1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver 4 * 5 * Copyright (C) 2013 Samsung Electronics Co., Ltd. 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 11 #include <linux/i2c.h> 12 #include <linux/time.h> 13 #include <linux/interrupt.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/err.h> 17 #include <linux/platform_device.h> 18 #include <linux/clk.h> 19 #include <linux/slab.h> 20 #include <linux/io.h> 21 #include <linux/of_address.h> 22 #include <linux/of_device.h> 23 #include <linux/of_irq.h> 24 #include <linux/spinlock.h> 25 26 /* 27 * HSI2C controller from Samsung supports 2 modes of operation 28 * 1. Auto mode: Where in master automatically controls the whole transaction 29 * 2. Manual mode: Software controls the transaction by issuing commands 30 * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register. 31 * 32 * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register 33 * 34 * Special bits are available for both modes of operation to set commands 35 * and for checking transfer status 36 */ 37 38 /* Register Map */ 39 #define HSI2C_CTL 0x00 40 #define HSI2C_FIFO_CTL 0x04 41 #define HSI2C_TRAILIG_CTL 0x08 42 #define HSI2C_CLK_CTL 0x0C 43 #define HSI2C_CLK_SLOT 0x10 44 #define HSI2C_INT_ENABLE 0x20 45 #define HSI2C_INT_STATUS 0x24 46 #define HSI2C_ERR_STATUS 0x2C 47 #define HSI2C_FIFO_STATUS 0x30 48 #define HSI2C_TX_DATA 0x34 49 #define HSI2C_RX_DATA 0x38 50 #define HSI2C_CONF 0x40 51 #define HSI2C_AUTO_CONF 0x44 52 #define HSI2C_TIMEOUT 0x48 53 #define HSI2C_MANUAL_CMD 0x4C 54 #define HSI2C_TRANS_STATUS 0x50 55 #define HSI2C_TIMING_HS1 0x54 56 #define HSI2C_TIMING_HS2 0x58 57 #define HSI2C_TIMING_HS3 0x5C 58 #define HSI2C_TIMING_FS1 0x60 59 #define HSI2C_TIMING_FS2 0x64 60 #define HSI2C_TIMING_FS3 0x68 61 #define HSI2C_TIMING_SLA 0x6C 62 #define HSI2C_ADDR 0x70 63 64 /* I2C_CTL Register bits */ 65 #define HSI2C_FUNC_MODE_I2C (1u << 0) 66 #define HSI2C_MASTER (1u << 3) 67 #define HSI2C_RXCHON (1u << 6) 68 #define HSI2C_TXCHON (1u << 7) 69 #define HSI2C_SW_RST (1u << 31) 70 71 /* I2C_FIFO_CTL Register bits */ 72 #define HSI2C_RXFIFO_EN (1u << 0) 73 #define HSI2C_TXFIFO_EN (1u << 1) 74 #define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4) 75 #define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16) 76 77 /* I2C_TRAILING_CTL Register bits */ 78 #define HSI2C_TRAILING_COUNT (0xf) 79 80 /* I2C_INT_EN Register bits */ 81 #define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0) 82 #define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1) 83 #define HSI2C_INT_TRAILING_EN (1u << 6) 84 85 /* I2C_INT_STAT Register bits */ 86 #define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0) 87 #define HSI2C_INT_RX_ALMOSTFULL (1u << 1) 88 #define HSI2C_INT_TX_UNDERRUN (1u << 2) 89 #define HSI2C_INT_TX_OVERRUN (1u << 3) 90 #define HSI2C_INT_RX_UNDERRUN (1u << 4) 91 #define HSI2C_INT_RX_OVERRUN (1u << 5) 92 #define HSI2C_INT_TRAILING (1u << 6) 93 #define HSI2C_INT_I2C (1u << 9) 94 95 #define HSI2C_INT_TRANS_DONE (1u << 7) 96 #define HSI2C_INT_TRANS_ABORT (1u << 8) 97 #define HSI2C_INT_NO_DEV_ACK (1u << 9) 98 #define HSI2C_INT_NO_DEV (1u << 10) 99 #define HSI2C_INT_TIMEOUT (1u << 11) 100 #define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \ 101 HSI2C_INT_TRANS_ABORT | \ 102 HSI2C_INT_NO_DEV_ACK | \ 103 HSI2C_INT_NO_DEV | \ 104 HSI2C_INT_TIMEOUT) 105 106 /* I2C_FIFO_STAT Register bits */ 107 #define HSI2C_RX_FIFO_EMPTY (1u << 24) 108 #define HSI2C_RX_FIFO_FULL (1u << 23) 109 #define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f) 110 #define HSI2C_TX_FIFO_EMPTY (1u << 8) 111 #define HSI2C_TX_FIFO_FULL (1u << 7) 112 #define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f) 113 114 /* I2C_CONF Register bits */ 115 #define HSI2C_AUTO_MODE (1u << 31) 116 #define HSI2C_10BIT_ADDR_MODE (1u << 30) 117 #define HSI2C_HS_MODE (1u << 29) 118 119 /* I2C_AUTO_CONF Register bits */ 120 #define HSI2C_READ_WRITE (1u << 16) 121 #define HSI2C_STOP_AFTER_TRANS (1u << 17) 122 #define HSI2C_MASTER_RUN (1u << 31) 123 124 /* I2C_TIMEOUT Register bits */ 125 #define HSI2C_TIMEOUT_EN (1u << 31) 126 #define HSI2C_TIMEOUT_MASK 0xff 127 128 /* I2C_MANUAL_CMD register bits */ 129 #define HSI2C_CMD_READ_DATA (1u << 4) 130 #define HSI2C_CMD_SEND_STOP (1u << 2) 131 132 /* I2C_TRANS_STATUS register bits */ 133 #define HSI2C_MASTER_BUSY (1u << 17) 134 #define HSI2C_SLAVE_BUSY (1u << 16) 135 136 /* I2C_TRANS_STATUS register bits for Exynos5 variant */ 137 #define HSI2C_TIMEOUT_AUTO (1u << 4) 138 #define HSI2C_NO_DEV (1u << 3) 139 #define HSI2C_NO_DEV_ACK (1u << 2) 140 #define HSI2C_TRANS_ABORT (1u << 1) 141 #define HSI2C_TRANS_DONE (1u << 0) 142 143 /* I2C_TRANS_STATUS register bits for Exynos7 variant */ 144 #define HSI2C_MASTER_ST_MASK 0xf 145 #define HSI2C_MASTER_ST_IDLE 0x0 146 #define HSI2C_MASTER_ST_START 0x1 147 #define HSI2C_MASTER_ST_RESTART 0x2 148 #define HSI2C_MASTER_ST_STOP 0x3 149 #define HSI2C_MASTER_ST_MASTER_ID 0x4 150 #define HSI2C_MASTER_ST_ADDR0 0x5 151 #define HSI2C_MASTER_ST_ADDR1 0x6 152 #define HSI2C_MASTER_ST_ADDR2 0x7 153 #define HSI2C_MASTER_ST_ADDR_SR 0x8 154 #define HSI2C_MASTER_ST_READ 0x9 155 #define HSI2C_MASTER_ST_WRITE 0xa 156 #define HSI2C_MASTER_ST_NO_ACK 0xb 157 #define HSI2C_MASTER_ST_LOSE 0xc 158 #define HSI2C_MASTER_ST_WAIT 0xd 159 #define HSI2C_MASTER_ST_WAIT_CMD 0xe 160 161 /* I2C_ADDR register bits */ 162 #define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0) 163 #define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10) 164 #define HSI2C_MASTER_ID(x) ((x & 0xff) << 24) 165 #define MASTER_ID(x) ((x & 0x7) + 0x08) 166 167 #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100)) 168 169 enum i2c_type_exynos { 170 I2C_TYPE_EXYNOS5, 171 I2C_TYPE_EXYNOS7, 172 I2C_TYPE_EXYNOSAUTOV9, 173 }; 174 175 struct exynos5_i2c { 176 struct i2c_adapter adap; 177 178 struct i2c_msg *msg; 179 struct completion msg_complete; 180 unsigned int msg_ptr; 181 182 unsigned int irq; 183 184 void __iomem *regs; 185 struct clk *clk; /* operating clock */ 186 struct clk *pclk; /* bus clock */ 187 struct device *dev; 188 int state; 189 190 spinlock_t lock; /* IRQ synchronization */ 191 192 /* 193 * Since the TRANS_DONE bit is cleared on read, and we may read it 194 * either during an IRQ or after a transaction, keep track of its 195 * state here. 196 */ 197 int trans_done; 198 199 /* Controller operating frequency */ 200 unsigned int op_clock; 201 202 /* Version of HS-I2C Hardware */ 203 const struct exynos_hsi2c_variant *variant; 204 }; 205 206 /** 207 * struct exynos_hsi2c_variant - platform specific HSI2C driver data 208 * @fifo_depth: the fifo depth supported by the HSI2C module 209 * @hw: the hardware variant of Exynos I2C controller 210 * 211 * Specifies platform specific configuration of HSI2C module. 212 * Note: A structure for driver specific platform data is used for future 213 * expansion of its usage. 214 */ 215 struct exynos_hsi2c_variant { 216 unsigned int fifo_depth; 217 enum i2c_type_exynos hw; 218 }; 219 220 static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = { 221 .fifo_depth = 64, 222 .hw = I2C_TYPE_EXYNOS5, 223 }; 224 225 static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = { 226 .fifo_depth = 16, 227 .hw = I2C_TYPE_EXYNOS5, 228 }; 229 230 static const struct exynos_hsi2c_variant exynos7_hsi2c_data = { 231 .fifo_depth = 16, 232 .hw = I2C_TYPE_EXYNOS7, 233 }; 234 235 static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = { 236 .fifo_depth = 64, 237 .hw = I2C_TYPE_EXYNOSAUTOV9, 238 }; 239 240 static const struct of_device_id exynos5_i2c_match[] = { 241 { 242 .compatible = "samsung,exynos5-hsi2c", 243 .data = &exynos5250_hsi2c_data 244 }, { 245 .compatible = "samsung,exynos5250-hsi2c", 246 .data = &exynos5250_hsi2c_data 247 }, { 248 .compatible = "samsung,exynos5260-hsi2c", 249 .data = &exynos5260_hsi2c_data 250 }, { 251 .compatible = "samsung,exynos7-hsi2c", 252 .data = &exynos7_hsi2c_data 253 }, { 254 .compatible = "samsung,exynosautov9-hsi2c", 255 .data = &exynosautov9_hsi2c_data 256 }, {}, 257 }; 258 MODULE_DEVICE_TABLE(of, exynos5_i2c_match); 259 260 static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c) 261 { 262 writel(readl(i2c->regs + HSI2C_INT_STATUS), 263 i2c->regs + HSI2C_INT_STATUS); 264 } 265 266 /* 267 * exynos5_i2c_set_timing: updates the registers with appropriate 268 * timing values calculated 269 * 270 * Timing values for operation are calculated against either 100kHz 271 * or 1MHz controller operating frequency. 272 * 273 * Returns 0 on success, -EINVAL if the cycle length cannot 274 * be calculated. 275 */ 276 static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings) 277 { 278 u32 i2c_timing_s1; 279 u32 i2c_timing_s2; 280 u32 i2c_timing_s3; 281 u32 i2c_timing_sla; 282 unsigned int t_start_su, t_start_hd; 283 unsigned int t_stop_su; 284 unsigned int t_data_su, t_data_hd; 285 unsigned int t_scl_l, t_scl_h; 286 unsigned int t_sr_release; 287 unsigned int t_ftl_cycle; 288 unsigned int clkin = clk_get_rate(i2c->clk); 289 unsigned int op_clk = hs_timings ? i2c->op_clock : 290 (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ : 291 i2c->op_clock; 292 int div, clk_cycle, temp; 293 294 /* 295 * In case of HSI2C controllers in ExynosAutoV9: 296 * 297 * FSCL = IPCLK / ((CLK_DIV + 1) * 16) 298 * T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M) 299 * [N : number of 0's in the TSCL_H_HS] 300 * [M : number of 0's in the TSCL_L_HS] 301 * T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M) 302 * [N : number of 1's in the TSCL_H_HS] 303 * [M : number of 1's in the TSCL_L_HS] 304 * 305 * Result of (N + M) is always 8. 306 * In general case, we don't need to control timing_s1 and timing_s2. 307 */ 308 if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) { 309 div = ((clkin / (16 * i2c->op_clock)) - 1); 310 i2c_timing_s3 = div << 16; 311 if (hs_timings) 312 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3); 313 else 314 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3); 315 316 return 0; 317 } 318 319 /* 320 * In case of HSI2C controller in Exynos5 series 321 * FPCLK / FI2C = 322 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE 323 * 324 * In case of HSI2C controllers in Exynos7 series 325 * FPCLK / FI2C = 326 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE 327 * 328 * clk_cycle := TSCLK_L + TSCLK_H 329 * temp := (CLK_DIV + 1) * (clk_cycle + 2) 330 * 331 * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510 332 * 333 */ 334 t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7; 335 temp = clkin / op_clk - 8 - t_ftl_cycle; 336 if (i2c->variant->hw != I2C_TYPE_EXYNOS7) 337 temp -= t_ftl_cycle; 338 div = temp / 512; 339 clk_cycle = temp / (div + 1) - 2; 340 if (temp < 4 || div >= 256 || clk_cycle < 2) { 341 dev_err(i2c->dev, "%s clock set-up failed\n", 342 hs_timings ? "HS" : "FS"); 343 return -EINVAL; 344 } 345 346 t_scl_l = clk_cycle / 2; 347 t_scl_h = clk_cycle / 2; 348 t_start_su = t_scl_l; 349 t_start_hd = t_scl_l; 350 t_stop_su = t_scl_l; 351 t_data_su = t_scl_l / 2; 352 t_data_hd = t_scl_l / 2; 353 t_sr_release = clk_cycle; 354 355 i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8; 356 i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0; 357 i2c_timing_s3 = div << 16 | t_sr_release << 0; 358 i2c_timing_sla = t_data_hd << 0; 359 360 dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n", 361 t_start_su, t_start_hd, t_stop_su); 362 dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n", 363 t_data_su, t_scl_l, t_scl_h); 364 dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n", 365 div, t_sr_release); 366 dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd); 367 368 if (hs_timings) { 369 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1); 370 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2); 371 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3); 372 } else { 373 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1); 374 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2); 375 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3); 376 } 377 writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA); 378 379 return 0; 380 } 381 382 static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c) 383 { 384 /* always set Fast Speed timings */ 385 int ret = exynos5_i2c_set_timing(i2c, false); 386 387 if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ) 388 return ret; 389 390 return exynos5_i2c_set_timing(i2c, true); 391 } 392 393 /* 394 * exynos5_i2c_init: configures the controller for I2C functionality 395 * Programs I2C controller for Master mode operation 396 */ 397 static void exynos5_i2c_init(struct exynos5_i2c *i2c) 398 { 399 u32 i2c_conf = readl(i2c->regs + HSI2C_CONF); 400 u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT); 401 402 /* Clear to disable Timeout */ 403 i2c_timeout &= ~HSI2C_TIMEOUT_EN; 404 writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT); 405 406 writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER), 407 i2c->regs + HSI2C_CTL); 408 writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL); 409 410 if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) { 411 writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)), 412 i2c->regs + HSI2C_ADDR); 413 i2c_conf |= HSI2C_HS_MODE; 414 } 415 416 writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF); 417 } 418 419 static void exynos5_i2c_reset(struct exynos5_i2c *i2c) 420 { 421 u32 i2c_ctl; 422 423 /* Set and clear the bit for reset */ 424 i2c_ctl = readl(i2c->regs + HSI2C_CTL); 425 i2c_ctl |= HSI2C_SW_RST; 426 writel(i2c_ctl, i2c->regs + HSI2C_CTL); 427 428 i2c_ctl = readl(i2c->regs + HSI2C_CTL); 429 i2c_ctl &= ~HSI2C_SW_RST; 430 writel(i2c_ctl, i2c->regs + HSI2C_CTL); 431 432 /* We don't expect calculations to fail during the run */ 433 exynos5_hsi2c_clock_setup(i2c); 434 /* Initialize the configure registers */ 435 exynos5_i2c_init(i2c); 436 } 437 438 /* 439 * exynos5_i2c_irq: top level IRQ servicing routine 440 * 441 * INT_STATUS registers gives the interrupt details. Further, 442 * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed 443 * state of the bus. 444 */ 445 static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id) 446 { 447 struct exynos5_i2c *i2c = dev_id; 448 u32 fifo_level, int_status, fifo_status, trans_status; 449 unsigned char byte; 450 int len = 0; 451 452 i2c->state = -EINVAL; 453 454 spin_lock(&i2c->lock); 455 456 int_status = readl(i2c->regs + HSI2C_INT_STATUS); 457 writel(int_status, i2c->regs + HSI2C_INT_STATUS); 458 459 /* handle interrupt related to the transfer status */ 460 switch (i2c->variant->hw) { 461 case I2C_TYPE_EXYNOSAUTOV9: 462 fallthrough; 463 case I2C_TYPE_EXYNOS7: 464 if (int_status & HSI2C_INT_TRANS_DONE) { 465 i2c->trans_done = 1; 466 i2c->state = 0; 467 } else if (int_status & HSI2C_INT_TRANS_ABORT) { 468 dev_dbg(i2c->dev, "Deal with arbitration lose\n"); 469 i2c->state = -EAGAIN; 470 goto stop; 471 } else if (int_status & HSI2C_INT_NO_DEV_ACK) { 472 dev_dbg(i2c->dev, "No ACK from device\n"); 473 i2c->state = -ENXIO; 474 goto stop; 475 } else if (int_status & HSI2C_INT_NO_DEV) { 476 dev_dbg(i2c->dev, "No device\n"); 477 i2c->state = -ENXIO; 478 goto stop; 479 } else if (int_status & HSI2C_INT_TIMEOUT) { 480 dev_dbg(i2c->dev, "Accessing device timed out\n"); 481 i2c->state = -ETIMEDOUT; 482 goto stop; 483 } 484 485 break; 486 case I2C_TYPE_EXYNOS5: 487 if (!(int_status & HSI2C_INT_I2C)) 488 break; 489 490 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS); 491 if (trans_status & HSI2C_NO_DEV_ACK) { 492 dev_dbg(i2c->dev, "No ACK from device\n"); 493 i2c->state = -ENXIO; 494 goto stop; 495 } else if (trans_status & HSI2C_NO_DEV) { 496 dev_dbg(i2c->dev, "No device\n"); 497 i2c->state = -ENXIO; 498 goto stop; 499 } else if (trans_status & HSI2C_TRANS_ABORT) { 500 dev_dbg(i2c->dev, "Deal with arbitration lose\n"); 501 i2c->state = -EAGAIN; 502 goto stop; 503 } else if (trans_status & HSI2C_TIMEOUT_AUTO) { 504 dev_dbg(i2c->dev, "Accessing device timed out\n"); 505 i2c->state = -ETIMEDOUT; 506 goto stop; 507 } else if (trans_status & HSI2C_TRANS_DONE) { 508 i2c->trans_done = 1; 509 i2c->state = 0; 510 } 511 512 break; 513 } 514 515 if ((i2c->msg->flags & I2C_M_RD) && (int_status & 516 (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) { 517 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS); 518 fifo_level = HSI2C_RX_FIFO_LVL(fifo_status); 519 len = min(fifo_level, i2c->msg->len - i2c->msg_ptr); 520 521 while (len > 0) { 522 byte = (unsigned char) 523 readl(i2c->regs + HSI2C_RX_DATA); 524 i2c->msg->buf[i2c->msg_ptr++] = byte; 525 len--; 526 } 527 i2c->state = 0; 528 } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) { 529 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS); 530 fifo_level = HSI2C_TX_FIFO_LVL(fifo_status); 531 532 len = i2c->variant->fifo_depth - fifo_level; 533 if (len > (i2c->msg->len - i2c->msg_ptr)) { 534 u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE); 535 536 int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN; 537 writel(int_en, i2c->regs + HSI2C_INT_ENABLE); 538 len = i2c->msg->len - i2c->msg_ptr; 539 } 540 541 while (len > 0) { 542 byte = i2c->msg->buf[i2c->msg_ptr++]; 543 writel(byte, i2c->regs + HSI2C_TX_DATA); 544 len--; 545 } 546 i2c->state = 0; 547 } 548 549 stop: 550 if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) || 551 (i2c->state < 0)) { 552 writel(0, i2c->regs + HSI2C_INT_ENABLE); 553 exynos5_i2c_clr_pend_irq(i2c); 554 complete(&i2c->msg_complete); 555 } 556 557 spin_unlock(&i2c->lock); 558 559 return IRQ_HANDLED; 560 } 561 562 /* 563 * exynos5_i2c_wait_bus_idle 564 * 565 * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being 566 * cleared. 567 * 568 * Returns -EBUSY if the bus cannot be bought to idle 569 */ 570 static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c) 571 { 572 unsigned long stop_time; 573 u32 trans_status; 574 575 /* wait for 100 milli seconds for the bus to be idle */ 576 stop_time = jiffies + msecs_to_jiffies(100) + 1; 577 do { 578 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS); 579 if (!(trans_status & HSI2C_MASTER_BUSY)) 580 return 0; 581 582 usleep_range(50, 200); 583 } while (time_before(jiffies, stop_time)); 584 585 return -EBUSY; 586 } 587 588 static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c) 589 { 590 u32 val; 591 592 val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON; 593 writel(val, i2c->regs + HSI2C_CTL); 594 val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE; 595 writel(val, i2c->regs + HSI2C_CONF); 596 597 /* 598 * Specification says master should send nine clock pulses. It can be 599 * emulated by sending manual read command (nine pulses for read eight 600 * bits + one pulse for NACK). 601 */ 602 writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD); 603 exynos5_i2c_wait_bus_idle(i2c); 604 writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD); 605 exynos5_i2c_wait_bus_idle(i2c); 606 607 val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON; 608 writel(val, i2c->regs + HSI2C_CTL); 609 val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE; 610 writel(val, i2c->regs + HSI2C_CONF); 611 } 612 613 static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c) 614 { 615 unsigned long timeout; 616 617 if (i2c->variant->hw == I2C_TYPE_EXYNOS5) 618 return; 619 620 /* 621 * HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants) 622 * before transaction indicates that bus is stuck (SDA is low). 623 * In such case bus recovery can be performed. 624 */ 625 timeout = jiffies + msecs_to_jiffies(100); 626 for (;;) { 627 u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS); 628 629 if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE) 630 return; 631 632 if (time_is_before_jiffies(timeout)) 633 return; 634 635 exynos5_i2c_bus_recover(i2c); 636 } 637 } 638 639 /* 640 * exynos5_i2c_message_start: Configures the bus and starts the xfer 641 * i2c: struct exynos5_i2c pointer for the current bus 642 * stop: Enables stop after transfer if set. Set for last transfer of 643 * in the list of messages. 644 * 645 * Configures the bus for read/write function 646 * Sets chip address to talk to, message length to be sent. 647 * Enables appropriate interrupts and sends start xfer command. 648 */ 649 static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop) 650 { 651 u32 i2c_ctl; 652 u32 int_en = 0; 653 u32 i2c_auto_conf = 0; 654 u32 i2c_addr = 0; 655 u32 fifo_ctl; 656 unsigned long flags; 657 unsigned short trig_lvl; 658 659 if (i2c->variant->hw == I2C_TYPE_EXYNOS5) 660 int_en |= HSI2C_INT_I2C; 661 else 662 int_en |= HSI2C_INT_I2C_TRANS; 663 664 i2c_ctl = readl(i2c->regs + HSI2C_CTL); 665 i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON); 666 fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN; 667 668 if (i2c->msg->flags & I2C_M_RD) { 669 i2c_ctl |= HSI2C_RXCHON; 670 671 i2c_auto_conf |= HSI2C_READ_WRITE; 672 673 trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ? 674 (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len; 675 fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl); 676 677 int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN | 678 HSI2C_INT_TRAILING_EN); 679 } else { 680 i2c_ctl |= HSI2C_TXCHON; 681 682 trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ? 683 (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len; 684 fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl); 685 686 int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN; 687 } 688 689 i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr); 690 691 if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) 692 i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)); 693 694 writel(i2c_addr, i2c->regs + HSI2C_ADDR); 695 696 writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL); 697 writel(i2c_ctl, i2c->regs + HSI2C_CTL); 698 699 exynos5_i2c_bus_check(i2c); 700 701 /* 702 * Enable interrupts before starting the transfer so that we don't 703 * miss any INT_I2C interrupts. 704 */ 705 spin_lock_irqsave(&i2c->lock, flags); 706 writel(int_en, i2c->regs + HSI2C_INT_ENABLE); 707 708 if (stop == 1) 709 i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS; 710 i2c_auto_conf |= i2c->msg->len; 711 i2c_auto_conf |= HSI2C_MASTER_RUN; 712 writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF); 713 spin_unlock_irqrestore(&i2c->lock, flags); 714 } 715 716 static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c, 717 struct i2c_msg *msgs, int stop) 718 { 719 unsigned long timeout; 720 int ret; 721 722 i2c->msg = msgs; 723 i2c->msg_ptr = 0; 724 i2c->trans_done = 0; 725 726 reinit_completion(&i2c->msg_complete); 727 728 exynos5_i2c_message_start(i2c, stop); 729 730 timeout = wait_for_completion_timeout(&i2c->msg_complete, 731 EXYNOS5_I2C_TIMEOUT); 732 if (timeout == 0) 733 ret = -ETIMEDOUT; 734 else 735 ret = i2c->state; 736 737 /* 738 * If this is the last message to be transfered (stop == 1) 739 * Then check if the bus can be brought back to idle. 740 */ 741 if (ret == 0 && stop) 742 ret = exynos5_i2c_wait_bus_idle(i2c); 743 744 if (ret < 0) { 745 exynos5_i2c_reset(i2c); 746 if (ret == -ETIMEDOUT) 747 dev_warn(i2c->dev, "%s timeout\n", 748 (msgs->flags & I2C_M_RD) ? "rx" : "tx"); 749 } 750 751 /* Return the state as in interrupt routine */ 752 return ret; 753 } 754 755 static int exynos5_i2c_xfer(struct i2c_adapter *adap, 756 struct i2c_msg *msgs, int num) 757 { 758 struct exynos5_i2c *i2c = adap->algo_data; 759 int i, ret; 760 761 ret = clk_enable(i2c->pclk); 762 if (ret) 763 return ret; 764 765 ret = clk_enable(i2c->clk); 766 if (ret) 767 goto err_pclk; 768 769 for (i = 0; i < num; ++i) { 770 ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num); 771 if (ret) 772 break; 773 } 774 775 clk_disable(i2c->clk); 776 err_pclk: 777 clk_disable(i2c->pclk); 778 779 return ret ?: num; 780 } 781 782 static u32 exynos5_i2c_func(struct i2c_adapter *adap) 783 { 784 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); 785 } 786 787 static const struct i2c_algorithm exynos5_i2c_algorithm = { 788 .master_xfer = exynos5_i2c_xfer, 789 .functionality = exynos5_i2c_func, 790 }; 791 792 static int exynos5_i2c_probe(struct platform_device *pdev) 793 { 794 struct device_node *np = pdev->dev.of_node; 795 struct exynos5_i2c *i2c; 796 int ret; 797 798 i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL); 799 if (!i2c) 800 return -ENOMEM; 801 802 if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock)) 803 i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ; 804 805 strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name)); 806 i2c->adap.owner = THIS_MODULE; 807 i2c->adap.algo = &exynos5_i2c_algorithm; 808 i2c->adap.retries = 3; 809 810 i2c->dev = &pdev->dev; 811 i2c->clk = devm_clk_get(&pdev->dev, "hsi2c"); 812 if (IS_ERR(i2c->clk)) { 813 dev_err(&pdev->dev, "cannot get clock\n"); 814 return -ENOENT; 815 } 816 817 i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk"); 818 if (IS_ERR(i2c->pclk)) { 819 return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk), 820 "cannot get pclk"); 821 } 822 823 ret = clk_prepare_enable(i2c->pclk); 824 if (ret) 825 return ret; 826 827 ret = clk_prepare_enable(i2c->clk); 828 if (ret) 829 goto err_pclk; 830 831 i2c->regs = devm_platform_ioremap_resource(pdev, 0); 832 if (IS_ERR(i2c->regs)) { 833 ret = PTR_ERR(i2c->regs); 834 goto err_clk; 835 } 836 837 i2c->adap.dev.of_node = np; 838 i2c->adap.algo_data = i2c; 839 i2c->adap.dev.parent = &pdev->dev; 840 841 /* Clear pending interrupts from u-boot or misc causes */ 842 exynos5_i2c_clr_pend_irq(i2c); 843 844 spin_lock_init(&i2c->lock); 845 init_completion(&i2c->msg_complete); 846 847 i2c->irq = ret = platform_get_irq(pdev, 0); 848 if (ret < 0) 849 goto err_clk; 850 851 ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq, 852 IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c); 853 if (ret != 0) { 854 dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq); 855 goto err_clk; 856 } 857 858 i2c->variant = of_device_get_match_data(&pdev->dev); 859 860 ret = exynos5_hsi2c_clock_setup(i2c); 861 if (ret) 862 goto err_clk; 863 864 exynos5_i2c_reset(i2c); 865 866 ret = i2c_add_adapter(&i2c->adap); 867 if (ret < 0) 868 goto err_clk; 869 870 platform_set_drvdata(pdev, i2c); 871 872 clk_disable(i2c->clk); 873 clk_disable(i2c->pclk); 874 875 return 0; 876 877 err_clk: 878 clk_disable_unprepare(i2c->clk); 879 880 err_pclk: 881 clk_disable_unprepare(i2c->pclk); 882 return ret; 883 } 884 885 static void exynos5_i2c_remove(struct platform_device *pdev) 886 { 887 struct exynos5_i2c *i2c = platform_get_drvdata(pdev); 888 889 i2c_del_adapter(&i2c->adap); 890 891 clk_unprepare(i2c->clk); 892 clk_unprepare(i2c->pclk); 893 } 894 895 #ifdef CONFIG_PM_SLEEP 896 static int exynos5_i2c_suspend_noirq(struct device *dev) 897 { 898 struct exynos5_i2c *i2c = dev_get_drvdata(dev); 899 900 i2c_mark_adapter_suspended(&i2c->adap); 901 clk_unprepare(i2c->clk); 902 clk_unprepare(i2c->pclk); 903 904 return 0; 905 } 906 907 static int exynos5_i2c_resume_noirq(struct device *dev) 908 { 909 struct exynos5_i2c *i2c = dev_get_drvdata(dev); 910 int ret = 0; 911 912 ret = clk_prepare_enable(i2c->pclk); 913 if (ret) 914 return ret; 915 916 ret = clk_prepare_enable(i2c->clk); 917 if (ret) 918 goto err_pclk; 919 920 ret = exynos5_hsi2c_clock_setup(i2c); 921 if (ret) 922 goto err_clk; 923 924 exynos5_i2c_init(i2c); 925 clk_disable(i2c->clk); 926 clk_disable(i2c->pclk); 927 i2c_mark_adapter_resumed(&i2c->adap); 928 929 return 0; 930 931 err_clk: 932 clk_disable_unprepare(i2c->clk); 933 err_pclk: 934 clk_disable_unprepare(i2c->pclk); 935 return ret; 936 } 937 #endif 938 939 static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = { 940 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq, 941 exynos5_i2c_resume_noirq) 942 }; 943 944 static struct platform_driver exynos5_i2c_driver = { 945 .probe = exynos5_i2c_probe, 946 .remove_new = exynos5_i2c_remove, 947 .driver = { 948 .name = "exynos5-hsi2c", 949 .pm = &exynos5_i2c_dev_pm_ops, 950 .of_match_table = exynos5_i2c_match, 951 }, 952 }; 953 954 module_platform_driver(exynos5_i2c_driver); 955 956 MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver"); 957 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>"); 958 MODULE_AUTHOR("Taekgyun Ko <taeggyun.ko@samsung.com>"); 959 MODULE_LICENSE("GPL v2"); 960