1 /*
2  * Copyright (C) 2014 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #define IDM_CTRL_DIRECT_OFFSET       0x00
25 #define CFG_OFFSET                   0x00
26 #define CFG_RESET_SHIFT              31
27 #define CFG_EN_SHIFT                 30
28 #define CFG_SLAVE_ADDR_0_SHIFT       28
29 #define CFG_M_RETRY_CNT_SHIFT        16
30 #define CFG_M_RETRY_CNT_MASK         0x0f
31 
32 #define TIM_CFG_OFFSET               0x04
33 #define TIM_CFG_MODE_400_SHIFT       31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
35 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
38 
39 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
42 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
45 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
48 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
51 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
52 
53 #define M_FIFO_CTRL_OFFSET           0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT        31
55 #define M_FIFO_TX_FLUSH_SHIFT        30
56 #define M_FIFO_RX_CNT_SHIFT          16
57 #define M_FIFO_RX_CNT_MASK           0x7f
58 #define M_FIFO_RX_THLD_SHIFT         8
59 #define M_FIFO_RX_THLD_MASK          0x3f
60 
61 #define S_FIFO_CTRL_OFFSET           0x10
62 #define S_FIFO_RX_FLUSH_SHIFT        31
63 #define S_FIFO_TX_FLUSH_SHIFT        30
64 #define S_FIFO_RX_CNT_SHIFT          16
65 #define S_FIFO_RX_CNT_MASK           0x7f
66 #define S_FIFO_RX_THLD_SHIFT         8
67 #define S_FIFO_RX_THLD_MASK          0x3f
68 
69 #define M_CMD_OFFSET                 0x30
70 #define M_CMD_START_BUSY_SHIFT       31
71 #define M_CMD_STATUS_SHIFT           25
72 #define M_CMD_STATUS_MASK            0x07
73 #define M_CMD_STATUS_SUCCESS         0x0
74 #define M_CMD_STATUS_LOST_ARB        0x1
75 #define M_CMD_STATUS_NACK_ADDR       0x2
76 #define M_CMD_STATUS_NACK_DATA       0x3
77 #define M_CMD_STATUS_TIMEOUT         0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
80 #define M_CMD_PROTOCOL_SHIFT         9
81 #define M_CMD_PROTOCOL_MASK          0xf
82 #define M_CMD_PROTOCOL_BLK_WR        0x7
83 #define M_CMD_PROTOCOL_BLK_RD        0x8
84 #define M_CMD_PEC_SHIFT              8
85 #define M_CMD_RD_CNT_SHIFT           0
86 #define M_CMD_RD_CNT_MASK            0xff
87 
88 #define S_CMD_OFFSET                 0x34
89 #define S_CMD_START_BUSY_SHIFT       31
90 #define S_CMD_STATUS_SHIFT           23
91 #define S_CMD_STATUS_MASK            0x07
92 #define S_CMD_STATUS_SUCCESS         0x0
93 #define S_CMD_STATUS_TIMEOUT         0x5
94 
95 #define IE_OFFSET                    0x38
96 #define IE_M_RX_FIFO_FULL_SHIFT      31
97 #define IE_M_RX_THLD_SHIFT           30
98 #define IE_M_START_BUSY_SHIFT        28
99 #define IE_M_TX_UNDERRUN_SHIFT       27
100 #define IE_S_RX_FIFO_FULL_SHIFT      26
101 #define IE_S_RX_THLD_SHIFT           25
102 #define IE_S_RX_EVENT_SHIFT          24
103 #define IE_S_START_BUSY_SHIFT        23
104 #define IE_S_TX_UNDERRUN_SHIFT       22
105 #define IE_S_RD_EVENT_SHIFT          21
106 
107 #define IS_OFFSET                    0x3c
108 #define IS_M_RX_FIFO_FULL_SHIFT      31
109 #define IS_M_RX_THLD_SHIFT           30
110 #define IS_M_START_BUSY_SHIFT        28
111 #define IS_M_TX_UNDERRUN_SHIFT       27
112 #define IS_S_RX_FIFO_FULL_SHIFT      26
113 #define IS_S_RX_THLD_SHIFT           25
114 #define IS_S_RX_EVENT_SHIFT          24
115 #define IS_S_START_BUSY_SHIFT        23
116 #define IS_S_TX_UNDERRUN_SHIFT       22
117 #define IS_S_RD_EVENT_SHIFT          21
118 
119 #define M_TX_OFFSET                  0x40
120 #define M_TX_WR_STATUS_SHIFT         31
121 #define M_TX_DATA_SHIFT              0
122 #define M_TX_DATA_MASK               0xff
123 
124 #define M_RX_OFFSET                  0x44
125 #define M_RX_STATUS_SHIFT            30
126 #define M_RX_STATUS_MASK             0x03
127 #define M_RX_PEC_ERR_SHIFT           29
128 #define M_RX_DATA_SHIFT              0
129 #define M_RX_DATA_MASK               0xff
130 
131 #define S_TX_OFFSET                  0x48
132 #define S_TX_WR_STATUS_SHIFT         31
133 #define S_TX_DATA_SHIFT              0
134 #define S_TX_DATA_MASK               0xff
135 
136 #define S_RX_OFFSET                  0x4c
137 #define S_RX_STATUS_SHIFT            30
138 #define S_RX_STATUS_MASK             0x03
139 #define S_RX_PEC_ERR_SHIFT           29
140 #define S_RX_DATA_SHIFT              0
141 #define S_RX_DATA_MASK               0xff
142 
143 #define I2C_TIMEOUT_MSEC             50000
144 #define M_TX_RX_FIFO_SIZE            64
145 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
146 
147 #define M_RX_MAX_READ_LEN            255
148 #define M_RX_FIFO_THLD_VALUE         50
149 
150 #define IE_M_ALL_INTERRUPT_SHIFT     27
151 #define IE_M_ALL_INTERRUPT_MASK      0x1e
152 
153 #define SLAVE_READ_WRITE_BIT_MASK    0x1
154 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
155 #define SLAVE_MAX_SIZE_TRANSACTION   64
156 #define SLAVE_CLOCK_STRETCH_TIME     25
157 
158 #define IE_S_ALL_INTERRUPT_SHIFT     21
159 #define IE_S_ALL_INTERRUPT_MASK      0x3f
160 
161 enum i2c_slave_read_status {
162 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
163 	I2C_SLAVE_RX_START,
164 	I2C_SLAVE_RX_DATA,
165 	I2C_SLAVE_RX_END,
166 };
167 
168 enum bus_speed_index {
169 	I2C_SPD_100K = 0,
170 	I2C_SPD_400K,
171 };
172 
173 enum bcm_iproc_i2c_type {
174 	IPROC_I2C,
175 	IPROC_I2C_NIC
176 };
177 
178 struct bcm_iproc_i2c_dev {
179 	struct device *device;
180 	enum bcm_iproc_i2c_type type;
181 	int irq;
182 
183 	void __iomem *base;
184 	void __iomem *idm_base;
185 
186 	u32 ape_addr_mask;
187 
188 	/* lock for indirect access through IDM */
189 	spinlock_t idm_lock;
190 
191 	struct i2c_adapter adapter;
192 	unsigned int bus_speed;
193 
194 	struct completion done;
195 	int xfer_is_done;
196 
197 	struct i2c_msg *msg;
198 
199 	struct i2c_client *slave;
200 
201 	/* bytes that have been transferred */
202 	unsigned int tx_bytes;
203 	/* bytes that have been read */
204 	unsigned int rx_bytes;
205 	unsigned int thld_bytes;
206 };
207 
208 /*
209  * Can be expanded in the future if more interrupt status bits are utilized
210  */
211 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
212 		| BIT(IS_M_RX_THLD_SHIFT))
213 
214 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
215 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
216 		| BIT(IS_S_TX_UNDERRUN_SHIFT))
217 
218 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
219 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
220 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
221 					 bool enable);
222 
223 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
224 				   u32 offset)
225 {
226 	u32 val;
227 
228 	if (iproc_i2c->idm_base) {
229 		spin_lock(&iproc_i2c->idm_lock);
230 		writel(iproc_i2c->ape_addr_mask,
231 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
232 		val = readl(iproc_i2c->base + offset);
233 		spin_unlock(&iproc_i2c->idm_lock);
234 	} else {
235 		val = readl(iproc_i2c->base + offset);
236 	}
237 
238 	return val;
239 }
240 
241 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
242 				    u32 offset, u32 val)
243 {
244 	if (iproc_i2c->idm_base) {
245 		spin_lock(&iproc_i2c->idm_lock);
246 		writel(iproc_i2c->ape_addr_mask,
247 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
248 		writel(val, iproc_i2c->base + offset);
249 		spin_unlock(&iproc_i2c->idm_lock);
250 	} else {
251 		writel(val, iproc_i2c->base + offset);
252 	}
253 }
254 
255 static void bcm_iproc_i2c_slave_init(
256 	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
257 {
258 	u32 val;
259 
260 	if (need_reset) {
261 		/* put controller in reset */
262 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
263 		val |= BIT(CFG_RESET_SHIFT);
264 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
265 
266 		/* wait 100 usec per spec */
267 		udelay(100);
268 
269 		/* bring controller out of reset */
270 		val &= ~(BIT(CFG_RESET_SHIFT));
271 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
272 	}
273 
274 	/* flush TX/RX FIFOs */
275 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
276 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
277 
278 	/* Maximum slave stretch time */
279 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
280 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
281 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
282 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
283 
284 	/* Configure the slave address */
285 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
286 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
287 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
288 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
289 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
290 
291 	/* clear all pending slave interrupts */
292 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
293 
294 	/* Enable interrupt register to indicate a valid byte in receive fifo */
295 	val = BIT(IE_S_RX_EVENT_SHIFT);
296 	/* Enable interrupt register for the Slave BUSY command */
297 	val |= BIT(IE_S_START_BUSY_SHIFT);
298 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
299 }
300 
301 static void bcm_iproc_i2c_check_slave_status(
302 	struct bcm_iproc_i2c_dev *iproc_i2c)
303 {
304 	u32 val;
305 
306 	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
307 	/* status is valid only when START_BUSY is cleared after it was set */
308 	if (val & BIT(S_CMD_START_BUSY_SHIFT))
309 		return;
310 
311 	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
312 	if (val == S_CMD_STATUS_TIMEOUT) {
313 		dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
314 
315 		/* re-initialize i2c for recovery */
316 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
317 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
318 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
319 	}
320 }
321 
322 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
323 				    u32 status)
324 {
325 	u32 val;
326 	u8 value, rx_status;
327 
328 	/* Slave RX byte receive */
329 	if (status & BIT(IS_S_RX_EVENT_SHIFT)) {
330 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
331 		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
332 		if (rx_status == I2C_SLAVE_RX_START) {
333 			/* Start of SMBUS for Master write */
334 			i2c_slave_event(iproc_i2c->slave,
335 					I2C_SLAVE_WRITE_REQUESTED, &value);
336 
337 			val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
338 			value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
339 			i2c_slave_event(iproc_i2c->slave,
340 					I2C_SLAVE_WRITE_RECEIVED, &value);
341 		} else if (status & BIT(IS_S_RD_EVENT_SHIFT)) {
342 			/* Start of SMBUS for Master Read */
343 			i2c_slave_event(iproc_i2c->slave,
344 					I2C_SLAVE_READ_REQUESTED, &value);
345 			iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
346 
347 			val = BIT(S_CMD_START_BUSY_SHIFT);
348 			iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
349 
350 			/*
351 			 * Enable interrupt for TX FIFO becomes empty and
352 			 * less than PKT_LENGTH bytes were output on the SMBUS
353 			 */
354 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
355 			val |= BIT(IE_S_TX_UNDERRUN_SHIFT);
356 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
357 		} else {
358 			/* Master write other than start */
359 			value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
360 			i2c_slave_event(iproc_i2c->slave,
361 					I2C_SLAVE_WRITE_RECEIVED, &value);
362 		}
363 	} else if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
364 		/* Master read other than start */
365 		i2c_slave_event(iproc_i2c->slave,
366 				I2C_SLAVE_READ_PROCESSED, &value);
367 
368 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
369 		val = BIT(S_CMD_START_BUSY_SHIFT);
370 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
371 	}
372 
373 	/* Stop */
374 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
375 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
376 		/*
377 		 * Enable interrupt for TX FIFO becomes empty and
378 		 * less than PKT_LENGTH bytes were output on the SMBUS
379 		 */
380 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
381 		val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
382 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
383 	}
384 
385 	/* clear interrupt status */
386 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
387 
388 	bcm_iproc_i2c_check_slave_status(iproc_i2c);
389 	return true;
390 }
391 
392 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
393 {
394 	struct i2c_msg *msg = iproc_i2c->msg;
395 
396 	/* Read valid data from RX FIFO */
397 	while (iproc_i2c->rx_bytes < msg->len) {
398 		if (!((iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET) >> M_FIFO_RX_CNT_SHIFT)
399 		      & M_FIFO_RX_CNT_MASK))
400 			break;
401 
402 		msg->buf[iproc_i2c->rx_bytes] =
403 			(iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET) >>
404 			M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
405 		iproc_i2c->rx_bytes++;
406 	}
407 }
408 
409 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
410 {
411 	struct i2c_msg *msg = iproc_i2c->msg;
412 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
413 	unsigned int i;
414 	u32 val;
415 
416 	/* can only fill up to the FIFO size */
417 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
418 	for (i = 0; i < tx_bytes; i++) {
419 		/* start from where we left over */
420 		unsigned int idx = iproc_i2c->tx_bytes + i;
421 
422 		val = msg->buf[idx];
423 
424 		/* mark the last byte */
425 		if (idx == msg->len - 1) {
426 			val |= BIT(M_TX_WR_STATUS_SHIFT);
427 
428 			if (iproc_i2c->irq) {
429 				u32 tmp;
430 
431 				/*
432 				 * Since this is the last byte, we should now
433 				 * disable TX FIFO underrun interrupt
434 				 */
435 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
436 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
437 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
438 						 tmp);
439 			}
440 		}
441 
442 		/* load data into TX FIFO */
443 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
444 	}
445 
446 	/* update number of transferred bytes */
447 	iproc_i2c->tx_bytes += tx_bytes;
448 }
449 
450 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
451 {
452 	struct i2c_msg *msg = iproc_i2c->msg;
453 	u32 bytes_left, val;
454 
455 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
456 	bytes_left = msg->len - iproc_i2c->rx_bytes;
457 	if (bytes_left == 0) {
458 		if (iproc_i2c->irq) {
459 			/* finished reading all data, disable rx thld event */
460 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
461 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
462 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
463 		}
464 	} else if (bytes_left < iproc_i2c->thld_bytes) {
465 		/* set bytes left as threshold */
466 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
467 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
468 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
469 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
470 		iproc_i2c->thld_bytes = bytes_left;
471 	}
472 	/*
473 	 * bytes_left >= iproc_i2c->thld_bytes,
474 	 * hence no need to change the THRESHOLD SET.
475 	 * It will remain as iproc_i2c->thld_bytes itself
476 	 */
477 }
478 
479 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
480 					  u32 status)
481 {
482 	/* TX FIFO is empty and we have more data to send */
483 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
484 		bcm_iproc_i2c_send(iproc_i2c);
485 
486 	/* RX FIFO threshold is reached and data needs to be read out */
487 	if (status & BIT(IS_M_RX_THLD_SHIFT))
488 		bcm_iproc_i2c_read(iproc_i2c);
489 
490 	/* transfer is done */
491 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
492 		iproc_i2c->xfer_is_done = 1;
493 		if (iproc_i2c->irq)
494 			complete(&iproc_i2c->done);
495 	}
496 }
497 
498 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
499 {
500 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
501 	u32 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
502 	bool ret;
503 	u32 sl_status = status & ISR_MASK_SLAVE;
504 
505 	if (sl_status) {
506 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, sl_status);
507 		if (ret)
508 			return IRQ_HANDLED;
509 		else
510 			return IRQ_NONE;
511 	}
512 
513 	status &= ISR_MASK;
514 	if (!status)
515 		return IRQ_NONE;
516 
517 	/* process all master based events */
518 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
519 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
520 
521 	return IRQ_HANDLED;
522 }
523 
524 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
525 {
526 	u32 val;
527 
528 	/* put controller in reset */
529 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
530 	val |= BIT(CFG_RESET_SHIFT);
531 	val &= ~(BIT(CFG_EN_SHIFT));
532 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
533 
534 	/* wait 100 usec per spec */
535 	udelay(100);
536 
537 	/* bring controller out of reset */
538 	val &= ~(BIT(CFG_RESET_SHIFT));
539 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
540 
541 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
542 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
543 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
544 	/* disable all interrupts */
545 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
546 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
547 			IE_M_ALL_INTERRUPT_SHIFT);
548 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
549 
550 	/* clear all pending interrupts */
551 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
552 
553 	return 0;
554 }
555 
556 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
557 					 bool enable)
558 {
559 	u32 val;
560 
561 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
562 	if (enable)
563 		val |= BIT(CFG_EN_SHIFT);
564 	else
565 		val &= ~BIT(CFG_EN_SHIFT);
566 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
567 }
568 
569 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
570 				      struct i2c_msg *msg)
571 {
572 	u32 val;
573 
574 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
575 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
576 
577 	switch (val) {
578 	case M_CMD_STATUS_SUCCESS:
579 		return 0;
580 
581 	case M_CMD_STATUS_LOST_ARB:
582 		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
583 		return -EAGAIN;
584 
585 	case M_CMD_STATUS_NACK_ADDR:
586 		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
587 		return -ENXIO;
588 
589 	case M_CMD_STATUS_NACK_DATA:
590 		dev_dbg(iproc_i2c->device, "NAK data\n");
591 		return -ENXIO;
592 
593 	case M_CMD_STATUS_TIMEOUT:
594 		dev_dbg(iproc_i2c->device, "bus timeout\n");
595 		return -ETIMEDOUT;
596 
597 	case M_CMD_STATUS_FIFO_UNDERRUN:
598 		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
599 		return -ENXIO;
600 
601 	case M_CMD_STATUS_RX_FIFO_FULL:
602 		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
603 		return -ETIMEDOUT;
604 
605 	default:
606 		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
607 
608 		/* re-initialize i2c for recovery */
609 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
610 		bcm_iproc_i2c_init(iproc_i2c);
611 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
612 
613 		return -EIO;
614 	}
615 }
616 
617 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
618 				   struct i2c_msg *msg,
619 				   u32 cmd)
620 {
621 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
622 	u32 val, status;
623 	int ret;
624 
625 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
626 
627 	if (iproc_i2c->irq) {
628 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
629 							time_left);
630 		/* disable all interrupts */
631 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
632 		/* read it back to flush the write */
633 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
634 		/* make sure the interrupt handler isn't running */
635 		synchronize_irq(iproc_i2c->irq);
636 
637 	} else { /* polling mode */
638 		unsigned long timeout = jiffies + time_left;
639 
640 		do {
641 			status = iproc_i2c_rd_reg(iproc_i2c,
642 						  IS_OFFSET) & ISR_MASK;
643 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
644 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
645 
646 			if (time_after(jiffies, timeout)) {
647 				time_left = 0;
648 				break;
649 			}
650 
651 			cpu_relax();
652 			cond_resched();
653 		} while (!iproc_i2c->xfer_is_done);
654 	}
655 
656 	if (!time_left && !iproc_i2c->xfer_is_done) {
657 		dev_err(iproc_i2c->device, "transaction timed out\n");
658 
659 		/* flush both TX/RX FIFOs */
660 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
661 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
662 		return -ETIMEDOUT;
663 	}
664 
665 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
666 	if (ret) {
667 		/* flush both TX/RX FIFOs */
668 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
669 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
670 		return ret;
671 	}
672 
673 	return 0;
674 }
675 
676 static int bcm_iproc_i2c_xfer_single_msg(struct bcm_iproc_i2c_dev *iproc_i2c,
677 					 struct i2c_msg *msg)
678 {
679 	int i;
680 	u8 addr;
681 	u32 val, tmp, val_intr_en;
682 	unsigned int tx_bytes;
683 
684 	/* check if bus is busy */
685 	if (!!(iproc_i2c_rd_reg(iproc_i2c,
686 				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
687 		dev_warn(iproc_i2c->device, "bus is busy\n");
688 		return -EBUSY;
689 	}
690 
691 	iproc_i2c->msg = msg;
692 
693 	/* format and load slave address into the TX FIFO */
694 	addr = i2c_8bit_addr_from_msg(msg);
695 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
696 
697 	/*
698 	 * For a write transaction, load data into the TX FIFO. Only allow
699 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
700 	 * has been used up by the slave address
701 	 */
702 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
703 	if (!(msg->flags & I2C_M_RD)) {
704 		for (i = 0; i < tx_bytes; i++) {
705 			val = msg->buf[i];
706 
707 			/* mark the last byte */
708 			if (i == msg->len - 1)
709 				val |= BIT(M_TX_WR_STATUS_SHIFT);
710 
711 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
712 		}
713 		iproc_i2c->tx_bytes = tx_bytes;
714 	}
715 
716 	/* mark as incomplete before starting the transaction */
717 	if (iproc_i2c->irq)
718 		reinit_completion(&iproc_i2c->done);
719 
720 	iproc_i2c->xfer_is_done = 0;
721 
722 	/*
723 	 * Enable the "start busy" interrupt, which will be triggered after the
724 	 * transaction is done, i.e., the internal start_busy bit, transitions
725 	 * from 1 to 0.
726 	 */
727 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
728 
729 	/*
730 	 * If TX data size is larger than the TX FIFO, need to enable TX
731 	 * underrun interrupt, which will be triggerred when the TX FIFO is
732 	 * empty. When that happens we can then pump more data into the FIFO
733 	 */
734 	if (!(msg->flags & I2C_M_RD) &&
735 	    msg->len > iproc_i2c->tx_bytes)
736 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
737 
738 	/*
739 	 * Now we can activate the transfer. For a read operation, specify the
740 	 * number of bytes to read
741 	 */
742 	val = BIT(M_CMD_START_BUSY_SHIFT);
743 	if (msg->flags & I2C_M_RD) {
744 		iproc_i2c->rx_bytes = 0;
745 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
746 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
747 		else
748 			iproc_i2c->thld_bytes = msg->len;
749 
750 		/* set threshold value */
751 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
752 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
753 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
754 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
755 
756 		/* enable the RX threshold interrupt */
757 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
758 
759 		val |= (M_CMD_PROTOCOL_BLK_RD << M_CMD_PROTOCOL_SHIFT) |
760 		       (msg->len << M_CMD_RD_CNT_SHIFT);
761 	} else {
762 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
763 	}
764 
765 	if (iproc_i2c->irq)
766 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
767 
768 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
769 }
770 
771 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
772 			      struct i2c_msg msgs[], int num)
773 {
774 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
775 	int ret, i;
776 
777 	/* go through all messages */
778 	for (i = 0; i < num; i++) {
779 		ret = bcm_iproc_i2c_xfer_single_msg(iproc_i2c, &msgs[i]);
780 		if (ret) {
781 			dev_dbg(iproc_i2c->device, "xfer failed\n");
782 			return ret;
783 		}
784 	}
785 
786 	return num;
787 }
788 
789 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
790 {
791 	u32 val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
792 
793 	if (adap->algo->reg_slave)
794 		val |= I2C_FUNC_SLAVE;
795 
796 	return val;
797 }
798 
799 static struct i2c_algorithm bcm_iproc_algo = {
800 	.master_xfer = bcm_iproc_i2c_xfer,
801 	.functionality = bcm_iproc_i2c_functionality,
802 	.reg_slave = bcm_iproc_i2c_reg_slave,
803 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
804 };
805 
806 static struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
807 	.max_read_len = M_RX_MAX_READ_LEN,
808 };
809 
810 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
811 {
812 	unsigned int bus_speed;
813 	u32 val;
814 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
815 				       "clock-frequency", &bus_speed);
816 	if (ret < 0) {
817 		dev_info(iproc_i2c->device,
818 			"unable to interpret clock-frequency DT property\n");
819 		bus_speed = 100000;
820 	}
821 
822 	if (bus_speed < 100000) {
823 		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
824 			bus_speed);
825 		dev_err(iproc_i2c->device,
826 			"valid speeds are 100khz and 400khz\n");
827 		return -EINVAL;
828 	} else if (bus_speed < 400000) {
829 		bus_speed = 100000;
830 	} else {
831 		bus_speed = 400000;
832 	}
833 
834 	iproc_i2c->bus_speed = bus_speed;
835 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
836 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
837 	val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
838 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
839 
840 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
841 
842 	return 0;
843 }
844 
845 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
846 {
847 	int irq, ret = 0;
848 	struct bcm_iproc_i2c_dev *iproc_i2c;
849 	struct i2c_adapter *adap;
850 	struct resource *res;
851 
852 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
853 				 GFP_KERNEL);
854 	if (!iproc_i2c)
855 		return -ENOMEM;
856 
857 	platform_set_drvdata(pdev, iproc_i2c);
858 	iproc_i2c->device = &pdev->dev;
859 	iproc_i2c->type =
860 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
861 	init_completion(&iproc_i2c->done);
862 
863 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
864 	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
865 	if (IS_ERR(iproc_i2c->base))
866 		return PTR_ERR(iproc_i2c->base);
867 
868 	if (iproc_i2c->type == IPROC_I2C_NIC) {
869 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
870 		iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
871 							    res);
872 		if (IS_ERR(iproc_i2c->idm_base))
873 			return PTR_ERR(iproc_i2c->idm_base);
874 
875 		ret = of_property_read_u32(iproc_i2c->device->of_node,
876 					   "brcm,ape-hsls-addr-mask",
877 					   &iproc_i2c->ape_addr_mask);
878 		if (ret < 0) {
879 			dev_err(iproc_i2c->device,
880 				"'brcm,ape-hsls-addr-mask' missing\n");
881 			return -EINVAL;
882 		}
883 
884 		spin_lock_init(&iproc_i2c->idm_lock);
885 
886 		/* no slave support */
887 		bcm_iproc_algo.reg_slave = NULL;
888 		bcm_iproc_algo.unreg_slave = NULL;
889 	}
890 
891 	ret = bcm_iproc_i2c_init(iproc_i2c);
892 	if (ret)
893 		return ret;
894 
895 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
896 	if (ret)
897 		return ret;
898 
899 	irq = platform_get_irq(pdev, 0);
900 	if (irq > 0) {
901 		ret = devm_request_irq(iproc_i2c->device, irq,
902 				       bcm_iproc_i2c_isr, 0, pdev->name,
903 				       iproc_i2c);
904 		if (ret < 0) {
905 			dev_err(iproc_i2c->device,
906 				"unable to request irq %i\n", irq);
907 			return ret;
908 		}
909 
910 		iproc_i2c->irq = irq;
911 	} else {
912 		dev_warn(iproc_i2c->device,
913 			 "no irq resource, falling back to poll mode\n");
914 	}
915 
916 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
917 
918 	adap = &iproc_i2c->adapter;
919 	i2c_set_adapdata(adap, iproc_i2c);
920 	strlcpy(adap->name, "Broadcom iProc I2C adapter", sizeof(adap->name));
921 	adap->algo = &bcm_iproc_algo;
922 	adap->quirks = &bcm_iproc_i2c_quirks;
923 	adap->dev.parent = &pdev->dev;
924 	adap->dev.of_node = pdev->dev.of_node;
925 
926 	return i2c_add_adapter(adap);
927 }
928 
929 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
930 {
931 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
932 
933 	if (iproc_i2c->irq) {
934 		/*
935 		 * Make sure there's no pending interrupt when we remove the
936 		 * adapter
937 		 */
938 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
939 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
940 		synchronize_irq(iproc_i2c->irq);
941 	}
942 
943 	i2c_del_adapter(&iproc_i2c->adapter);
944 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
945 
946 	return 0;
947 }
948 
949 #ifdef CONFIG_PM_SLEEP
950 
951 static int bcm_iproc_i2c_suspend(struct device *dev)
952 {
953 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
954 
955 	if (iproc_i2c->irq) {
956 		/*
957 		 * Make sure there's no pending interrupt when we go into
958 		 * suspend
959 		 */
960 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
961 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
962 		synchronize_irq(iproc_i2c->irq);
963 	}
964 
965 	/* now disable the controller */
966 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
967 
968 	return 0;
969 }
970 
971 static int bcm_iproc_i2c_resume(struct device *dev)
972 {
973 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
974 	int ret;
975 	u32 val;
976 
977 	/*
978 	 * Power domain could have been shut off completely in system deep
979 	 * sleep, so re-initialize the block here
980 	 */
981 	ret = bcm_iproc_i2c_init(iproc_i2c);
982 	if (ret)
983 		return ret;
984 
985 	/* configure to the desired bus speed */
986 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
987 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
988 	val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
989 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
990 
991 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
992 
993 	return 0;
994 }
995 
996 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
997 	.suspend_late = &bcm_iproc_i2c_suspend,
998 	.resume_early = &bcm_iproc_i2c_resume
999 };
1000 
1001 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1002 #else
1003 #define BCM_IPROC_I2C_PM_OPS NULL
1004 #endif /* CONFIG_PM_SLEEP */
1005 
1006 
1007 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1008 {
1009 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1010 
1011 	if (iproc_i2c->slave)
1012 		return -EBUSY;
1013 
1014 	if (slave->flags & I2C_CLIENT_TEN)
1015 		return -EAFNOSUPPORT;
1016 
1017 	iproc_i2c->slave = slave;
1018 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1019 	return 0;
1020 }
1021 
1022 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1023 {
1024 	u32 tmp;
1025 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1026 
1027 	if (!iproc_i2c->slave)
1028 		return -EINVAL;
1029 
1030 	iproc_i2c->slave = NULL;
1031 
1032 	/* disable all slave interrupts */
1033 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1034 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1035 			IE_S_ALL_INTERRUPT_SHIFT);
1036 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1037 
1038 	/* Erase the slave address programmed */
1039 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1040 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1041 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1042 
1043 	return 0;
1044 }
1045 
1046 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1047 	{
1048 		.compatible = "brcm,iproc-i2c",
1049 		.data = (int *)IPROC_I2C,
1050 	}, {
1051 		.compatible = "brcm,iproc-nic-i2c",
1052 		.data = (int *)IPROC_I2C_NIC,
1053 	},
1054 	{ /* sentinel */ }
1055 };
1056 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1057 
1058 static struct platform_driver bcm_iproc_i2c_driver = {
1059 	.driver = {
1060 		.name = "bcm-iproc-i2c",
1061 		.of_match_table = bcm_iproc_i2c_of_match,
1062 		.pm = BCM_IPROC_I2C_PM_OPS,
1063 	},
1064 	.probe = bcm_iproc_i2c_probe,
1065 	.remove = bcm_iproc_i2c_remove,
1066 };
1067 module_platform_driver(bcm_iproc_i2c_driver);
1068 
1069 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1070 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1071 MODULE_LICENSE("GPL v2");
1072