1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2014 Broadcom Corporation
3 
4 #include <linux/delay.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/io.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/slab.h>
13 
14 #define IDM_CTRL_DIRECT_OFFSET       0x00
15 #define CFG_OFFSET                   0x00
16 #define CFG_RESET_SHIFT              31
17 #define CFG_EN_SHIFT                 30
18 #define CFG_SLAVE_ADDR_0_SHIFT       28
19 #define CFG_M_RETRY_CNT_SHIFT        16
20 #define CFG_M_RETRY_CNT_MASK         0x0f
21 
22 #define TIM_CFG_OFFSET               0x04
23 #define TIM_CFG_MODE_400_SHIFT       31
24 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
25 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
26 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
27 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
28 
29 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
30 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
31 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
32 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
33 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
34 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
35 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
36 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
37 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
38 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
39 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
40 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
41 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
42 
43 #define M_FIFO_CTRL_OFFSET           0x0c
44 #define M_FIFO_RX_FLUSH_SHIFT        31
45 #define M_FIFO_TX_FLUSH_SHIFT        30
46 #define M_FIFO_RX_CNT_SHIFT          16
47 #define M_FIFO_RX_CNT_MASK           0x7f
48 #define M_FIFO_RX_THLD_SHIFT         8
49 #define M_FIFO_RX_THLD_MASK          0x3f
50 
51 #define S_FIFO_CTRL_OFFSET           0x10
52 #define S_FIFO_RX_FLUSH_SHIFT        31
53 #define S_FIFO_TX_FLUSH_SHIFT        30
54 #define S_FIFO_RX_CNT_SHIFT          16
55 #define S_FIFO_RX_CNT_MASK           0x7f
56 #define S_FIFO_RX_THLD_SHIFT         8
57 #define S_FIFO_RX_THLD_MASK          0x3f
58 
59 #define M_CMD_OFFSET                 0x30
60 #define M_CMD_START_BUSY_SHIFT       31
61 #define M_CMD_STATUS_SHIFT           25
62 #define M_CMD_STATUS_MASK            0x07
63 #define M_CMD_STATUS_SUCCESS         0x0
64 #define M_CMD_STATUS_LOST_ARB        0x1
65 #define M_CMD_STATUS_NACK_ADDR       0x2
66 #define M_CMD_STATUS_NACK_DATA       0x3
67 #define M_CMD_STATUS_TIMEOUT         0x4
68 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
69 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
70 #define M_CMD_PROTOCOL_SHIFT         9
71 #define M_CMD_PROTOCOL_MASK          0xf
72 #define M_CMD_PROTOCOL_QUICK         0x0
73 #define M_CMD_PROTOCOL_BLK_WR        0x7
74 #define M_CMD_PROTOCOL_BLK_RD        0x8
75 #define M_CMD_PROTOCOL_PROCESS       0xa
76 #define M_CMD_PEC_SHIFT              8
77 #define M_CMD_RD_CNT_SHIFT           0
78 #define M_CMD_RD_CNT_MASK            0xff
79 
80 #define S_CMD_OFFSET                 0x34
81 #define S_CMD_START_BUSY_SHIFT       31
82 #define S_CMD_STATUS_SHIFT           23
83 #define S_CMD_STATUS_MASK            0x07
84 #define S_CMD_STATUS_SUCCESS         0x0
85 #define S_CMD_STATUS_TIMEOUT         0x5
86 #define S_CMD_STATUS_MASTER_ABORT    0x7
87 
88 #define IE_OFFSET                    0x38
89 #define IE_M_RX_FIFO_FULL_SHIFT      31
90 #define IE_M_RX_THLD_SHIFT           30
91 #define IE_M_START_BUSY_SHIFT        28
92 #define IE_M_TX_UNDERRUN_SHIFT       27
93 #define IE_S_RX_FIFO_FULL_SHIFT      26
94 #define IE_S_RX_THLD_SHIFT           25
95 #define IE_S_RX_EVENT_SHIFT          24
96 #define IE_S_START_BUSY_SHIFT        23
97 #define IE_S_TX_UNDERRUN_SHIFT       22
98 #define IE_S_RD_EVENT_SHIFT          21
99 
100 #define IS_OFFSET                    0x3c
101 #define IS_M_RX_FIFO_FULL_SHIFT      31
102 #define IS_M_RX_THLD_SHIFT           30
103 #define IS_M_START_BUSY_SHIFT        28
104 #define IS_M_TX_UNDERRUN_SHIFT       27
105 #define IS_S_RX_FIFO_FULL_SHIFT      26
106 #define IS_S_RX_THLD_SHIFT           25
107 #define IS_S_RX_EVENT_SHIFT          24
108 #define IS_S_START_BUSY_SHIFT        23
109 #define IS_S_TX_UNDERRUN_SHIFT       22
110 #define IS_S_RD_EVENT_SHIFT          21
111 
112 #define M_TX_OFFSET                  0x40
113 #define M_TX_WR_STATUS_SHIFT         31
114 #define M_TX_DATA_SHIFT              0
115 #define M_TX_DATA_MASK               0xff
116 
117 #define M_RX_OFFSET                  0x44
118 #define M_RX_STATUS_SHIFT            30
119 #define M_RX_STATUS_MASK             0x03
120 #define M_RX_PEC_ERR_SHIFT           29
121 #define M_RX_DATA_SHIFT              0
122 #define M_RX_DATA_MASK               0xff
123 
124 #define S_TX_OFFSET                  0x48
125 #define S_TX_WR_STATUS_SHIFT         31
126 #define S_TX_DATA_SHIFT              0
127 #define S_TX_DATA_MASK               0xff
128 
129 #define S_RX_OFFSET                  0x4c
130 #define S_RX_STATUS_SHIFT            30
131 #define S_RX_STATUS_MASK             0x03
132 #define S_RX_PEC_ERR_SHIFT           29
133 #define S_RX_DATA_SHIFT              0
134 #define S_RX_DATA_MASK               0xff
135 
136 #define I2C_TIMEOUT_MSEC             50000
137 #define M_TX_RX_FIFO_SIZE            64
138 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
139 
140 #define M_RX_MAX_READ_LEN            255
141 #define M_RX_FIFO_THLD_VALUE         50
142 
143 #define IE_M_ALL_INTERRUPT_SHIFT     27
144 #define IE_M_ALL_INTERRUPT_MASK      0x1e
145 
146 #define SLAVE_READ_WRITE_BIT_MASK    0x1
147 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
148 #define SLAVE_MAX_SIZE_TRANSACTION   64
149 #define SLAVE_CLOCK_STRETCH_TIME     25
150 
151 #define IE_S_ALL_INTERRUPT_SHIFT     21
152 #define IE_S_ALL_INTERRUPT_MASK      0x3f
153 /*
154  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155  * running for less time, max slave read per tasklet is set to 10 bytes.
156  */
157 #define MAX_SLAVE_RX_PER_INT         10
158 
159 enum i2c_slave_read_status {
160 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
161 	I2C_SLAVE_RX_START,
162 	I2C_SLAVE_RX_DATA,
163 	I2C_SLAVE_RX_END,
164 };
165 
166 enum bus_speed_index {
167 	I2C_SPD_100K = 0,
168 	I2C_SPD_400K,
169 };
170 
171 enum bcm_iproc_i2c_type {
172 	IPROC_I2C,
173 	IPROC_I2C_NIC
174 };
175 
176 struct bcm_iproc_i2c_dev {
177 	struct device *device;
178 	enum bcm_iproc_i2c_type type;
179 	int irq;
180 
181 	void __iomem *base;
182 	void __iomem *idm_base;
183 
184 	u32 ape_addr_mask;
185 
186 	/* lock for indirect access through IDM */
187 	spinlock_t idm_lock;
188 
189 	struct i2c_adapter adapter;
190 	unsigned int bus_speed;
191 
192 	struct completion done;
193 	int xfer_is_done;
194 
195 	struct i2c_msg *msg;
196 
197 	struct i2c_client *slave;
198 
199 	/* bytes that have been transferred */
200 	unsigned int tx_bytes;
201 	/* bytes that have been read */
202 	unsigned int rx_bytes;
203 	unsigned int thld_bytes;
204 
205 	bool slave_rx_only;
206 	bool rx_start_rcvd;
207 	bool slave_read_complete;
208 	u32 tx_underrun;
209 	u32 slave_int_mask;
210 	struct tasklet_struct slave_rx_tasklet;
211 };
212 
213 /* tasklet to process slave rx data */
214 static void slave_rx_tasklet_fn(unsigned long);
215 
216 /*
217  * Can be expanded in the future if more interrupt status bits are utilized
218  */
219 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220 		| BIT(IS_M_RX_THLD_SHIFT))
221 
222 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224 		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225 		| BIT(IS_S_RX_THLD_SHIFT))
226 
227 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
228 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
229 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
230 					 bool enable);
231 
232 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
233 				   u32 offset)
234 {
235 	u32 val;
236 	unsigned long flags;
237 
238 	if (iproc_i2c->idm_base) {
239 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
240 		writel(iproc_i2c->ape_addr_mask,
241 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
242 		val = readl(iproc_i2c->base + offset);
243 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
244 	} else {
245 		val = readl(iproc_i2c->base + offset);
246 	}
247 
248 	return val;
249 }
250 
251 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
252 				    u32 offset, u32 val)
253 {
254 	unsigned long flags;
255 
256 	if (iproc_i2c->idm_base) {
257 		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
258 		writel(iproc_i2c->ape_addr_mask,
259 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
260 		writel(val, iproc_i2c->base + offset);
261 		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
262 	} else {
263 		writel(val, iproc_i2c->base + offset);
264 	}
265 }
266 
267 static void bcm_iproc_i2c_slave_init(
268 	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
269 {
270 	u32 val;
271 
272 	iproc_i2c->tx_underrun = 0;
273 	if (need_reset) {
274 		/* put controller in reset */
275 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
276 		val |= BIT(CFG_RESET_SHIFT);
277 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
278 
279 		/* wait 100 usec per spec */
280 		udelay(100);
281 
282 		/* bring controller out of reset */
283 		val &= ~(BIT(CFG_RESET_SHIFT));
284 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
285 	}
286 
287 	/* flush TX/RX FIFOs */
288 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
289 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
290 
291 	/* Maximum slave stretch time */
292 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
293 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
294 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
295 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
296 
297 	/* Configure the slave address */
298 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
299 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
300 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
301 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
302 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
303 
304 	/* clear all pending slave interrupts */
305 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
306 
307 	/* Enable interrupt register to indicate a valid byte in receive fifo */
308 	val = BIT(IE_S_RX_EVENT_SHIFT);
309 	/* Enable interrupt register to indicate Slave Rx FIFO Full */
310 	val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
311 	/* Enable interrupt register to indicate a Master read transaction */
312 	val |= BIT(IE_S_RD_EVENT_SHIFT);
313 	/* Enable interrupt register for the Slave BUSY command */
314 	val |= BIT(IE_S_START_BUSY_SHIFT);
315 	iproc_i2c->slave_int_mask = val;
316 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
317 }
318 
319 static void bcm_iproc_i2c_check_slave_status(
320 	struct bcm_iproc_i2c_dev *iproc_i2c)
321 {
322 	u32 val;
323 
324 	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
325 	/* status is valid only when START_BUSY is cleared after it was set */
326 	if (val & BIT(S_CMD_START_BUSY_SHIFT))
327 		return;
328 
329 	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
330 	if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
331 		dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
332 			"slave random stretch time timeout\n" :
333 			"Master aborted read transaction\n");
334 		/* re-initialize i2c for recovery */
335 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
336 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
337 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
338 	}
339 }
340 
341 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
342 {
343 	u8 rx_data, rx_status;
344 	u32 rx_bytes = 0;
345 	u32 val;
346 
347 	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
348 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
349 		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
350 		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
351 
352 		if (rx_status == I2C_SLAVE_RX_START) {
353 			/* Start of SMBUS Master write */
354 			i2c_slave_event(iproc_i2c->slave,
355 					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
356 			iproc_i2c->rx_start_rcvd = true;
357 			iproc_i2c->slave_read_complete = false;
358 		} else if (rx_status == I2C_SLAVE_RX_DATA &&
359 			   iproc_i2c->rx_start_rcvd) {
360 			/* Middle of SMBUS Master write */
361 			i2c_slave_event(iproc_i2c->slave,
362 					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
363 		} else if (rx_status == I2C_SLAVE_RX_END &&
364 			   iproc_i2c->rx_start_rcvd) {
365 			/* End of SMBUS Master write */
366 			if (iproc_i2c->slave_rx_only)
367 				i2c_slave_event(iproc_i2c->slave,
368 						I2C_SLAVE_WRITE_RECEIVED,
369 						&rx_data);
370 
371 			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
372 					&rx_data);
373 		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
374 			iproc_i2c->rx_start_rcvd = false;
375 			iproc_i2c->slave_read_complete = true;
376 			break;
377 		}
378 
379 		rx_bytes++;
380 	}
381 }
382 
383 static void slave_rx_tasklet_fn(unsigned long data)
384 {
385 	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
386 	u32 int_clr;
387 
388 	bcm_iproc_i2c_slave_read(iproc_i2c);
389 
390 	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
391 	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
392 
393 	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
394 		/*
395 		 * In case of single byte master-read request,
396 		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
397 		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
398 		 * from first IS_S_TX_UNDERRUN_SHIFT event.
399 		 *
400 		 * This means don't send any data from slave when
401 		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
402 		 * eeprom or other backend slave driver read pointer twice.
403 		 */
404 		iproc_i2c->tx_underrun = 0;
405 		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
406 
407 		/* clear IS_S_RD_EVENT_SHIFT interrupt */
408 		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
409 	}
410 
411 	/* clear slave interrupt */
412 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
413 	/* enable slave interrupts */
414 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
415 }
416 
417 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
418 				    u32 status)
419 {
420 	u32 val;
421 	u8 value;
422 
423 	/*
424 	 * Slave events in case of master-write, master-write-read and,
425 	 * master-read
426 	 *
427 	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
428 	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
429 	 *                    events
430 	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
431 	 *                    events or only IS_S_RD_EVENT_SHIFT
432 	 *
433 	 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
434 	 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
435 	 * full. This can happen if Master issues write requests of more than
436 	 * 64 bytes.
437 	 */
438 	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
439 	    status & BIT(IS_S_RD_EVENT_SHIFT) ||
440 	    status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
441 		/* disable slave interrupts */
442 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
443 		val &= ~iproc_i2c->slave_int_mask;
444 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
445 
446 		if (status & BIT(IS_S_RD_EVENT_SHIFT))
447 			/* Master-write-read request */
448 			iproc_i2c->slave_rx_only = false;
449 		else
450 			/* Master-write request only */
451 			iproc_i2c->slave_rx_only = true;
452 
453 		/* schedule tasklet to read data later */
454 		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
455 
456 		/*
457 		 * clear only IS_S_RX_EVENT_SHIFT and
458 		 * IS_S_RX_FIFO_FULL_SHIFT interrupt.
459 		 */
460 		val = BIT(IS_S_RX_EVENT_SHIFT);
461 		if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
462 			val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
463 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
464 	}
465 
466 	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
467 		iproc_i2c->tx_underrun++;
468 		if (iproc_i2c->tx_underrun == 1)
469 			/* Start of SMBUS for Master Read */
470 			i2c_slave_event(iproc_i2c->slave,
471 					I2C_SLAVE_READ_REQUESTED,
472 					&value);
473 		else
474 			/* Master read other than start */
475 			i2c_slave_event(iproc_i2c->slave,
476 					I2C_SLAVE_READ_PROCESSED,
477 					&value);
478 
479 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
480 		/* start transfer */
481 		val = BIT(S_CMD_START_BUSY_SHIFT);
482 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
483 
484 		/* clear interrupt */
485 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
486 				 BIT(IS_S_TX_UNDERRUN_SHIFT));
487 	}
488 
489 	/* Stop received from master in case of master read transaction */
490 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
491 		/*
492 		 * Disable interrupt for TX FIFO becomes empty and
493 		 * less than PKT_LENGTH bytes were output on the SMBUS
494 		 */
495 		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
496 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
497 				 iproc_i2c->slave_int_mask);
498 
499 		/* End of SMBUS for Master Read */
500 		val = BIT(S_TX_WR_STATUS_SHIFT);
501 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
502 
503 		val = BIT(S_CMD_START_BUSY_SHIFT);
504 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
505 
506 		/* flush TX FIFOs */
507 		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
508 		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
509 		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
510 
511 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
512 
513 		/* clear interrupt */
514 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
515 				 BIT(IS_S_START_BUSY_SHIFT));
516 	}
517 
518 	/* check slave transmit status only if slave is transmitting */
519 	if (!iproc_i2c->slave_rx_only)
520 		bcm_iproc_i2c_check_slave_status(iproc_i2c);
521 
522 	return true;
523 }
524 
525 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
526 {
527 	struct i2c_msg *msg = iproc_i2c->msg;
528 	uint32_t val;
529 
530 	/* Read valid data from RX FIFO */
531 	while (iproc_i2c->rx_bytes < msg->len) {
532 		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
533 
534 		/* rx fifo empty */
535 		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
536 			break;
537 
538 		msg->buf[iproc_i2c->rx_bytes] =
539 			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
540 		iproc_i2c->rx_bytes++;
541 	}
542 }
543 
544 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
545 {
546 	struct i2c_msg *msg = iproc_i2c->msg;
547 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
548 	unsigned int i;
549 	u32 val;
550 
551 	/* can only fill up to the FIFO size */
552 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
553 	for (i = 0; i < tx_bytes; i++) {
554 		/* start from where we left over */
555 		unsigned int idx = iproc_i2c->tx_bytes + i;
556 
557 		val = msg->buf[idx];
558 
559 		/* mark the last byte */
560 		if (idx == msg->len - 1) {
561 			val |= BIT(M_TX_WR_STATUS_SHIFT);
562 
563 			if (iproc_i2c->irq) {
564 				u32 tmp;
565 
566 				/*
567 				 * Since this is the last byte, we should now
568 				 * disable TX FIFO underrun interrupt
569 				 */
570 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
571 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
572 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
573 						 tmp);
574 			}
575 		}
576 
577 		/* load data into TX FIFO */
578 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
579 	}
580 
581 	/* update number of transferred bytes */
582 	iproc_i2c->tx_bytes += tx_bytes;
583 }
584 
585 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
586 {
587 	struct i2c_msg *msg = iproc_i2c->msg;
588 	u32 bytes_left, val;
589 
590 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
591 	bytes_left = msg->len - iproc_i2c->rx_bytes;
592 	if (bytes_left == 0) {
593 		if (iproc_i2c->irq) {
594 			/* finished reading all data, disable rx thld event */
595 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
596 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
597 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
598 		}
599 	} else if (bytes_left < iproc_i2c->thld_bytes) {
600 		/* set bytes left as threshold */
601 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
602 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
603 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
604 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
605 		iproc_i2c->thld_bytes = bytes_left;
606 	}
607 	/*
608 	 * bytes_left >= iproc_i2c->thld_bytes,
609 	 * hence no need to change the THRESHOLD SET.
610 	 * It will remain as iproc_i2c->thld_bytes itself
611 	 */
612 }
613 
614 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
615 					  u32 status)
616 {
617 	/* TX FIFO is empty and we have more data to send */
618 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
619 		bcm_iproc_i2c_send(iproc_i2c);
620 
621 	/* RX FIFO threshold is reached and data needs to be read out */
622 	if (status & BIT(IS_M_RX_THLD_SHIFT))
623 		bcm_iproc_i2c_read(iproc_i2c);
624 
625 	/* transfer is done */
626 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
627 		iproc_i2c->xfer_is_done = 1;
628 		if (iproc_i2c->irq)
629 			complete(&iproc_i2c->done);
630 	}
631 }
632 
633 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
634 {
635 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
636 	u32 slave_status;
637 	u32 status;
638 	bool ret;
639 
640 	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
641 	/* process only slave interrupt which are enabled */
642 	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
643 		       ISR_MASK_SLAVE;
644 
645 	if (slave_status) {
646 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
647 		if (ret)
648 			return IRQ_HANDLED;
649 		else
650 			return IRQ_NONE;
651 	}
652 
653 	status &= ISR_MASK;
654 	if (!status)
655 		return IRQ_NONE;
656 
657 	/* process all master based events */
658 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
659 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
660 
661 	return IRQ_HANDLED;
662 }
663 
664 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
665 {
666 	u32 val;
667 
668 	/* put controller in reset */
669 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
670 	val |= BIT(CFG_RESET_SHIFT);
671 	val &= ~(BIT(CFG_EN_SHIFT));
672 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
673 
674 	/* wait 100 usec per spec */
675 	udelay(100);
676 
677 	/* bring controller out of reset */
678 	val &= ~(BIT(CFG_RESET_SHIFT));
679 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
680 
681 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
682 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
683 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
684 	/* disable all interrupts */
685 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
686 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
687 			IE_M_ALL_INTERRUPT_SHIFT);
688 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
689 
690 	/* clear all pending interrupts */
691 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
692 
693 	return 0;
694 }
695 
696 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
697 					 bool enable)
698 {
699 	u32 val;
700 
701 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
702 	if (enable)
703 		val |= BIT(CFG_EN_SHIFT);
704 	else
705 		val &= ~BIT(CFG_EN_SHIFT);
706 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
707 }
708 
709 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
710 				      struct i2c_msg *msg)
711 {
712 	u32 val;
713 
714 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
715 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
716 
717 	switch (val) {
718 	case M_CMD_STATUS_SUCCESS:
719 		return 0;
720 
721 	case M_CMD_STATUS_LOST_ARB:
722 		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
723 		return -EAGAIN;
724 
725 	case M_CMD_STATUS_NACK_ADDR:
726 		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
727 		return -ENXIO;
728 
729 	case M_CMD_STATUS_NACK_DATA:
730 		dev_dbg(iproc_i2c->device, "NAK data\n");
731 		return -ENXIO;
732 
733 	case M_CMD_STATUS_TIMEOUT:
734 		dev_dbg(iproc_i2c->device, "bus timeout\n");
735 		return -ETIMEDOUT;
736 
737 	case M_CMD_STATUS_FIFO_UNDERRUN:
738 		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
739 		return -ENXIO;
740 
741 	case M_CMD_STATUS_RX_FIFO_FULL:
742 		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
743 		return -ETIMEDOUT;
744 
745 	default:
746 		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
747 
748 		/* re-initialize i2c for recovery */
749 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
750 		bcm_iproc_i2c_init(iproc_i2c);
751 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
752 
753 		return -EIO;
754 	}
755 }
756 
757 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
758 				   struct i2c_msg *msg,
759 				   u32 cmd)
760 {
761 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
762 	u32 val, status;
763 	int ret;
764 
765 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
766 
767 	if (iproc_i2c->irq) {
768 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
769 							time_left);
770 		/* disable all interrupts */
771 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
772 		/* read it back to flush the write */
773 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
774 		/* make sure the interrupt handler isn't running */
775 		synchronize_irq(iproc_i2c->irq);
776 
777 	} else { /* polling mode */
778 		unsigned long timeout = jiffies + time_left;
779 
780 		do {
781 			status = iproc_i2c_rd_reg(iproc_i2c,
782 						  IS_OFFSET) & ISR_MASK;
783 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
784 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
785 
786 			if (time_after(jiffies, timeout)) {
787 				time_left = 0;
788 				break;
789 			}
790 
791 			cpu_relax();
792 			cond_resched();
793 		} while (!iproc_i2c->xfer_is_done);
794 	}
795 
796 	if (!time_left && !iproc_i2c->xfer_is_done) {
797 		dev_err(iproc_i2c->device, "transaction timed out\n");
798 
799 		/* flush both TX/RX FIFOs */
800 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
801 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
802 		return -ETIMEDOUT;
803 	}
804 
805 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
806 	if (ret) {
807 		/* flush both TX/RX FIFOs */
808 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
809 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
810 		return ret;
811 	}
812 
813 	return 0;
814 }
815 
816 /*
817  * If 'process_call' is true, then this is a multi-msg transfer that requires
818  * a repeated start between the messages.
819  * More specifically, it must be a write (reg) followed by a read (data).
820  * The i2c quirks are set to enforce this rule.
821  */
822 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
823 					struct i2c_msg *msgs, bool process_call)
824 {
825 	int i;
826 	u8 addr;
827 	u32 val, tmp, val_intr_en;
828 	unsigned int tx_bytes;
829 	struct i2c_msg *msg = &msgs[0];
830 
831 	/* check if bus is busy */
832 	if (!!(iproc_i2c_rd_reg(iproc_i2c,
833 				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
834 		dev_warn(iproc_i2c->device, "bus is busy\n");
835 		return -EBUSY;
836 	}
837 
838 	iproc_i2c->msg = msg;
839 
840 	/* format and load slave address into the TX FIFO */
841 	addr = i2c_8bit_addr_from_msg(msg);
842 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
843 
844 	/*
845 	 * For a write transaction, load data into the TX FIFO. Only allow
846 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
847 	 * has been used up by the slave address
848 	 */
849 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
850 	if (!(msg->flags & I2C_M_RD)) {
851 		for (i = 0; i < tx_bytes; i++) {
852 			val = msg->buf[i];
853 
854 			/* mark the last byte */
855 			if (!process_call && (i == msg->len - 1))
856 				val |= BIT(M_TX_WR_STATUS_SHIFT);
857 
858 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
859 		}
860 		iproc_i2c->tx_bytes = tx_bytes;
861 	}
862 
863 	/* Process the read message if this is process call */
864 	if (process_call) {
865 		msg++;
866 		iproc_i2c->msg = msg;  /* point to second msg */
867 
868 		/*
869 		 * The last byte to be sent out should be a slave
870 		 * address with read operation
871 		 */
872 		addr = i2c_8bit_addr_from_msg(msg);
873 		/* mark it the last byte out */
874 		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
875 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
876 	}
877 
878 	/* mark as incomplete before starting the transaction */
879 	if (iproc_i2c->irq)
880 		reinit_completion(&iproc_i2c->done);
881 
882 	iproc_i2c->xfer_is_done = 0;
883 
884 	/*
885 	 * Enable the "start busy" interrupt, which will be triggered after the
886 	 * transaction is done, i.e., the internal start_busy bit, transitions
887 	 * from 1 to 0.
888 	 */
889 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
890 
891 	/*
892 	 * If TX data size is larger than the TX FIFO, need to enable TX
893 	 * underrun interrupt, which will be triggerred when the TX FIFO is
894 	 * empty. When that happens we can then pump more data into the FIFO
895 	 */
896 	if (!process_call && !(msg->flags & I2C_M_RD) &&
897 	    msg->len > iproc_i2c->tx_bytes)
898 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
899 
900 	/*
901 	 * Now we can activate the transfer. For a read operation, specify the
902 	 * number of bytes to read
903 	 */
904 	val = BIT(M_CMD_START_BUSY_SHIFT);
905 
906 	if (msg->len == 0) {
907 		/* SMBUS QUICK Command (Read/Write) */
908 		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
909 	} else if (msg->flags & I2C_M_RD) {
910 		u32 protocol;
911 
912 		iproc_i2c->rx_bytes = 0;
913 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
914 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
915 		else
916 			iproc_i2c->thld_bytes = msg->len;
917 
918 		/* set threshold value */
919 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
920 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
921 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
922 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
923 
924 		/* enable the RX threshold interrupt */
925 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
926 
927 		protocol = process_call ?
928 				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
929 
930 		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
931 		       (msg->len << M_CMD_RD_CNT_SHIFT);
932 	} else {
933 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
934 	}
935 
936 	if (iproc_i2c->irq)
937 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
938 
939 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
940 }
941 
942 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
943 			      struct i2c_msg msgs[], int num)
944 {
945 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
946 	bool process_call = false;
947 	int ret;
948 
949 	if (num == 2) {
950 		/* Repeated start, use process call */
951 		process_call = true;
952 		if (msgs[1].flags & I2C_M_NOSTART) {
953 			dev_err(iproc_i2c->device, "Invalid repeated start\n");
954 			return -EOPNOTSUPP;
955 		}
956 	}
957 
958 	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
959 	if (ret) {
960 		dev_dbg(iproc_i2c->device, "xfer failed\n");
961 		return ret;
962 	}
963 
964 	return num;
965 }
966 
967 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
968 {
969 	u32 val;
970 
971 	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
972 
973 	if (adap->algo->reg_slave)
974 		val |= I2C_FUNC_SLAVE;
975 
976 	return val;
977 }
978 
979 static struct i2c_algorithm bcm_iproc_algo = {
980 	.master_xfer = bcm_iproc_i2c_xfer,
981 	.functionality = bcm_iproc_i2c_functionality,
982 	.reg_slave = bcm_iproc_i2c_reg_slave,
983 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
984 };
985 
986 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
987 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
988 	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
989 	.max_read_len = M_RX_MAX_READ_LEN,
990 };
991 
992 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
993 {
994 	unsigned int bus_speed;
995 	u32 val;
996 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
997 				       "clock-frequency", &bus_speed);
998 	if (ret < 0) {
999 		dev_info(iproc_i2c->device,
1000 			"unable to interpret clock-frequency DT property\n");
1001 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1002 	}
1003 
1004 	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1005 		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1006 			bus_speed);
1007 		dev_err(iproc_i2c->device,
1008 			"valid speeds are 100khz and 400khz\n");
1009 		return -EINVAL;
1010 	} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1011 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1012 	} else {
1013 		bus_speed = I2C_MAX_FAST_MODE_FREQ;
1014 	}
1015 
1016 	iproc_i2c->bus_speed = bus_speed;
1017 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1018 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1019 	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1020 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1021 
1022 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1023 
1024 	return 0;
1025 }
1026 
1027 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1028 {
1029 	int irq, ret = 0;
1030 	struct bcm_iproc_i2c_dev *iproc_i2c;
1031 	struct i2c_adapter *adap;
1032 
1033 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1034 				 GFP_KERNEL);
1035 	if (!iproc_i2c)
1036 		return -ENOMEM;
1037 
1038 	platform_set_drvdata(pdev, iproc_i2c);
1039 	iproc_i2c->device = &pdev->dev;
1040 	iproc_i2c->type =
1041 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1042 	init_completion(&iproc_i2c->done);
1043 
1044 	iproc_i2c->base = devm_platform_ioremap_resource(pdev, 0);
1045 	if (IS_ERR(iproc_i2c->base))
1046 		return PTR_ERR(iproc_i2c->base);
1047 
1048 	if (iproc_i2c->type == IPROC_I2C_NIC) {
1049 		iproc_i2c->idm_base = devm_platform_ioremap_resource(pdev, 1);
1050 		if (IS_ERR(iproc_i2c->idm_base))
1051 			return PTR_ERR(iproc_i2c->idm_base);
1052 
1053 		ret = of_property_read_u32(iproc_i2c->device->of_node,
1054 					   "brcm,ape-hsls-addr-mask",
1055 					   &iproc_i2c->ape_addr_mask);
1056 		if (ret < 0) {
1057 			dev_err(iproc_i2c->device,
1058 				"'brcm,ape-hsls-addr-mask' missing\n");
1059 			return -EINVAL;
1060 		}
1061 
1062 		spin_lock_init(&iproc_i2c->idm_lock);
1063 
1064 		/* no slave support */
1065 		bcm_iproc_algo.reg_slave = NULL;
1066 		bcm_iproc_algo.unreg_slave = NULL;
1067 	}
1068 
1069 	ret = bcm_iproc_i2c_init(iproc_i2c);
1070 	if (ret)
1071 		return ret;
1072 
1073 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1074 	if (ret)
1075 		return ret;
1076 
1077 	irq = platform_get_irq(pdev, 0);
1078 	if (irq > 0) {
1079 		ret = devm_request_irq(iproc_i2c->device, irq,
1080 				       bcm_iproc_i2c_isr, 0, pdev->name,
1081 				       iproc_i2c);
1082 		if (ret < 0) {
1083 			dev_err(iproc_i2c->device,
1084 				"unable to request irq %i\n", irq);
1085 			return ret;
1086 		}
1087 
1088 		iproc_i2c->irq = irq;
1089 	} else {
1090 		dev_warn(iproc_i2c->device,
1091 			 "no irq resource, falling back to poll mode\n");
1092 	}
1093 
1094 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1095 
1096 	adap = &iproc_i2c->adapter;
1097 	i2c_set_adapdata(adap, iproc_i2c);
1098 	snprintf(adap->name, sizeof(adap->name),
1099 		"Broadcom iProc (%s)",
1100 		of_node_full_name(iproc_i2c->device->of_node));
1101 	adap->algo = &bcm_iproc_algo;
1102 	adap->quirks = &bcm_iproc_i2c_quirks;
1103 	adap->dev.parent = &pdev->dev;
1104 	adap->dev.of_node = pdev->dev.of_node;
1105 
1106 	return i2c_add_adapter(adap);
1107 }
1108 
1109 static void bcm_iproc_i2c_remove(struct platform_device *pdev)
1110 {
1111 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1112 
1113 	if (iproc_i2c->irq) {
1114 		/*
1115 		 * Make sure there's no pending interrupt when we remove the
1116 		 * adapter
1117 		 */
1118 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1119 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1120 		synchronize_irq(iproc_i2c->irq);
1121 	}
1122 
1123 	i2c_del_adapter(&iproc_i2c->adapter);
1124 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1125 }
1126 
1127 static int bcm_iproc_i2c_suspend(struct device *dev)
1128 {
1129 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1130 
1131 	if (iproc_i2c->irq) {
1132 		/*
1133 		 * Make sure there's no pending interrupt when we go into
1134 		 * suspend
1135 		 */
1136 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1137 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1138 		synchronize_irq(iproc_i2c->irq);
1139 	}
1140 
1141 	/* now disable the controller */
1142 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1143 
1144 	return 0;
1145 }
1146 
1147 static int bcm_iproc_i2c_resume(struct device *dev)
1148 {
1149 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1150 	int ret;
1151 	u32 val;
1152 
1153 	/*
1154 	 * Power domain could have been shut off completely in system deep
1155 	 * sleep, so re-initialize the block here
1156 	 */
1157 	ret = bcm_iproc_i2c_init(iproc_i2c);
1158 	if (ret)
1159 		return ret;
1160 
1161 	/* configure to the desired bus speed */
1162 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1163 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1164 	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1165 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1166 
1167 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1168 
1169 	return 0;
1170 }
1171 
1172 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1173 	.suspend_late = &bcm_iproc_i2c_suspend,
1174 	.resume_early = &bcm_iproc_i2c_resume
1175 };
1176 
1177 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1178 {
1179 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1180 
1181 	if (iproc_i2c->slave)
1182 		return -EBUSY;
1183 
1184 	if (slave->flags & I2C_CLIENT_TEN)
1185 		return -EAFNOSUPPORT;
1186 
1187 	iproc_i2c->slave = slave;
1188 
1189 	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1190 		     (unsigned long)iproc_i2c);
1191 
1192 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1193 	return 0;
1194 }
1195 
1196 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1197 {
1198 	u32 tmp;
1199 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1200 
1201 	if (!iproc_i2c->slave)
1202 		return -EINVAL;
1203 
1204 	disable_irq(iproc_i2c->irq);
1205 
1206 	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1207 
1208 	/* disable all slave interrupts */
1209 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1210 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1211 			IE_S_ALL_INTERRUPT_SHIFT);
1212 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1213 
1214 	/* Erase the slave address programmed */
1215 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1216 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1217 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1218 
1219 	/* flush TX/RX FIFOs */
1220 	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1221 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1222 
1223 	/* clear all pending slave interrupts */
1224 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1225 
1226 	iproc_i2c->slave = NULL;
1227 
1228 	enable_irq(iproc_i2c->irq);
1229 
1230 	return 0;
1231 }
1232 
1233 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1234 	{
1235 		.compatible = "brcm,iproc-i2c",
1236 		.data = (int *)IPROC_I2C,
1237 	}, {
1238 		.compatible = "brcm,iproc-nic-i2c",
1239 		.data = (int *)IPROC_I2C_NIC,
1240 	},
1241 	{ /* sentinel */ }
1242 };
1243 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1244 
1245 static struct platform_driver bcm_iproc_i2c_driver = {
1246 	.driver = {
1247 		.name = "bcm-iproc-i2c",
1248 		.of_match_table = bcm_iproc_i2c_of_match,
1249 		.pm = pm_sleep_ptr(&bcm_iproc_i2c_pm_ops),
1250 	},
1251 	.probe = bcm_iproc_i2c_probe,
1252 	.remove_new = bcm_iproc_i2c_remove,
1253 };
1254 module_platform_driver(bcm_iproc_i2c_driver);
1255 
1256 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1257 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1258 MODULE_LICENSE("GPL v2");
1259