1 /*
2  * Copyright (C) 2014 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #define IDM_CTRL_DIRECT_OFFSET       0x00
25 #define CFG_OFFSET                   0x00
26 #define CFG_RESET_SHIFT              31
27 #define CFG_EN_SHIFT                 30
28 #define CFG_SLAVE_ADDR_0_SHIFT       28
29 #define CFG_M_RETRY_CNT_SHIFT        16
30 #define CFG_M_RETRY_CNT_MASK         0x0f
31 
32 #define TIM_CFG_OFFSET               0x04
33 #define TIM_CFG_MODE_400_SHIFT       31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
35 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
38 
39 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
42 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
45 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
48 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
51 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
52 
53 #define M_FIFO_CTRL_OFFSET           0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT        31
55 #define M_FIFO_TX_FLUSH_SHIFT        30
56 #define M_FIFO_RX_CNT_SHIFT          16
57 #define M_FIFO_RX_CNT_MASK           0x7f
58 #define M_FIFO_RX_THLD_SHIFT         8
59 #define M_FIFO_RX_THLD_MASK          0x3f
60 
61 #define S_FIFO_CTRL_OFFSET           0x10
62 #define S_FIFO_RX_FLUSH_SHIFT        31
63 #define S_FIFO_TX_FLUSH_SHIFT        30
64 #define S_FIFO_RX_CNT_SHIFT          16
65 #define S_FIFO_RX_CNT_MASK           0x7f
66 #define S_FIFO_RX_THLD_SHIFT         8
67 #define S_FIFO_RX_THLD_MASK          0x3f
68 
69 #define M_CMD_OFFSET                 0x30
70 #define M_CMD_START_BUSY_SHIFT       31
71 #define M_CMD_STATUS_SHIFT           25
72 #define M_CMD_STATUS_MASK            0x07
73 #define M_CMD_STATUS_SUCCESS         0x0
74 #define M_CMD_STATUS_LOST_ARB        0x1
75 #define M_CMD_STATUS_NACK_ADDR       0x2
76 #define M_CMD_STATUS_NACK_DATA       0x3
77 #define M_CMD_STATUS_TIMEOUT         0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
80 #define M_CMD_PROTOCOL_SHIFT         9
81 #define M_CMD_PROTOCOL_MASK          0xf
82 #define M_CMD_PROTOCOL_BLK_WR        0x7
83 #define M_CMD_PROTOCOL_BLK_RD        0x8
84 #define M_CMD_PEC_SHIFT              8
85 #define M_CMD_RD_CNT_SHIFT           0
86 #define M_CMD_RD_CNT_MASK            0xff
87 
88 #define S_CMD_OFFSET                 0x34
89 #define S_CMD_START_BUSY_SHIFT       31
90 #define S_CMD_STATUS_SHIFT           23
91 #define S_CMD_STATUS_MASK            0x07
92 #define S_CMD_STATUS_SUCCESS         0x0
93 #define S_CMD_STATUS_TIMEOUT         0x5
94 
95 #define IE_OFFSET                    0x38
96 #define IE_M_RX_FIFO_FULL_SHIFT      31
97 #define IE_M_RX_THLD_SHIFT           30
98 #define IE_M_START_BUSY_SHIFT        28
99 #define IE_M_TX_UNDERRUN_SHIFT       27
100 #define IE_S_RX_FIFO_FULL_SHIFT      26
101 #define IE_S_RX_THLD_SHIFT           25
102 #define IE_S_RX_EVENT_SHIFT          24
103 #define IE_S_START_BUSY_SHIFT        23
104 #define IE_S_TX_UNDERRUN_SHIFT       22
105 #define IE_S_RD_EVENT_SHIFT          21
106 
107 #define IS_OFFSET                    0x3c
108 #define IS_M_RX_FIFO_FULL_SHIFT      31
109 #define IS_M_RX_THLD_SHIFT           30
110 #define IS_M_START_BUSY_SHIFT        28
111 #define IS_M_TX_UNDERRUN_SHIFT       27
112 #define IS_S_RX_FIFO_FULL_SHIFT      26
113 #define IS_S_RX_THLD_SHIFT           25
114 #define IS_S_RX_EVENT_SHIFT          24
115 #define IS_S_START_BUSY_SHIFT        23
116 #define IS_S_TX_UNDERRUN_SHIFT       22
117 #define IS_S_RD_EVENT_SHIFT          21
118 
119 #define M_TX_OFFSET                  0x40
120 #define M_TX_WR_STATUS_SHIFT         31
121 #define M_TX_DATA_SHIFT              0
122 #define M_TX_DATA_MASK               0xff
123 
124 #define M_RX_OFFSET                  0x44
125 #define M_RX_STATUS_SHIFT            30
126 #define M_RX_STATUS_MASK             0x03
127 #define M_RX_PEC_ERR_SHIFT           29
128 #define M_RX_DATA_SHIFT              0
129 #define M_RX_DATA_MASK               0xff
130 
131 #define S_TX_OFFSET                  0x48
132 #define S_TX_WR_STATUS_SHIFT         31
133 #define S_TX_DATA_SHIFT              0
134 #define S_TX_DATA_MASK               0xff
135 
136 #define S_RX_OFFSET                  0x4c
137 #define S_RX_STATUS_SHIFT            30
138 #define S_RX_STATUS_MASK             0x03
139 #define S_RX_PEC_ERR_SHIFT           29
140 #define S_RX_DATA_SHIFT              0
141 #define S_RX_DATA_MASK               0xff
142 
143 #define I2C_TIMEOUT_MSEC             50000
144 #define M_TX_RX_FIFO_SIZE            64
145 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
146 
147 #define M_RX_MAX_READ_LEN            255
148 #define M_RX_FIFO_THLD_VALUE         50
149 
150 #define IE_M_ALL_INTERRUPT_SHIFT     27
151 #define IE_M_ALL_INTERRUPT_MASK      0x1e
152 
153 #define SLAVE_READ_WRITE_BIT_MASK    0x1
154 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
155 #define SLAVE_MAX_SIZE_TRANSACTION   64
156 #define SLAVE_CLOCK_STRETCH_TIME     25
157 
158 #define IE_S_ALL_INTERRUPT_SHIFT     21
159 #define IE_S_ALL_INTERRUPT_MASK      0x3f
160 
161 enum i2c_slave_read_status {
162 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
163 	I2C_SLAVE_RX_START,
164 	I2C_SLAVE_RX_DATA,
165 	I2C_SLAVE_RX_END,
166 };
167 
168 enum i2c_slave_xfer_dir {
169 	I2C_SLAVE_DIR_READ = 0,
170 	I2C_SLAVE_DIR_WRITE,
171 	I2C_SLAVE_DIR_NONE,
172 };
173 
174 enum bus_speed_index {
175 	I2C_SPD_100K = 0,
176 	I2C_SPD_400K,
177 };
178 
179 enum bcm_iproc_i2c_type {
180 	IPROC_I2C,
181 	IPROC_I2C_NIC
182 };
183 
184 struct bcm_iproc_i2c_dev {
185 	struct device *device;
186 	enum bcm_iproc_i2c_type type;
187 	int irq;
188 
189 	void __iomem *base;
190 	void __iomem *idm_base;
191 
192 	u32 ape_addr_mask;
193 
194 	/* lock for indirect access through IDM */
195 	spinlock_t idm_lock;
196 
197 	struct i2c_adapter adapter;
198 	unsigned int bus_speed;
199 
200 	struct completion done;
201 	int xfer_is_done;
202 
203 	struct i2c_msg *msg;
204 
205 	struct i2c_client *slave;
206 	enum i2c_slave_xfer_dir xfer_dir;
207 
208 	/* bytes that have been transferred */
209 	unsigned int tx_bytes;
210 	/* bytes that have been read */
211 	unsigned int rx_bytes;
212 	unsigned int thld_bytes;
213 };
214 
215 /*
216  * Can be expanded in the future if more interrupt status bits are utilized
217  */
218 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
219 		| BIT(IS_M_RX_THLD_SHIFT))
220 
221 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
222 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT))
223 
224 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
225 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
226 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
227 					 bool enable);
228 
229 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
230 				   u32 offset)
231 {
232 	u32 val;
233 
234 	if (iproc_i2c->idm_base) {
235 		spin_lock(&iproc_i2c->idm_lock);
236 		writel(iproc_i2c->ape_addr_mask,
237 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
238 		val = readl(iproc_i2c->base + offset);
239 		spin_unlock(&iproc_i2c->idm_lock);
240 	} else {
241 		val = readl(iproc_i2c->base + offset);
242 	}
243 
244 	return val;
245 }
246 
247 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
248 				    u32 offset, u32 val)
249 {
250 	if (iproc_i2c->idm_base) {
251 		spin_lock(&iproc_i2c->idm_lock);
252 		writel(iproc_i2c->ape_addr_mask,
253 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
254 		writel(val, iproc_i2c->base + offset);
255 		spin_unlock(&iproc_i2c->idm_lock);
256 	} else {
257 		writel(val, iproc_i2c->base + offset);
258 	}
259 }
260 
261 static void bcm_iproc_i2c_slave_init(
262 	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
263 {
264 	u32 val;
265 
266 	if (need_reset) {
267 		/* put controller in reset */
268 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
269 		val |= BIT(CFG_RESET_SHIFT);
270 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
271 
272 		/* wait 100 usec per spec */
273 		udelay(100);
274 
275 		/* bring controller out of reset */
276 		val &= ~(BIT(CFG_RESET_SHIFT));
277 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
278 	}
279 
280 	/* flush TX/RX FIFOs */
281 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
282 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
283 
284 	/* Maximum slave stretch time */
285 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
286 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
287 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
288 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
289 
290 	/* Configure the slave address */
291 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
292 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
293 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
294 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
295 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
296 
297 	/* clear all pending slave interrupts */
298 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
299 
300 	/* Enable interrupt register for any READ event */
301 	val = BIT(IE_S_RD_EVENT_SHIFT);
302 	/* Enable interrupt register to indicate a valid byte in receive fifo */
303 	val |= BIT(IE_S_RX_EVENT_SHIFT);
304 	/* Enable interrupt register for the Slave BUSY command */
305 	val |= BIT(IE_S_START_BUSY_SHIFT);
306 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
307 
308 	iproc_i2c->xfer_dir = I2C_SLAVE_DIR_NONE;
309 }
310 
311 static void bcm_iproc_i2c_check_slave_status(
312 	struct bcm_iproc_i2c_dev *iproc_i2c)
313 {
314 	u32 val;
315 
316 	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
317 	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
318 
319 	if (val == S_CMD_STATUS_TIMEOUT) {
320 		dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
321 
322 		/* re-initialize i2c for recovery */
323 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
324 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
325 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
326 	}
327 }
328 
329 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
330 				u32 status)
331 {
332 	u8 value;
333 	u32 val;
334 	u32 rd_status;
335 	u32 tmp;
336 
337 	/* Start of transaction. check address and populate the direction */
338 	if (iproc_i2c->xfer_dir == I2C_SLAVE_DIR_NONE) {
339 		tmp = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
340 		rd_status = (tmp >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
341 		/* This condition checks whether the request is a new request */
342 		if (((rd_status == I2C_SLAVE_RX_START) &&
343 			(status & BIT(IS_S_RX_EVENT_SHIFT))) ||
344 			((rd_status == I2C_SLAVE_RX_END) &&
345 			(status & BIT(IS_S_RD_EVENT_SHIFT)))) {
346 
347 			/* Last bit is W/R bit.
348 			 * If 1 then its a read request(by master).
349 			 */
350 			iproc_i2c->xfer_dir = tmp & SLAVE_READ_WRITE_BIT_MASK;
351 			if (iproc_i2c->xfer_dir == I2C_SLAVE_DIR_WRITE)
352 				i2c_slave_event(iproc_i2c->slave,
353 					I2C_SLAVE_READ_REQUESTED, &value);
354 			else
355 				i2c_slave_event(iproc_i2c->slave,
356 					I2C_SLAVE_WRITE_REQUESTED, &value);
357 		}
358 	}
359 
360 	/* read request from master */
361 	if ((status & BIT(IS_S_RD_EVENT_SHIFT)) &&
362 		(iproc_i2c->xfer_dir == I2C_SLAVE_DIR_WRITE)) {
363 		i2c_slave_event(iproc_i2c->slave,
364 			I2C_SLAVE_READ_PROCESSED, &value);
365 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
366 
367 		val = BIT(S_CMD_START_BUSY_SHIFT);
368 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
369 	}
370 
371 	/* write request from master */
372 	if ((status & BIT(IS_S_RX_EVENT_SHIFT)) &&
373 		(iproc_i2c->xfer_dir == I2C_SLAVE_DIR_READ)) {
374 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
375 		/* Its a write request by Master to Slave.
376 		 * We read data present in receive FIFO
377 		 */
378 		value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
379 		i2c_slave_event(iproc_i2c->slave,
380 			I2C_SLAVE_WRITE_RECEIVED, &value);
381 
382 		/* check the status for the last byte of the transaction */
383 		rd_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
384 		if (rd_status == I2C_SLAVE_RX_END)
385 			iproc_i2c->xfer_dir = I2C_SLAVE_DIR_NONE;
386 
387 		dev_dbg(iproc_i2c->device, "\nread value = 0x%x\n", value);
388 	}
389 
390 	/* Stop */
391 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
392 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
393 		iproc_i2c->xfer_dir = I2C_SLAVE_DIR_NONE;
394 	}
395 
396 	/* clear interrupt status */
397 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
398 
399 	bcm_iproc_i2c_check_slave_status(iproc_i2c);
400 	return true;
401 }
402 
403 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
404 {
405 	struct i2c_msg *msg = iproc_i2c->msg;
406 
407 	/* Read valid data from RX FIFO */
408 	while (iproc_i2c->rx_bytes < msg->len) {
409 		if (!((iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET) >> M_FIFO_RX_CNT_SHIFT)
410 		      & M_FIFO_RX_CNT_MASK))
411 			break;
412 
413 		msg->buf[iproc_i2c->rx_bytes] =
414 			(iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET) >>
415 			M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
416 		iproc_i2c->rx_bytes++;
417 	}
418 }
419 
420 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
421 {
422 	struct i2c_msg *msg = iproc_i2c->msg;
423 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
424 	unsigned int i;
425 	u32 val;
426 
427 	/* can only fill up to the FIFO size */
428 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
429 	for (i = 0; i < tx_bytes; i++) {
430 		/* start from where we left over */
431 		unsigned int idx = iproc_i2c->tx_bytes + i;
432 
433 		val = msg->buf[idx];
434 
435 		/* mark the last byte */
436 		if (idx == msg->len - 1) {
437 			val |= BIT(M_TX_WR_STATUS_SHIFT);
438 
439 			if (iproc_i2c->irq) {
440 				u32 tmp;
441 
442 				/*
443 				 * Since this is the last byte, we should now
444 				 * disable TX FIFO underrun interrupt
445 				 */
446 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
447 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
448 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
449 						 tmp);
450 			}
451 		}
452 
453 		/* load data into TX FIFO */
454 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
455 	}
456 
457 	/* update number of transferred bytes */
458 	iproc_i2c->tx_bytes += tx_bytes;
459 }
460 
461 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
462 {
463 	struct i2c_msg *msg = iproc_i2c->msg;
464 	u32 bytes_left, val;
465 
466 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
467 	bytes_left = msg->len - iproc_i2c->rx_bytes;
468 	if (bytes_left == 0) {
469 		if (iproc_i2c->irq) {
470 			/* finished reading all data, disable rx thld event */
471 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
472 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
473 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
474 		}
475 	} else if (bytes_left < iproc_i2c->thld_bytes) {
476 		/* set bytes left as threshold */
477 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
478 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
479 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
480 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
481 		iproc_i2c->thld_bytes = bytes_left;
482 	}
483 	/*
484 	 * bytes_left >= iproc_i2c->thld_bytes,
485 	 * hence no need to change the THRESHOLD SET.
486 	 * It will remain as iproc_i2c->thld_bytes itself
487 	 */
488 }
489 
490 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
491 					  u32 status)
492 {
493 	/* TX FIFO is empty and we have more data to send */
494 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
495 		bcm_iproc_i2c_send(iproc_i2c);
496 
497 	/* RX FIFO threshold is reached and data needs to be read out */
498 	if (status & BIT(IS_M_RX_THLD_SHIFT))
499 		bcm_iproc_i2c_read(iproc_i2c);
500 
501 	/* transfer is done */
502 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
503 		iproc_i2c->xfer_is_done = 1;
504 		if (iproc_i2c->irq)
505 			complete(&iproc_i2c->done);
506 	}
507 }
508 
509 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
510 {
511 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
512 	u32 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
513 	bool ret;
514 	u32 sl_status = status & ISR_MASK_SLAVE;
515 
516 	if (sl_status) {
517 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, sl_status);
518 		if (ret)
519 			return IRQ_HANDLED;
520 		else
521 			return IRQ_NONE;
522 	}
523 
524 	status &= ISR_MASK;
525 	if (!status)
526 		return IRQ_NONE;
527 
528 	/* process all master based events */
529 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
530 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
531 
532 	return IRQ_HANDLED;
533 }
534 
535 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
536 {
537 	u32 val;
538 
539 	/* put controller in reset */
540 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
541 	val |= BIT(CFG_RESET_SHIFT);
542 	val &= ~(BIT(CFG_EN_SHIFT));
543 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
544 
545 	/* wait 100 usec per spec */
546 	udelay(100);
547 
548 	/* bring controller out of reset */
549 	val &= ~(BIT(CFG_RESET_SHIFT));
550 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
551 
552 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
553 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
554 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
555 	/* disable all interrupts */
556 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
557 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
558 			IE_M_ALL_INTERRUPT_SHIFT);
559 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
560 
561 	/* clear all pending interrupts */
562 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
563 
564 	return 0;
565 }
566 
567 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
568 					 bool enable)
569 {
570 	u32 val;
571 
572 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
573 	if (enable)
574 		val |= BIT(CFG_EN_SHIFT);
575 	else
576 		val &= ~BIT(CFG_EN_SHIFT);
577 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
578 }
579 
580 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
581 				      struct i2c_msg *msg)
582 {
583 	u32 val;
584 
585 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
586 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
587 
588 	switch (val) {
589 	case M_CMD_STATUS_SUCCESS:
590 		return 0;
591 
592 	case M_CMD_STATUS_LOST_ARB:
593 		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
594 		return -EAGAIN;
595 
596 	case M_CMD_STATUS_NACK_ADDR:
597 		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
598 		return -ENXIO;
599 
600 	case M_CMD_STATUS_NACK_DATA:
601 		dev_dbg(iproc_i2c->device, "NAK data\n");
602 		return -ENXIO;
603 
604 	case M_CMD_STATUS_TIMEOUT:
605 		dev_dbg(iproc_i2c->device, "bus timeout\n");
606 		return -ETIMEDOUT;
607 
608 	case M_CMD_STATUS_FIFO_UNDERRUN:
609 		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
610 		return -ENXIO;
611 
612 	case M_CMD_STATUS_RX_FIFO_FULL:
613 		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
614 		return -ETIMEDOUT;
615 
616 	default:
617 		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
618 
619 		/* re-initialize i2c for recovery */
620 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
621 		bcm_iproc_i2c_init(iproc_i2c);
622 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
623 
624 		return -EIO;
625 	}
626 }
627 
628 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
629 				   struct i2c_msg *msg,
630 				   u32 cmd)
631 {
632 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
633 	u32 val, status;
634 	int ret;
635 
636 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
637 
638 	if (iproc_i2c->irq) {
639 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
640 							time_left);
641 		/* disable all interrupts */
642 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
643 		/* read it back to flush the write */
644 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
645 		/* make sure the interrupt handler isn't running */
646 		synchronize_irq(iproc_i2c->irq);
647 
648 	} else { /* polling mode */
649 		unsigned long timeout = jiffies + time_left;
650 
651 		do {
652 			status = iproc_i2c_rd_reg(iproc_i2c,
653 						  IS_OFFSET) & ISR_MASK;
654 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
655 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
656 
657 			if (time_after(jiffies, timeout)) {
658 				time_left = 0;
659 				break;
660 			}
661 
662 			cpu_relax();
663 			cond_resched();
664 		} while (!iproc_i2c->xfer_is_done);
665 	}
666 
667 	if (!time_left && !iproc_i2c->xfer_is_done) {
668 		dev_err(iproc_i2c->device, "transaction timed out\n");
669 
670 		/* flush both TX/RX FIFOs */
671 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
672 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
673 		return -ETIMEDOUT;
674 	}
675 
676 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
677 	if (ret) {
678 		/* flush both TX/RX FIFOs */
679 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
680 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
681 		return ret;
682 	}
683 
684 	return 0;
685 }
686 
687 static int bcm_iproc_i2c_xfer_single_msg(struct bcm_iproc_i2c_dev *iproc_i2c,
688 					 struct i2c_msg *msg)
689 {
690 	int i;
691 	u8 addr;
692 	u32 val, tmp, val_intr_en;
693 	unsigned int tx_bytes;
694 
695 	/* check if bus is busy */
696 	if (!!(iproc_i2c_rd_reg(iproc_i2c,
697 				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
698 		dev_warn(iproc_i2c->device, "bus is busy\n");
699 		return -EBUSY;
700 	}
701 
702 	iproc_i2c->msg = msg;
703 
704 	/* format and load slave address into the TX FIFO */
705 	addr = i2c_8bit_addr_from_msg(msg);
706 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
707 
708 	/*
709 	 * For a write transaction, load data into the TX FIFO. Only allow
710 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
711 	 * has been used up by the slave address
712 	 */
713 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
714 	if (!(msg->flags & I2C_M_RD)) {
715 		for (i = 0; i < tx_bytes; i++) {
716 			val = msg->buf[i];
717 
718 			/* mark the last byte */
719 			if (i == msg->len - 1)
720 				val |= BIT(M_TX_WR_STATUS_SHIFT);
721 
722 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
723 		}
724 		iproc_i2c->tx_bytes = tx_bytes;
725 	}
726 
727 	/* mark as incomplete before starting the transaction */
728 	if (iproc_i2c->irq)
729 		reinit_completion(&iproc_i2c->done);
730 
731 	iproc_i2c->xfer_is_done = 0;
732 
733 	/*
734 	 * Enable the "start busy" interrupt, which will be triggered after the
735 	 * transaction is done, i.e., the internal start_busy bit, transitions
736 	 * from 1 to 0.
737 	 */
738 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
739 
740 	/*
741 	 * If TX data size is larger than the TX FIFO, need to enable TX
742 	 * underrun interrupt, which will be triggerred when the TX FIFO is
743 	 * empty. When that happens we can then pump more data into the FIFO
744 	 */
745 	if (!(msg->flags & I2C_M_RD) &&
746 	    msg->len > iproc_i2c->tx_bytes)
747 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
748 
749 	/*
750 	 * Now we can activate the transfer. For a read operation, specify the
751 	 * number of bytes to read
752 	 */
753 	val = BIT(M_CMD_START_BUSY_SHIFT);
754 	if (msg->flags & I2C_M_RD) {
755 		iproc_i2c->rx_bytes = 0;
756 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
757 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
758 		else
759 			iproc_i2c->thld_bytes = msg->len;
760 
761 		/* set threshold value */
762 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
763 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
764 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
765 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
766 
767 		/* enable the RX threshold interrupt */
768 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
769 
770 		val |= (M_CMD_PROTOCOL_BLK_RD << M_CMD_PROTOCOL_SHIFT) |
771 		       (msg->len << M_CMD_RD_CNT_SHIFT);
772 	} else {
773 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
774 	}
775 
776 	if (iproc_i2c->irq)
777 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
778 
779 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
780 }
781 
782 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
783 			      struct i2c_msg msgs[], int num)
784 {
785 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
786 	int ret, i;
787 
788 	/* go through all messages */
789 	for (i = 0; i < num; i++) {
790 		ret = bcm_iproc_i2c_xfer_single_msg(iproc_i2c, &msgs[i]);
791 		if (ret) {
792 			dev_dbg(iproc_i2c->device, "xfer failed\n");
793 			return ret;
794 		}
795 	}
796 
797 	return num;
798 }
799 
800 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
801 {
802 	u32 val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
803 
804 	if (adap->algo->reg_slave)
805 		val |= I2C_FUNC_SLAVE;
806 
807 	return val;
808 }
809 
810 static struct i2c_algorithm bcm_iproc_algo = {
811 	.master_xfer = bcm_iproc_i2c_xfer,
812 	.functionality = bcm_iproc_i2c_functionality,
813 	.reg_slave = bcm_iproc_i2c_reg_slave,
814 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
815 };
816 
817 static struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
818 	.max_read_len = M_RX_MAX_READ_LEN,
819 };
820 
821 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
822 {
823 	unsigned int bus_speed;
824 	u32 val;
825 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
826 				       "clock-frequency", &bus_speed);
827 	if (ret < 0) {
828 		dev_info(iproc_i2c->device,
829 			"unable to interpret clock-frequency DT property\n");
830 		bus_speed = 100000;
831 	}
832 
833 	if (bus_speed < 100000) {
834 		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
835 			bus_speed);
836 		dev_err(iproc_i2c->device,
837 			"valid speeds are 100khz and 400khz\n");
838 		return -EINVAL;
839 	} else if (bus_speed < 400000) {
840 		bus_speed = 100000;
841 	} else {
842 		bus_speed = 400000;
843 	}
844 
845 	iproc_i2c->bus_speed = bus_speed;
846 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
847 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
848 	val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
849 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
850 
851 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
852 
853 	return 0;
854 }
855 
856 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
857 {
858 	int irq, ret = 0;
859 	struct bcm_iproc_i2c_dev *iproc_i2c;
860 	struct i2c_adapter *adap;
861 	struct resource *res;
862 
863 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
864 				 GFP_KERNEL);
865 	if (!iproc_i2c)
866 		return -ENOMEM;
867 
868 	platform_set_drvdata(pdev, iproc_i2c);
869 	iproc_i2c->device = &pdev->dev;
870 	iproc_i2c->type =
871 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
872 	init_completion(&iproc_i2c->done);
873 
874 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
875 	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
876 	if (IS_ERR(iproc_i2c->base))
877 		return PTR_ERR(iproc_i2c->base);
878 
879 	if (iproc_i2c->type == IPROC_I2C_NIC) {
880 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
881 		iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
882 							    res);
883 		if (IS_ERR(iproc_i2c->idm_base))
884 			return PTR_ERR(iproc_i2c->idm_base);
885 
886 		ret = of_property_read_u32(iproc_i2c->device->of_node,
887 					   "brcm,ape-hsls-addr-mask",
888 					   &iproc_i2c->ape_addr_mask);
889 		if (ret < 0) {
890 			dev_err(iproc_i2c->device,
891 				"'brcm,ape-hsls-addr-mask' missing\n");
892 			return -EINVAL;
893 		}
894 
895 		spin_lock_init(&iproc_i2c->idm_lock);
896 
897 		/* no slave support */
898 		bcm_iproc_algo.reg_slave = NULL;
899 		bcm_iproc_algo.unreg_slave = NULL;
900 	}
901 
902 	ret = bcm_iproc_i2c_init(iproc_i2c);
903 	if (ret)
904 		return ret;
905 
906 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
907 	if (ret)
908 		return ret;
909 
910 	irq = platform_get_irq(pdev, 0);
911 	if (irq > 0) {
912 		ret = devm_request_irq(iproc_i2c->device, irq,
913 				       bcm_iproc_i2c_isr, 0, pdev->name,
914 				       iproc_i2c);
915 		if (ret < 0) {
916 			dev_err(iproc_i2c->device,
917 				"unable to request irq %i\n", irq);
918 			return ret;
919 		}
920 
921 		iproc_i2c->irq = irq;
922 	} else {
923 		dev_warn(iproc_i2c->device,
924 			 "no irq resource, falling back to poll mode\n");
925 	}
926 
927 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
928 
929 	adap = &iproc_i2c->adapter;
930 	i2c_set_adapdata(adap, iproc_i2c);
931 	strlcpy(adap->name, "Broadcom iProc I2C adapter", sizeof(adap->name));
932 	adap->algo = &bcm_iproc_algo;
933 	adap->quirks = &bcm_iproc_i2c_quirks;
934 	adap->dev.parent = &pdev->dev;
935 	adap->dev.of_node = pdev->dev.of_node;
936 
937 	return i2c_add_adapter(adap);
938 }
939 
940 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
941 {
942 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
943 
944 	if (iproc_i2c->irq) {
945 		/*
946 		 * Make sure there's no pending interrupt when we remove the
947 		 * adapter
948 		 */
949 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
950 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
951 		synchronize_irq(iproc_i2c->irq);
952 	}
953 
954 	i2c_del_adapter(&iproc_i2c->adapter);
955 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
956 
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PM_SLEEP
961 
962 static int bcm_iproc_i2c_suspend(struct device *dev)
963 {
964 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
965 
966 	if (iproc_i2c->irq) {
967 		/*
968 		 * Make sure there's no pending interrupt when we go into
969 		 * suspend
970 		 */
971 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
972 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
973 		synchronize_irq(iproc_i2c->irq);
974 	}
975 
976 	/* now disable the controller */
977 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
978 
979 	return 0;
980 }
981 
982 static int bcm_iproc_i2c_resume(struct device *dev)
983 {
984 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
985 	int ret;
986 	u32 val;
987 
988 	/*
989 	 * Power domain could have been shut off completely in system deep
990 	 * sleep, so re-initialize the block here
991 	 */
992 	ret = bcm_iproc_i2c_init(iproc_i2c);
993 	if (ret)
994 		return ret;
995 
996 	/* configure to the desired bus speed */
997 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
998 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
999 	val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
1000 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1001 
1002 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1003 
1004 	return 0;
1005 }
1006 
1007 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1008 	.suspend_late = &bcm_iproc_i2c_suspend,
1009 	.resume_early = &bcm_iproc_i2c_resume
1010 };
1011 
1012 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1013 #else
1014 #define BCM_IPROC_I2C_PM_OPS NULL
1015 #endif /* CONFIG_PM_SLEEP */
1016 
1017 
1018 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1019 {
1020 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1021 
1022 	if (iproc_i2c->slave)
1023 		return -EBUSY;
1024 
1025 	if (slave->flags & I2C_CLIENT_TEN)
1026 		return -EAFNOSUPPORT;
1027 
1028 	iproc_i2c->slave = slave;
1029 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1030 	return 0;
1031 }
1032 
1033 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1034 {
1035 	u32 tmp;
1036 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1037 
1038 	if (!iproc_i2c->slave)
1039 		return -EINVAL;
1040 
1041 	iproc_i2c->slave = NULL;
1042 
1043 	/* disable all slave interrupts */
1044 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1045 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1046 			IE_S_ALL_INTERRUPT_SHIFT);
1047 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1048 
1049 	/* Erase the slave address programmed */
1050 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1051 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1052 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1053 
1054 	return 0;
1055 }
1056 
1057 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1058 	{
1059 		.compatible = "brcm,iproc-i2c",
1060 		.data = (int *)IPROC_I2C,
1061 	}, {
1062 		.compatible = "brcm,iproc-nic-i2c",
1063 		.data = (int *)IPROC_I2C_NIC,
1064 	},
1065 	{ /* sentinel */ }
1066 };
1067 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1068 
1069 static struct platform_driver bcm_iproc_i2c_driver = {
1070 	.driver = {
1071 		.name = "bcm-iproc-i2c",
1072 		.of_match_table = bcm_iproc_i2c_of_match,
1073 		.pm = BCM_IPROC_I2C_PM_OPS,
1074 	},
1075 	.probe = bcm_iproc_i2c_probe,
1076 	.remove = bcm_iproc_i2c_remove,
1077 };
1078 module_platform_driver(bcm_iproc_i2c_driver);
1079 
1080 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1081 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1082 MODULE_LICENSE("GPL v2");
1083