1 /*
2  * Copyright (C) 2014 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #define IDM_CTRL_DIRECT_OFFSET       0x00
25 #define CFG_OFFSET                   0x00
26 #define CFG_RESET_SHIFT              31
27 #define CFG_EN_SHIFT                 30
28 #define CFG_SLAVE_ADDR_0_SHIFT       28
29 #define CFG_M_RETRY_CNT_SHIFT        16
30 #define CFG_M_RETRY_CNT_MASK         0x0f
31 
32 #define TIM_CFG_OFFSET               0x04
33 #define TIM_CFG_MODE_400_SHIFT       31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
35 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
38 
39 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
42 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
45 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
48 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
51 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
52 
53 #define M_FIFO_CTRL_OFFSET           0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT        31
55 #define M_FIFO_TX_FLUSH_SHIFT        30
56 #define M_FIFO_RX_CNT_SHIFT          16
57 #define M_FIFO_RX_CNT_MASK           0x7f
58 #define M_FIFO_RX_THLD_SHIFT         8
59 #define M_FIFO_RX_THLD_MASK          0x3f
60 
61 #define S_FIFO_CTRL_OFFSET           0x10
62 #define S_FIFO_RX_FLUSH_SHIFT        31
63 #define S_FIFO_TX_FLUSH_SHIFT        30
64 #define S_FIFO_RX_CNT_SHIFT          16
65 #define S_FIFO_RX_CNT_MASK           0x7f
66 #define S_FIFO_RX_THLD_SHIFT         8
67 #define S_FIFO_RX_THLD_MASK          0x3f
68 
69 #define M_CMD_OFFSET                 0x30
70 #define M_CMD_START_BUSY_SHIFT       31
71 #define M_CMD_STATUS_SHIFT           25
72 #define M_CMD_STATUS_MASK            0x07
73 #define M_CMD_STATUS_SUCCESS         0x0
74 #define M_CMD_STATUS_LOST_ARB        0x1
75 #define M_CMD_STATUS_NACK_ADDR       0x2
76 #define M_CMD_STATUS_NACK_DATA       0x3
77 #define M_CMD_STATUS_TIMEOUT         0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
80 #define M_CMD_PROTOCOL_SHIFT         9
81 #define M_CMD_PROTOCOL_MASK          0xf
82 #define M_CMD_PROTOCOL_BLK_WR        0x7
83 #define M_CMD_PROTOCOL_BLK_RD        0x8
84 #define M_CMD_PEC_SHIFT              8
85 #define M_CMD_RD_CNT_SHIFT           0
86 #define M_CMD_RD_CNT_MASK            0xff
87 
88 #define S_CMD_OFFSET                 0x34
89 #define S_CMD_START_BUSY_SHIFT       31
90 #define S_CMD_STATUS_SHIFT           23
91 #define S_CMD_STATUS_MASK            0x07
92 #define S_CMD_STATUS_SUCCESS         0x0
93 #define S_CMD_STATUS_TIMEOUT         0x5
94 
95 #define IE_OFFSET                    0x38
96 #define IE_M_RX_FIFO_FULL_SHIFT      31
97 #define IE_M_RX_THLD_SHIFT           30
98 #define IE_M_START_BUSY_SHIFT        28
99 #define IE_M_TX_UNDERRUN_SHIFT       27
100 #define IE_S_RX_FIFO_FULL_SHIFT      26
101 #define IE_S_RX_THLD_SHIFT           25
102 #define IE_S_RX_EVENT_SHIFT          24
103 #define IE_S_START_BUSY_SHIFT        23
104 #define IE_S_TX_UNDERRUN_SHIFT       22
105 #define IE_S_RD_EVENT_SHIFT          21
106 
107 #define IS_OFFSET                    0x3c
108 #define IS_M_RX_FIFO_FULL_SHIFT      31
109 #define IS_M_RX_THLD_SHIFT           30
110 #define IS_M_START_BUSY_SHIFT        28
111 #define IS_M_TX_UNDERRUN_SHIFT       27
112 #define IS_S_RX_FIFO_FULL_SHIFT      26
113 #define IS_S_RX_THLD_SHIFT           25
114 #define IS_S_RX_EVENT_SHIFT          24
115 #define IS_S_START_BUSY_SHIFT        23
116 #define IS_S_TX_UNDERRUN_SHIFT       22
117 #define IS_S_RD_EVENT_SHIFT          21
118 
119 #define M_TX_OFFSET                  0x40
120 #define M_TX_WR_STATUS_SHIFT         31
121 #define M_TX_DATA_SHIFT              0
122 #define M_TX_DATA_MASK               0xff
123 
124 #define M_RX_OFFSET                  0x44
125 #define M_RX_STATUS_SHIFT            30
126 #define M_RX_STATUS_MASK             0x03
127 #define M_RX_PEC_ERR_SHIFT           29
128 #define M_RX_DATA_SHIFT              0
129 #define M_RX_DATA_MASK               0xff
130 
131 #define S_TX_OFFSET                  0x48
132 #define S_TX_WR_STATUS_SHIFT         31
133 #define S_TX_DATA_SHIFT              0
134 #define S_TX_DATA_MASK               0xff
135 
136 #define S_RX_OFFSET                  0x4c
137 #define S_RX_STATUS_SHIFT            30
138 #define S_RX_STATUS_MASK             0x03
139 #define S_RX_PEC_ERR_SHIFT           29
140 #define S_RX_DATA_SHIFT              0
141 #define S_RX_DATA_MASK               0xff
142 
143 #define I2C_TIMEOUT_MSEC             50000
144 #define M_TX_RX_FIFO_SIZE            64
145 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
146 
147 #define M_RX_MAX_READ_LEN            255
148 #define M_RX_FIFO_THLD_VALUE         50
149 
150 #define IE_M_ALL_INTERRUPT_SHIFT     27
151 #define IE_M_ALL_INTERRUPT_MASK      0x1e
152 
153 #define SLAVE_READ_WRITE_BIT_MASK    0x1
154 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
155 #define SLAVE_MAX_SIZE_TRANSACTION   64
156 #define SLAVE_CLOCK_STRETCH_TIME     25
157 
158 #define IE_S_ALL_INTERRUPT_SHIFT     21
159 #define IE_S_ALL_INTERRUPT_MASK      0x3f
160 
161 enum i2c_slave_read_status {
162 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
163 	I2C_SLAVE_RX_START,
164 	I2C_SLAVE_RX_DATA,
165 	I2C_SLAVE_RX_END,
166 };
167 
168 enum bus_speed_index {
169 	I2C_SPD_100K = 0,
170 	I2C_SPD_400K,
171 };
172 
173 enum bcm_iproc_i2c_type {
174 	IPROC_I2C,
175 	IPROC_I2C_NIC
176 };
177 
178 struct bcm_iproc_i2c_dev {
179 	struct device *device;
180 	enum bcm_iproc_i2c_type type;
181 	int irq;
182 
183 	void __iomem *base;
184 	void __iomem *idm_base;
185 
186 	u32 ape_addr_mask;
187 
188 	/* lock for indirect access through IDM */
189 	spinlock_t idm_lock;
190 
191 	struct i2c_adapter adapter;
192 	unsigned int bus_speed;
193 
194 	struct completion done;
195 	int xfer_is_done;
196 
197 	struct i2c_msg *msg;
198 
199 	struct i2c_client *slave;
200 
201 	/* bytes that have been transferred */
202 	unsigned int tx_bytes;
203 	/* bytes that have been read */
204 	unsigned int rx_bytes;
205 	unsigned int thld_bytes;
206 };
207 
208 /*
209  * Can be expanded in the future if more interrupt status bits are utilized
210  */
211 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
212 		| BIT(IS_M_RX_THLD_SHIFT))
213 
214 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
215 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
216 		| BIT(IS_S_TX_UNDERRUN_SHIFT))
217 
218 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
219 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
220 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
221 					 bool enable);
222 
223 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
224 				   u32 offset)
225 {
226 	u32 val;
227 
228 	if (iproc_i2c->idm_base) {
229 		spin_lock(&iproc_i2c->idm_lock);
230 		writel(iproc_i2c->ape_addr_mask,
231 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
232 		val = readl(iproc_i2c->base + offset);
233 		spin_unlock(&iproc_i2c->idm_lock);
234 	} else {
235 		val = readl(iproc_i2c->base + offset);
236 	}
237 
238 	return val;
239 }
240 
241 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
242 				    u32 offset, u32 val)
243 {
244 	if (iproc_i2c->idm_base) {
245 		spin_lock(&iproc_i2c->idm_lock);
246 		writel(iproc_i2c->ape_addr_mask,
247 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
248 		writel(val, iproc_i2c->base + offset);
249 		spin_unlock(&iproc_i2c->idm_lock);
250 	} else {
251 		writel(val, iproc_i2c->base + offset);
252 	}
253 }
254 
255 static void bcm_iproc_i2c_slave_init(
256 	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
257 {
258 	u32 val;
259 
260 	if (need_reset) {
261 		/* put controller in reset */
262 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
263 		val |= BIT(CFG_RESET_SHIFT);
264 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
265 
266 		/* wait 100 usec per spec */
267 		udelay(100);
268 
269 		/* bring controller out of reset */
270 		val &= ~(BIT(CFG_RESET_SHIFT));
271 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
272 	}
273 
274 	/* flush TX/RX FIFOs */
275 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
276 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
277 
278 	/* Maximum slave stretch time */
279 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
280 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
281 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
282 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
283 
284 	/* Configure the slave address */
285 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
286 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
287 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
288 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
289 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
290 
291 	/* clear all pending slave interrupts */
292 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
293 
294 	/* Enable interrupt register to indicate a valid byte in receive fifo */
295 	val = BIT(IE_S_RX_EVENT_SHIFT);
296 	/* Enable interrupt register for the Slave BUSY command */
297 	val |= BIT(IE_S_START_BUSY_SHIFT);
298 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
299 }
300 
301 static void bcm_iproc_i2c_check_slave_status(
302 	struct bcm_iproc_i2c_dev *iproc_i2c)
303 {
304 	u32 val;
305 
306 	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
307 	/* status is valid only when START_BUSY is cleared after it was set */
308 	if (val & BIT(S_CMD_START_BUSY_SHIFT))
309 		return;
310 
311 	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
312 	if (val == S_CMD_STATUS_TIMEOUT) {
313 		dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
314 
315 		/* re-initialize i2c for recovery */
316 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
317 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
318 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
319 	}
320 }
321 
322 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
323 				    u32 status)
324 {
325 	u32 val;
326 	u8 value, rx_status;
327 
328 	/* Slave RX byte receive */
329 	if (status & BIT(IS_S_RX_EVENT_SHIFT)) {
330 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
331 		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
332 		if (rx_status == I2C_SLAVE_RX_START) {
333 			/* Start of SMBUS for Master write */
334 			i2c_slave_event(iproc_i2c->slave,
335 					I2C_SLAVE_WRITE_REQUESTED, &value);
336 
337 			val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
338 			value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
339 			i2c_slave_event(iproc_i2c->slave,
340 					I2C_SLAVE_WRITE_RECEIVED, &value);
341 		} else if (status & BIT(IS_S_RD_EVENT_SHIFT)) {
342 			/* Start of SMBUS for Master Read */
343 			i2c_slave_event(iproc_i2c->slave,
344 					I2C_SLAVE_READ_REQUESTED, &value);
345 			iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
346 
347 			val = BIT(S_CMD_START_BUSY_SHIFT);
348 			iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
349 
350 			/*
351 			 * Enable interrupt for TX FIFO becomes empty and
352 			 * less than PKT_LENGTH bytes were output on the SMBUS
353 			 */
354 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
355 			val |= BIT(IE_S_TX_UNDERRUN_SHIFT);
356 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
357 		} else {
358 			/* Master write other than start */
359 			value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
360 			i2c_slave_event(iproc_i2c->slave,
361 					I2C_SLAVE_WRITE_RECEIVED, &value);
362 		}
363 	} else if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
364 		/* Master read other than start */
365 		i2c_slave_event(iproc_i2c->slave,
366 				I2C_SLAVE_READ_PROCESSED, &value);
367 
368 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
369 		val = BIT(S_CMD_START_BUSY_SHIFT);
370 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
371 	}
372 
373 	/* Stop */
374 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
375 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
376 		/*
377 		 * Enable interrupt for TX FIFO becomes empty and
378 		 * less than PKT_LENGTH bytes were output on the SMBUS
379 		 */
380 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
381 		val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
382 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
383 	}
384 
385 	/* clear interrupt status */
386 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
387 
388 	bcm_iproc_i2c_check_slave_status(iproc_i2c);
389 	return true;
390 }
391 
392 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
393 {
394 	struct i2c_msg *msg = iproc_i2c->msg;
395 	uint32_t val;
396 
397 	/* Read valid data from RX FIFO */
398 	while (iproc_i2c->rx_bytes < msg->len) {
399 		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
400 
401 		/* rx fifo empty */
402 		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
403 			break;
404 
405 		msg->buf[iproc_i2c->rx_bytes] =
406 			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
407 		iproc_i2c->rx_bytes++;
408 	}
409 }
410 
411 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
412 {
413 	struct i2c_msg *msg = iproc_i2c->msg;
414 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
415 	unsigned int i;
416 	u32 val;
417 
418 	/* can only fill up to the FIFO size */
419 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
420 	for (i = 0; i < tx_bytes; i++) {
421 		/* start from where we left over */
422 		unsigned int idx = iproc_i2c->tx_bytes + i;
423 
424 		val = msg->buf[idx];
425 
426 		/* mark the last byte */
427 		if (idx == msg->len - 1) {
428 			val |= BIT(M_TX_WR_STATUS_SHIFT);
429 
430 			if (iproc_i2c->irq) {
431 				u32 tmp;
432 
433 				/*
434 				 * Since this is the last byte, we should now
435 				 * disable TX FIFO underrun interrupt
436 				 */
437 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
438 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
439 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
440 						 tmp);
441 			}
442 		}
443 
444 		/* load data into TX FIFO */
445 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
446 	}
447 
448 	/* update number of transferred bytes */
449 	iproc_i2c->tx_bytes += tx_bytes;
450 }
451 
452 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
453 {
454 	struct i2c_msg *msg = iproc_i2c->msg;
455 	u32 bytes_left, val;
456 
457 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
458 	bytes_left = msg->len - iproc_i2c->rx_bytes;
459 	if (bytes_left == 0) {
460 		if (iproc_i2c->irq) {
461 			/* finished reading all data, disable rx thld event */
462 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
463 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
464 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
465 		}
466 	} else if (bytes_left < iproc_i2c->thld_bytes) {
467 		/* set bytes left as threshold */
468 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
469 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
470 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
471 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
472 		iproc_i2c->thld_bytes = bytes_left;
473 	}
474 	/*
475 	 * bytes_left >= iproc_i2c->thld_bytes,
476 	 * hence no need to change the THRESHOLD SET.
477 	 * It will remain as iproc_i2c->thld_bytes itself
478 	 */
479 }
480 
481 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
482 					  u32 status)
483 {
484 	/* TX FIFO is empty and we have more data to send */
485 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
486 		bcm_iproc_i2c_send(iproc_i2c);
487 
488 	/* RX FIFO threshold is reached and data needs to be read out */
489 	if (status & BIT(IS_M_RX_THLD_SHIFT))
490 		bcm_iproc_i2c_read(iproc_i2c);
491 
492 	/* transfer is done */
493 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
494 		iproc_i2c->xfer_is_done = 1;
495 		if (iproc_i2c->irq)
496 			complete(&iproc_i2c->done);
497 	}
498 }
499 
500 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
501 {
502 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
503 	u32 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
504 	bool ret;
505 	u32 sl_status = status & ISR_MASK_SLAVE;
506 
507 	if (sl_status) {
508 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, sl_status);
509 		if (ret)
510 			return IRQ_HANDLED;
511 		else
512 			return IRQ_NONE;
513 	}
514 
515 	status &= ISR_MASK;
516 	if (!status)
517 		return IRQ_NONE;
518 
519 	/* process all master based events */
520 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
521 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
522 
523 	return IRQ_HANDLED;
524 }
525 
526 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
527 {
528 	u32 val;
529 
530 	/* put controller in reset */
531 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
532 	val |= BIT(CFG_RESET_SHIFT);
533 	val &= ~(BIT(CFG_EN_SHIFT));
534 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
535 
536 	/* wait 100 usec per spec */
537 	udelay(100);
538 
539 	/* bring controller out of reset */
540 	val &= ~(BIT(CFG_RESET_SHIFT));
541 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
542 
543 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
544 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
545 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
546 	/* disable all interrupts */
547 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
548 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
549 			IE_M_ALL_INTERRUPT_SHIFT);
550 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
551 
552 	/* clear all pending interrupts */
553 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
554 
555 	return 0;
556 }
557 
558 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
559 					 bool enable)
560 {
561 	u32 val;
562 
563 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
564 	if (enable)
565 		val |= BIT(CFG_EN_SHIFT);
566 	else
567 		val &= ~BIT(CFG_EN_SHIFT);
568 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
569 }
570 
571 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
572 				      struct i2c_msg *msg)
573 {
574 	u32 val;
575 
576 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
577 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
578 
579 	switch (val) {
580 	case M_CMD_STATUS_SUCCESS:
581 		return 0;
582 
583 	case M_CMD_STATUS_LOST_ARB:
584 		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
585 		return -EAGAIN;
586 
587 	case M_CMD_STATUS_NACK_ADDR:
588 		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
589 		return -ENXIO;
590 
591 	case M_CMD_STATUS_NACK_DATA:
592 		dev_dbg(iproc_i2c->device, "NAK data\n");
593 		return -ENXIO;
594 
595 	case M_CMD_STATUS_TIMEOUT:
596 		dev_dbg(iproc_i2c->device, "bus timeout\n");
597 		return -ETIMEDOUT;
598 
599 	case M_CMD_STATUS_FIFO_UNDERRUN:
600 		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
601 		return -ENXIO;
602 
603 	case M_CMD_STATUS_RX_FIFO_FULL:
604 		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
605 		return -ETIMEDOUT;
606 
607 	default:
608 		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
609 
610 		/* re-initialize i2c for recovery */
611 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
612 		bcm_iproc_i2c_init(iproc_i2c);
613 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
614 
615 		return -EIO;
616 	}
617 }
618 
619 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
620 				   struct i2c_msg *msg,
621 				   u32 cmd)
622 {
623 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
624 	u32 val, status;
625 	int ret;
626 
627 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
628 
629 	if (iproc_i2c->irq) {
630 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
631 							time_left);
632 		/* disable all interrupts */
633 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
634 		/* read it back to flush the write */
635 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
636 		/* make sure the interrupt handler isn't running */
637 		synchronize_irq(iproc_i2c->irq);
638 
639 	} else { /* polling mode */
640 		unsigned long timeout = jiffies + time_left;
641 
642 		do {
643 			status = iproc_i2c_rd_reg(iproc_i2c,
644 						  IS_OFFSET) & ISR_MASK;
645 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
646 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
647 
648 			if (time_after(jiffies, timeout)) {
649 				time_left = 0;
650 				break;
651 			}
652 
653 			cpu_relax();
654 			cond_resched();
655 		} while (!iproc_i2c->xfer_is_done);
656 	}
657 
658 	if (!time_left && !iproc_i2c->xfer_is_done) {
659 		dev_err(iproc_i2c->device, "transaction timed out\n");
660 
661 		/* flush both TX/RX FIFOs */
662 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
663 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
664 		return -ETIMEDOUT;
665 	}
666 
667 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
668 	if (ret) {
669 		/* flush both TX/RX FIFOs */
670 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
671 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
672 		return ret;
673 	}
674 
675 	return 0;
676 }
677 
678 static int bcm_iproc_i2c_xfer_single_msg(struct bcm_iproc_i2c_dev *iproc_i2c,
679 					 struct i2c_msg *msg)
680 {
681 	int i;
682 	u8 addr;
683 	u32 val, tmp, val_intr_en;
684 	unsigned int tx_bytes;
685 
686 	/* check if bus is busy */
687 	if (!!(iproc_i2c_rd_reg(iproc_i2c,
688 				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
689 		dev_warn(iproc_i2c->device, "bus is busy\n");
690 		return -EBUSY;
691 	}
692 
693 	iproc_i2c->msg = msg;
694 
695 	/* format and load slave address into the TX FIFO */
696 	addr = i2c_8bit_addr_from_msg(msg);
697 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
698 
699 	/*
700 	 * For a write transaction, load data into the TX FIFO. Only allow
701 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
702 	 * has been used up by the slave address
703 	 */
704 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
705 	if (!(msg->flags & I2C_M_RD)) {
706 		for (i = 0; i < tx_bytes; i++) {
707 			val = msg->buf[i];
708 
709 			/* mark the last byte */
710 			if (i == msg->len - 1)
711 				val |= BIT(M_TX_WR_STATUS_SHIFT);
712 
713 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
714 		}
715 		iproc_i2c->tx_bytes = tx_bytes;
716 	}
717 
718 	/* mark as incomplete before starting the transaction */
719 	if (iproc_i2c->irq)
720 		reinit_completion(&iproc_i2c->done);
721 
722 	iproc_i2c->xfer_is_done = 0;
723 
724 	/*
725 	 * Enable the "start busy" interrupt, which will be triggered after the
726 	 * transaction is done, i.e., the internal start_busy bit, transitions
727 	 * from 1 to 0.
728 	 */
729 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
730 
731 	/*
732 	 * If TX data size is larger than the TX FIFO, need to enable TX
733 	 * underrun interrupt, which will be triggerred when the TX FIFO is
734 	 * empty. When that happens we can then pump more data into the FIFO
735 	 */
736 	if (!(msg->flags & I2C_M_RD) &&
737 	    msg->len > iproc_i2c->tx_bytes)
738 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
739 
740 	/*
741 	 * Now we can activate the transfer. For a read operation, specify the
742 	 * number of bytes to read
743 	 */
744 	val = BIT(M_CMD_START_BUSY_SHIFT);
745 	if (msg->flags & I2C_M_RD) {
746 		iproc_i2c->rx_bytes = 0;
747 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
748 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
749 		else
750 			iproc_i2c->thld_bytes = msg->len;
751 
752 		/* set threshold value */
753 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
754 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
755 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
756 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
757 
758 		/* enable the RX threshold interrupt */
759 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
760 
761 		val |= (M_CMD_PROTOCOL_BLK_RD << M_CMD_PROTOCOL_SHIFT) |
762 		       (msg->len << M_CMD_RD_CNT_SHIFT);
763 	} else {
764 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
765 	}
766 
767 	if (iproc_i2c->irq)
768 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
769 
770 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
771 }
772 
773 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
774 			      struct i2c_msg msgs[], int num)
775 {
776 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
777 	int ret, i;
778 
779 	/* go through all messages */
780 	for (i = 0; i < num; i++) {
781 		ret = bcm_iproc_i2c_xfer_single_msg(iproc_i2c, &msgs[i]);
782 		if (ret) {
783 			dev_dbg(iproc_i2c->device, "xfer failed\n");
784 			return ret;
785 		}
786 	}
787 
788 	return num;
789 }
790 
791 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
792 {
793 	u32 val;
794 
795 	/* We do not support the SMBUS Quick command */
796 	val = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
797 
798 	if (adap->algo->reg_slave)
799 		val |= I2C_FUNC_SLAVE;
800 
801 	return val;
802 }
803 
804 static struct i2c_algorithm bcm_iproc_algo = {
805 	.master_xfer = bcm_iproc_i2c_xfer,
806 	.functionality = bcm_iproc_i2c_functionality,
807 	.reg_slave = bcm_iproc_i2c_reg_slave,
808 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
809 };
810 
811 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
812 	.max_read_len = M_RX_MAX_READ_LEN,
813 };
814 
815 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
816 {
817 	unsigned int bus_speed;
818 	u32 val;
819 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
820 				       "clock-frequency", &bus_speed);
821 	if (ret < 0) {
822 		dev_info(iproc_i2c->device,
823 			"unable to interpret clock-frequency DT property\n");
824 		bus_speed = 100000;
825 	}
826 
827 	if (bus_speed < 100000) {
828 		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
829 			bus_speed);
830 		dev_err(iproc_i2c->device,
831 			"valid speeds are 100khz and 400khz\n");
832 		return -EINVAL;
833 	} else if (bus_speed < 400000) {
834 		bus_speed = 100000;
835 	} else {
836 		bus_speed = 400000;
837 	}
838 
839 	iproc_i2c->bus_speed = bus_speed;
840 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
841 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
842 	val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
843 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
844 
845 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
846 
847 	return 0;
848 }
849 
850 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
851 {
852 	int irq, ret = 0;
853 	struct bcm_iproc_i2c_dev *iproc_i2c;
854 	struct i2c_adapter *adap;
855 	struct resource *res;
856 
857 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
858 				 GFP_KERNEL);
859 	if (!iproc_i2c)
860 		return -ENOMEM;
861 
862 	platform_set_drvdata(pdev, iproc_i2c);
863 	iproc_i2c->device = &pdev->dev;
864 	iproc_i2c->type =
865 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
866 	init_completion(&iproc_i2c->done);
867 
868 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
869 	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
870 	if (IS_ERR(iproc_i2c->base))
871 		return PTR_ERR(iproc_i2c->base);
872 
873 	if (iproc_i2c->type == IPROC_I2C_NIC) {
874 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
875 		iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
876 							    res);
877 		if (IS_ERR(iproc_i2c->idm_base))
878 			return PTR_ERR(iproc_i2c->idm_base);
879 
880 		ret = of_property_read_u32(iproc_i2c->device->of_node,
881 					   "brcm,ape-hsls-addr-mask",
882 					   &iproc_i2c->ape_addr_mask);
883 		if (ret < 0) {
884 			dev_err(iproc_i2c->device,
885 				"'brcm,ape-hsls-addr-mask' missing\n");
886 			return -EINVAL;
887 		}
888 
889 		spin_lock_init(&iproc_i2c->idm_lock);
890 
891 		/* no slave support */
892 		bcm_iproc_algo.reg_slave = NULL;
893 		bcm_iproc_algo.unreg_slave = NULL;
894 	}
895 
896 	ret = bcm_iproc_i2c_init(iproc_i2c);
897 	if (ret)
898 		return ret;
899 
900 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
901 	if (ret)
902 		return ret;
903 
904 	irq = platform_get_irq(pdev, 0);
905 	if (irq > 0) {
906 		ret = devm_request_irq(iproc_i2c->device, irq,
907 				       bcm_iproc_i2c_isr, 0, pdev->name,
908 				       iproc_i2c);
909 		if (ret < 0) {
910 			dev_err(iproc_i2c->device,
911 				"unable to request irq %i\n", irq);
912 			return ret;
913 		}
914 
915 		iproc_i2c->irq = irq;
916 	} else {
917 		dev_warn(iproc_i2c->device,
918 			 "no irq resource, falling back to poll mode\n");
919 	}
920 
921 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
922 
923 	adap = &iproc_i2c->adapter;
924 	i2c_set_adapdata(adap, iproc_i2c);
925 	snprintf(adap->name, sizeof(adap->name),
926 		"Broadcom iProc (%s)",
927 		of_node_full_name(iproc_i2c->device->of_node));
928 	adap->algo = &bcm_iproc_algo;
929 	adap->quirks = &bcm_iproc_i2c_quirks;
930 	adap->dev.parent = &pdev->dev;
931 	adap->dev.of_node = pdev->dev.of_node;
932 
933 	return i2c_add_adapter(adap);
934 }
935 
936 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
937 {
938 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
939 
940 	if (iproc_i2c->irq) {
941 		/*
942 		 * Make sure there's no pending interrupt when we remove the
943 		 * adapter
944 		 */
945 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
946 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
947 		synchronize_irq(iproc_i2c->irq);
948 	}
949 
950 	i2c_del_adapter(&iproc_i2c->adapter);
951 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
952 
953 	return 0;
954 }
955 
956 #ifdef CONFIG_PM_SLEEP
957 
958 static int bcm_iproc_i2c_suspend(struct device *dev)
959 {
960 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
961 
962 	if (iproc_i2c->irq) {
963 		/*
964 		 * Make sure there's no pending interrupt when we go into
965 		 * suspend
966 		 */
967 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
968 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
969 		synchronize_irq(iproc_i2c->irq);
970 	}
971 
972 	/* now disable the controller */
973 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
974 
975 	return 0;
976 }
977 
978 static int bcm_iproc_i2c_resume(struct device *dev)
979 {
980 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
981 	int ret;
982 	u32 val;
983 
984 	/*
985 	 * Power domain could have been shut off completely in system deep
986 	 * sleep, so re-initialize the block here
987 	 */
988 	ret = bcm_iproc_i2c_init(iproc_i2c);
989 	if (ret)
990 		return ret;
991 
992 	/* configure to the desired bus speed */
993 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
994 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
995 	val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
996 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
997 
998 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
999 
1000 	return 0;
1001 }
1002 
1003 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1004 	.suspend_late = &bcm_iproc_i2c_suspend,
1005 	.resume_early = &bcm_iproc_i2c_resume
1006 };
1007 
1008 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1009 #else
1010 #define BCM_IPROC_I2C_PM_OPS NULL
1011 #endif /* CONFIG_PM_SLEEP */
1012 
1013 
1014 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1015 {
1016 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1017 
1018 	if (iproc_i2c->slave)
1019 		return -EBUSY;
1020 
1021 	if (slave->flags & I2C_CLIENT_TEN)
1022 		return -EAFNOSUPPORT;
1023 
1024 	iproc_i2c->slave = slave;
1025 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1026 	return 0;
1027 }
1028 
1029 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1030 {
1031 	u32 tmp;
1032 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1033 
1034 	if (!iproc_i2c->slave)
1035 		return -EINVAL;
1036 
1037 	iproc_i2c->slave = NULL;
1038 
1039 	/* disable all slave interrupts */
1040 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1041 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1042 			IE_S_ALL_INTERRUPT_SHIFT);
1043 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1044 
1045 	/* Erase the slave address programmed */
1046 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1047 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1048 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1049 
1050 	return 0;
1051 }
1052 
1053 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1054 	{
1055 		.compatible = "brcm,iproc-i2c",
1056 		.data = (int *)IPROC_I2C,
1057 	}, {
1058 		.compatible = "brcm,iproc-nic-i2c",
1059 		.data = (int *)IPROC_I2C_NIC,
1060 	},
1061 	{ /* sentinel */ }
1062 };
1063 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1064 
1065 static struct platform_driver bcm_iproc_i2c_driver = {
1066 	.driver = {
1067 		.name = "bcm-iproc-i2c",
1068 		.of_match_table = bcm_iproc_i2c_of_match,
1069 		.pm = BCM_IPROC_I2C_PM_OPS,
1070 	},
1071 	.probe = bcm_iproc_i2c_probe,
1072 	.remove = bcm_iproc_i2c_remove,
1073 };
1074 module_platform_driver(bcm_iproc_i2c_driver);
1075 
1076 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1077 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1078 MODULE_LICENSE("GPL v2");
1079