & I2C_M_RD) {
892 		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
893 			img_i2c_read_fifo(i2c);
894 			if (i2c->msg.len == 0)
895 				return ISR_WAITSTOP;
896 		}
897 	} else {
898 		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
899 			if ((int_status & INT_FIFO_EMPTY) &&
900 			    i2c->msg.len == 0)
901 				return ISR_WAITSTOP;
902 			img_i2c_write_fifo(i2c);
903 		}
904 	}
905 	if (int_status & INT_MASTER_HALTED) {
906 		/*
907 		 * Release and then enable transaction halt, to
908 		 * allow only a single byte to proceed.
909 		 */
910 		img_i2c_transaction_halt(i2c, false);
911 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
912 	}
913 
914 	return 0;
915 }
916 
917 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
918 {
919 	struct img_i2c *i2c = (struct img_i2c *)dev_id;
920 	u32 int_status, line_status;
921 	/* We handle transaction completion AFTER accessing registers */
922 	unsigned int hret;
923 
924 	/* Read interrupt status register. */
925 	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
926 	/* Clear detected interrupts. */
927 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
928 
929 	/*
930 	 * Read line status and clear it until it actually is clear.  We have
931 	 * to be careful not to lose any line status bits that get latched.
932 	 */
933 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
934 	if (line_status & LINESTAT_LATCHED) {
935 		img_i2c_writel(i2c, SCB_CLEAR_REG,
936 			      (line_status & LINESTAT_LATCHED)
937 				>> LINESTAT_CLEAR_SHIFT);
938 		img_i2c_wr_rd_fence(i2c);
939 	}
940 
941 	spin_lock(&i2c->lock);
942 
943 	/* Keep track of line status bits received */
944 	i2c->line_status &= ~LINESTAT_INPUT_DATA;
945 	i2c->line_status |= line_status;
946 
947 	/*
948 	 * Certain interrupts indicate that sclk low timeout is not
949 	 * a problem. If any of these are set, just continue.
950 	 */
951 	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
952 	    !(int_status & (INT_SLAVE_EVENT |
953 			    INT_FIFO_EMPTY |
954 			    INT_FIFO_FULL))) {
955 		dev_crit(i2c->adap.dev.parent,
956 			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
957 			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
958 			 i2c->msg.addr);
959 		hret = ISR_FATAL(EIO);
960 		goto out;
961 	}
962 
963 	if (i2c->mode == MODE_ATOMIC)
964 		hret = img_i2c_atomic(i2c, int_status, line_status);
965 	else if (i2c->mode == MODE_AUTOMATIC)
966 		hret = img_i2c_auto(i2c, int_status, line_status);
967 	else if (i2c->mode == MODE_SEQUENCE)
968 		hret = img_i2c_sequence(i2c, int_status);
969 	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
970 			 (line_status & LINESTAT_STOP_BIT_DET))
971 		hret = ISR_COMPLETE(0);
972 	else if (i2c->mode == MODE_RAW)
973 		hret = img_i2c_raw(i2c, int_status, line_status);
974 	else
975 		hret = 0;
976 
977 	/* Clear detected level interrupts. */
978 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
979 
980 out:
981 	if (hret & ISR_WAITSTOP) {
982 		/*
983 		 * Only wait for stop on last message.
984 		 * Also we may already have detected the stop bit.
985 		 */
986 		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
987 			hret = ISR_COMPLETE(0);
988 		else
989 			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
990 	}
991 
992 	/* now we've finished using regs, handle transaction completion */
993 	if (hret & ISR_COMPLETE_M) {
994 		int status = -(hret & ISR_STATUS_M);
995 
996 		img_i2c_complete_transaction(i2c, status);
997 		if (hret & ISR_FATAL_M)
998 			img_i2c_switch_mode(i2c, MODE_FATAL);
999 	}
1000 
1001 	/* Enable interrupts (int_enable may be altered by changing mode) */
1002 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1003 
1004 	spin_unlock(&i2c->lock);
1005 
1006 	return IRQ_HANDLED;
1007 }
1008 
1009 /* Force a bus reset sequence and wait for it to complete */
1010 static int img_i2c_reset_bus(struct img_i2c *i2c)
1011 {
1012 	unsigned long flags;
1013 	unsigned long time_left;
1014 
1015 	spin_lock_irqsave(&i2c->lock, flags);
1016 	reinit_completion(&i2c->msg_complete);
1017 	img_i2c_reset_start(i2c);
1018 	spin_unlock_irqrestore(&i2c->lock, flags);
1019 
1020 	time_left = wait_for_completion_timeout(&i2c->msg_complete,
1021 					      IMG_I2C_TIMEOUT);
1022 	if (time_left == 0)
1023 		return -ETIMEDOUT;
1024 	return 0;
1025 }
1026 
1027 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1028 			int num)
1029 {
1030 	struct img_i2c *i2c = i2c_get_adapdata(adap);
1031 	bool atomic = false;
1032 	int i, ret;
1033 	unsigned long time_left;
1034 
1035 	if (i2c->mode == MODE_SUSPEND) {
1036 		WARN(1, "refusing to service transaction in suspended state\n");
1037 		return -EIO;
1038 	}
1039 
1040 	if (i2c->mode == MODE_FATAL)
1041 		return -EIO;
1042 
1043 	for (i = 0; i < num; i++) {
1044 		/*
1045 		 * 0 byte reads are not possible because the slave could try
1046 		 * and pull the data line low, preventing a stop bit.
1047 		 */
1048 		if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1049 			return -EIO;
1050 		/*
1051 		 * 0 byte writes are possible and used for probing, but we
1052 		 * cannot do them in automatic mode, so use atomic mode
1053 		 * instead.
1054 		 *
1055 		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1056 		 * in atomic mode.
1057 		 */
1058 		if (!msgs[i].len ||
1059 		    (msgs[i].flags & I2C_M_IGNORE_NAK))
1060 			atomic = true;
1061 	}
1062 
1063 	ret = pm_runtime_get_sync(adap->dev.parent);
1064 	if (ret < 0)
1065 		return ret;
1066 
1067 	for (i = 0; i < num; i++) {
1068 		struct i2c_msg *msg = &msgs[i];
1069 		unsigned long flags;
1070 
1071 		spin_lock_irqsave(&i2c->lock, flags);
1072 
1073 		/*
1074 		 * Make a copy of the message struct. We mustn't modify the
1075 		 * original or we'll confuse drivers and i2c-dev.
1076 		 */
1077 		i2c->msg = *msg;
1078 		i2c->msg_status = 0;
1079 
1080 		/*
1081 		 * After the last message we must have waited for a stop bit.
1082 		 * Not waiting can cause problems when the clock is disabled
1083 		 * before the stop bit is sent, and the linux I2C interface
1084 		 * requires separate transfers not to joined with repeated
1085 		 * start.
1086 		 */
1087 		i2c->last_msg = (i == num - 1);
1088 		reinit_completion(&i2c->msg_complete);
1089 
1090 		/*
1091 		 * Clear line status and all interrupts before starting a
1092 		 * transfer, as we may have unserviced interrupts from
1093 		 * previous transfers that might be handled in the context
1094 		 * of the new transfer.
1095 		 */
1096 		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1097 		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1098 
1099 		if (atomic) {
1100 			img_i2c_atomic_start(i2c);
1101 		} else {
1102 			/*
1103 			 * Enable transaction halt if not the last message in
1104 			 * the queue so that we can control repeated starts.
1105 			 */
1106 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1107 
1108 			if (msg->flags & I2C_M_RD)
1109 				img_i2c_read(i2c);
1110 			else
1111 				img_i2c_write(i2c);
1112 
1113 			/*
1114 			 * Release and then enable transaction halt, to
1115 			 * allow only a single byte to proceed.
1116 			 * This doesn't have an effect on the initial transfer
1117 			 * but will allow the following transfers to start
1118 			 * processing if the previous transfer was marked as
1119 			 * complete while the i2c block was halted.
1120 			 */
1121 			img_i2c_transaction_halt(i2c, false);
1122 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1123 		}
1124 		spin_unlock_irqrestore(&i2c->lock, flags);
1125 
1126 		time_left = wait_for_completion_timeout(&i2c->msg_complete,
1127 						      IMG_I2C_TIMEOUT);
1128 		del_timer_sync(&i2c->check_timer);
1129 
1130 		if (time_left == 0) {
1131 			dev_err(adap->dev.parent, "i2c transfer timed out\n");
1132 			i2c->msg_status = -ETIMEDOUT;
1133 			break;
1134 		}
1135 
1136 		if (i2c->msg_status)
1137 			break;
1138 	}
1139 
1140 	pm_runtime_mark_last_busy(adap->dev.parent);
1141 	pm_runtime_put_autosuspend(adap->dev.parent);
1142 
1143 	return i2c->msg_status ? i2c->msg_status : num;
1144 }
1145 
1146 static u32 img_i2c_func(struct i2c_adapter *adap)
1147 {
1148 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1149 }
1150 
1151 static const struct i2c_algorithm img_i2c_algo = {
1152 	.master_xfer = img_i2c_xfer,
1153 	.functionality = img_i2c_func,
1154 };
1155 
1156 static int img_i2c_init(struct img_i2c *i2c)
1157 {
1158 	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1159 	unsigned int i, data, prescale, inc, int_bitrate, filt;
1160 	struct img_i2c_timings timing;
1161 	u32 rev;
1162 	int ret;
1163 
1164 	ret = pm_runtime_get_sync(i2c->adap.dev.parent);
1165 	if (ret < 0)
1166 		return ret;
1167 
1168 	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1169 	if ((rev & 0x00ffffff) < 0x00020200) {
1170 		dev_info(i2c->adap.dev.parent,
1171 			 "Unknown hardware revision (%d.%d.%d.%d)\n",
1172 			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1173 			 (rev >> 8) & 0xff, rev & 0xff);
1174 		pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1175 		pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1176 		return -EINVAL;
1177 	}
1178 
1179 	/* Fencing enabled by default. */
1180 	i2c->need_wr_rd_fence = true;
1181 
1182 	/* Determine what mode we're in from the bitrate */
1183 	timing = timings[0];
1184 	for (i = 0; i < ARRAY_SIZE(timings); i++) {
1185 		if (i2c->bitrate <= timings[i].max_bitrate) {
1186 			timing = timings[i];
1187 			break;
1188 		}
1189 	}
1190 	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1191 		dev_warn(i2c->adap.dev.parent,
1192 			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1193 			 i2c->bitrate,
1194 			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1195 		timing = timings[ARRAY_SIZE(timings) - 1];
1196 		i2c->bitrate = timing.max_bitrate;
1197 	}
1198 
1199 	bitrate_khz = i2c->bitrate / 1000;
1200 	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1201 
1202 	/* Find the prescale that would give us that inc (approx delay = 0) */
1203 	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1204 	prescale = clamp_t(unsigned int, prescale, 1, 8);
1205 	clk_khz /= prescale;
1206 
1207 	/* Setup the clock increment value */
1208 	inc = (256 * 16 * bitrate_khz) / clk_khz;
1209 
1210 	/*
1211 	 * The clock generation logic allows to filter glitches on the bus.
1212 	 * This filter is able to remove bus glitches shorter than 50ns.
1213 	 * If the clock enable rate is greater than 20 MHz, no filtering
1214 	 * is required, so we need to disable it.
1215 	 * If it's between the 20-40 MHz range, there's no need to divide
1216 	 * the clock to get a filter.
1217 	 */
1218 	if (clk_khz < 20000) {
1219 		filt = SCB_FILT_DISABLE;
1220 	} else if (clk_khz < 40000) {
1221 		filt = SCB_FILT_BYPASS;
1222 	} else {
1223 		/* Calculate filter clock */
1224 		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1225 
1226 		/* Scale up if needed */
1227 		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1228 			inc++;
1229 
1230 		if (filt > SCB_FILT_INC_MASK)
1231 			filt = SCB_FILT_INC_MASK;
1232 
1233 		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1234 	}
1235 	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1236 	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1237 
1238 	/* Obtain the clock period of the fx16 clock in ns */
1239 	clk_period = (256 * 1000000) / (clk_khz * inc);
1240 
1241 	/* Calculate the bitrate in terms of internal clock pulses */
1242 	int_bitrate = 1000000 / (bitrate_khz * clk_period);
1243 	if ((1000000 % (bitrate_khz * clk_period)) >=
1244 	    ((bitrate_khz * clk_period) / 2))
1245 		int_bitrate++;
1246 
1247 	/*
1248 	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1249 	 * values from there if they don't meet minimum timing requirements
1250 	 */
1251 	tckh = int_bitrate / 2;
1252 	tckl = int_bitrate - tckh;
1253 
1254 	/* Adjust TCKH and TCKL values */
1255 	data = DIV_ROUND_UP(timing.tckl, clk_period);
1256 
1257 	if (tckl < data) {
1258 		tckl = data;
1259 		tckh = int_bitrate - tckl;
1260 	}
1261 
1262 	if (tckh > 0)
1263 		--tckh;
1264 
1265 	if (tckl > 0)
1266 		--tckl;
1267 
1268 	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1269 	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1270 
1271 	/* Setup TSDH value */
1272 	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1273 
1274 	if (tsdh > 1)
1275 		data = tsdh - 1;
1276 	else
1277 		data = 0x01;
1278 	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1279 
1280 	/* This value is used later */
1281 	tsdh = data;
1282 
1283 	/* Setup TPL value */
1284 	data = timing.tpl / clk_period;
1285 	if (data > 0)
1286 		--data;
1287 	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1288 
1289 	/* Setup TPH value */
1290 	data = timing.tph / clk_period;
1291 	if (data > 0)
1292 		--data;
1293 	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1294 
1295 	/* Setup TSDL value to TPL + TSDH + 2 */
1296 	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1297 
1298 	/* Setup TP2S value */
1299 	data = timing.tp2s / clk_period;
1300 	if (data > 0)
1301 		--data;
1302 	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1303 
1304 	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1305 	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1306 	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1307 
1308 	/* Take module out of soft reset and enable clocks */
1309 	img_i2c_soft_reset(i2c);
1310 
1311 	/* Disable all interrupts */
1312 	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1313 
1314 	/* Clear all interrupts */
1315 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1316 
1317 	/* Clear the scb_line_status events */
1318 	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1319 
1320 	/* Enable interrupts */
1321 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1322 
1323 	/* Perform a synchronous sequence to reset the bus */
1324 	ret = img_i2c_reset_bus(i2c);
1325 
1326 	pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1327 	pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1328 
1329 	return ret;
1330 }
1331 
1332 static int img_i2c_probe(struct platform_device *pdev)
1333 {
1334 	struct device_node *node = pdev->dev.of_node;
1335 	struct img_i2c *i2c;
1336 	struct resource *res;
1337 	int irq, ret;
1338 	u32 val;
1339 
1340 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1341 	if (!i2c)
1342 		return -ENOMEM;
1343 
1344 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345 	i2c->base = devm_ioremap_resource(&pdev->dev, res);
1346 	if (IS_ERR(i2c->base))
1347 		return PTR_ERR(i2c->base);
1348 
1349 	irq = platform_get_irq(pdev, 0);
1350 	if (irq < 0) {
1351 		dev_err(&pdev->dev, "can't get irq number\n");
1352 		return irq;
1353 	}
1354 
1355 	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1356 	if (IS_ERR(i2c->sys_clk)) {
1357 		dev_err(&pdev->dev, "can't get system clock\n");
1358 		return PTR_ERR(i2c->sys_clk);
1359 	}
1360 
1361 	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1362 	if (IS_ERR(i2c->scb_clk)) {
1363 		dev_err(&pdev->dev, "can't get core clock\n");
1364 		return PTR_ERR(i2c->scb_clk);
1365 	}
1366 
1367 	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1368 			       pdev->name, i2c);
1369 	if (ret) {
1370 		dev_err(&pdev->dev, "can't request irq %d\n", irq);
1371 		return ret;
1372 	}
1373 
1374 	/* Set up the exception check timer */
1375 	timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1376 
1377 	i2c->bitrate = timings[0].max_bitrate;
1378 	if (!of_property_read_u32(node, "clock-frequency", &val))
1379 		i2c->bitrate = val;
1380 
1381 	i2c_set_adapdata(&i2c->adap, i2c);
1382 	i2c->adap.dev.parent = &pdev->dev;
1383 	i2c->adap.dev.of_node = node;
1384 	i2c->adap.owner = THIS_MODULE;
1385 	i2c->adap.algo = &img_i2c_algo;
1386 	i2c->adap.retries = 5;
1387 	i2c->adap.nr = pdev->id;
1388 	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1389 
1390 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
1391 	spin_lock_init(&i2c->lock);
1392 	init_completion(&i2c->msg_complete);
1393 
1394 	platform_set_drvdata(pdev, i2c);
1395 
1396 	pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1397 	pm_runtime_use_autosuspend(&pdev->dev);
1398 	pm_runtime_enable(&pdev->dev);
1399 	if (!pm_runtime_enabled(&pdev->dev)) {
1400 		ret = img_i2c_runtime_resume(&pdev->dev);
1401 		if (ret)
1402 			return ret;
1403 	}
1404 
1405 	ret = img_i2c_init(i2c);
1406 	if (ret)
1407 		goto rpm_disable;
1408 
1409 	ret = i2c_add_numbered_adapter(&i2c->adap);
1410 	if (ret < 0)
1411 		goto rpm_disable;
1412 
1413 	return 0;
1414 
1415 rpm_disable:
1416 	if (!pm_runtime_enabled(&pdev->dev))
1417 		img_i2c_runtime_suspend(&pdev->dev);
1418 	pm_runtime_disable(&pdev->dev);
1419 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1420 	return ret;
1421 }
1422 
1423 static int img_i2c_remove(struct platform_device *dev)
1424 {
1425 	struct img_i2c *i2c = platform_get_drvdata(dev);
1426 
1427 	i2c_del_adapter(&i2c->adap);
1428 	pm_runtime_disable(&dev->dev);
1429 	if (!pm_runtime_status_suspended(&dev->dev))
1430 		img_i2c_runtime_suspend(&dev->dev);
1431 
1432 	return 0;
1433 }
1434 
1435 static int img_i2c_runtime_suspend(struct device *dev)
1436 {
1437 	struct img_i2c *i2c = dev_get_drvdata(dev);
1438 
1439 	clk_disable_unprepare(i2c->scb_clk);
1440 	clk_disable_unprepare(i2c->sys_clk);
1441 
1442 	return 0;
1443 }
1444 
1445 static int img_i2c_runtime_resume(struct device *dev)
1446 {
1447 	struct img_i2c *i2c = dev_get_drvdata(dev);
1448 	int ret;
1449 
1450 	ret = clk_prepare_enable(i2c->sys_clk);
1451 	if (ret) {
1452 		dev_err(dev, "Unable to enable sys clock\n");
1453 		return ret;
1454 	}
1455 
1456 	ret = clk_prepare_enable(i2c->scb_clk);
1457 	if (ret) {
1458 		dev_err(dev, "Unable to enable scb clock\n");
1459 		clk_disable_unprepare(i2c->sys_clk);
1460 		return ret;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 #ifdef CONFIG_PM_SLEEP
1467 static int img_i2c_suspend(struct device *dev)
1468 {
1469 	struct img_i2c *i2c = dev_get_drvdata(dev);
1470 	int ret;
1471 
1472 	ret = pm_runtime_force_suspend(dev);
1473 	if (ret)
1474 		return ret;
1475 
1476 	img_i2c_switch_mode(i2c, MODE_SUSPEND);
1477 
1478 	return 0;
1479 }
1480 
1481 static int img_i2c_resume(struct device *dev)
1482 {
1483 	struct img_i2c *i2c = dev_get_drvdata(dev);
1484 	int ret;
1485 
1486 	ret = pm_runtime_force_resume(dev);
1487 	if (ret)
1488 		return ret;
1489 
1490 	img_i2c_init(i2c);
1491 
1492 	return 0;
1493 }
1494 #endif /* CONFIG_PM_SLEEP */
1495 
1496 static const struct dev_pm_ops img_i2c_pm = {
1497 	SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend,
1498 			   img_i2c_runtime_resume,
1499 			   NULL)
1500 	SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1501 };
1502 
1503 static const struct of_device_id img_scb_i2c_match[] = {
1504 	{ .compatible = "img,scb-i2c" },
1505 	{ }
1506 };
1507 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1508 
1509 static struct platform_driver img_scb_i2c_driver = {
1510 	.driver = {
1511 		.name		= "img-i2c-scb",
1512 		.of_match_table	= img_scb_i2c_match,
1513 		.pm		= &img_i2c_pm,
1514 	},
1515 	.probe = img_i2c_probe,
1516 	.remove = img_i2c_remove,
1517 };
1518 module_platform_driver(img_scb_i2c_driver);
1519 
1520 MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1521 MODULE_DESCRIPTION("IMG host I2C driver");
1522 MODULE_LICENSE("GPL v2");
1523