1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI) 4 * 5 * Copyright (C) 2011 Weinmann Medical GmbH 6 * Author: Nikolaus Voss <n.voss@weinmann.de> 7 * 8 * Evolved from original work by: 9 * Copyright (C) 2004 Rick Bronson 10 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com> 11 * 12 * Borrowed heavily from original work by: 13 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com> 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/completion.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/i2c.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/platform_device.h> 27 #include <linux/platform_data/dma-atmel.h> 28 #include <linux/pm_runtime.h> 29 30 #include "i2c-at91.h" 31 32 void at91_init_twi_bus_master(struct at91_twi_dev *dev) 33 { 34 /* FIFO should be enabled immediately after the software reset */ 35 if (dev->fifo_size) 36 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN); 37 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN); 38 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS); 39 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg); 40 } 41 42 /* 43 * Calculate symmetric clock as stated in datasheet: 44 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset)) 45 */ 46 static void at91_calc_twi_clock(struct at91_twi_dev *dev) 47 { 48 int ckdiv, cdiv, div, hold = 0; 49 struct at91_twi_pdata *pdata = dev->pdata; 50 int offset = pdata->clk_offset; 51 int max_ckdiv = pdata->clk_max_div; 52 struct i2c_timings timings, *t = &timings; 53 54 i2c_parse_fw_timings(dev->dev, t, true); 55 56 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk), 57 2 * t->bus_freq_hz) - offset); 58 ckdiv = fls(div >> 8); 59 cdiv = div >> ckdiv; 60 61 if (ckdiv > max_ckdiv) { 62 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n", 63 ckdiv, max_ckdiv); 64 ckdiv = max_ckdiv; 65 cdiv = 255; 66 } 67 68 if (pdata->has_hold_field) { 69 /* 70 * hold time = HOLD + 3 x T_peripheral_clock 71 * Use clk rate in kHz to prevent overflows when computing 72 * hold. 73 */ 74 hold = DIV_ROUND_UP(t->sda_hold_ns 75 * (clk_get_rate(dev->clk) / 1000), 1000000); 76 hold -= 3; 77 if (hold < 0) 78 hold = 0; 79 if (hold > AT91_TWI_CWGR_HOLD_MAX) { 80 dev_warn(dev->dev, 81 "HOLD field set to its maximum value (%d instead of %d)\n", 82 AT91_TWI_CWGR_HOLD_MAX, hold); 83 hold = AT91_TWI_CWGR_HOLD_MAX; 84 } 85 } 86 87 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv 88 | AT91_TWI_CWGR_HOLD(hold); 89 90 dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n", 91 cdiv, ckdiv, hold, t->sda_hold_ns); 92 } 93 94 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev) 95 { 96 struct at91_twi_dma *dma = &dev->dma; 97 98 at91_twi_irq_save(dev); 99 100 if (dma->xfer_in_progress) { 101 if (dma->direction == DMA_FROM_DEVICE) 102 dmaengine_terminate_all(dma->chan_rx); 103 else 104 dmaengine_terminate_all(dma->chan_tx); 105 dma->xfer_in_progress = false; 106 } 107 if (dma->buf_mapped) { 108 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]), 109 dev->buf_len, dma->direction); 110 dma->buf_mapped = false; 111 } 112 113 at91_twi_irq_restore(dev); 114 } 115 116 static void at91_twi_write_next_byte(struct at91_twi_dev *dev) 117 { 118 if (!dev->buf_len) 119 return; 120 121 /* 8bit write works with and without FIFO */ 122 writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR); 123 124 /* send stop when last byte has been written */ 125 if (--dev->buf_len == 0) 126 if (!dev->use_alt_cmd) 127 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 128 129 dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len); 130 131 ++dev->buf; 132 } 133 134 static void at91_twi_write_data_dma_callback(void *data) 135 { 136 struct at91_twi_dev *dev = (struct at91_twi_dev *)data; 137 138 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), 139 dev->buf_len, DMA_TO_DEVICE); 140 141 /* 142 * When this callback is called, THR/TX FIFO is likely not to be empty 143 * yet. So we have to wait for TXCOMP or NACK bits to be set into the 144 * Status Register to be sure that the STOP bit has been sent and the 145 * transfer is completed. The NACK interrupt has already been enabled, 146 * we just have to enable TXCOMP one. 147 */ 148 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); 149 if (!dev->use_alt_cmd) 150 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 151 } 152 153 static void at91_twi_write_data_dma(struct at91_twi_dev *dev) 154 { 155 dma_addr_t dma_addr; 156 struct dma_async_tx_descriptor *txdesc; 157 struct at91_twi_dma *dma = &dev->dma; 158 struct dma_chan *chan_tx = dma->chan_tx; 159 unsigned int sg_len = 1; 160 161 if (!dev->buf_len) 162 return; 163 164 dma->direction = DMA_TO_DEVICE; 165 166 at91_twi_irq_save(dev); 167 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len, 168 DMA_TO_DEVICE); 169 if (dma_mapping_error(dev->dev, dma_addr)) { 170 dev_err(dev->dev, "dma map failed\n"); 171 return; 172 } 173 dma->buf_mapped = true; 174 at91_twi_irq_restore(dev); 175 176 if (dev->fifo_size) { 177 size_t part1_len, part2_len; 178 struct scatterlist *sg; 179 unsigned fifo_mr; 180 181 sg_len = 0; 182 183 part1_len = dev->buf_len & ~0x3; 184 if (part1_len) { 185 sg = &dma->sg[sg_len++]; 186 sg_dma_len(sg) = part1_len; 187 sg_dma_address(sg) = dma_addr; 188 } 189 190 part2_len = dev->buf_len & 0x3; 191 if (part2_len) { 192 sg = &dma->sg[sg_len++]; 193 sg_dma_len(sg) = part2_len; 194 sg_dma_address(sg) = dma_addr + part1_len; 195 } 196 197 /* 198 * DMA controller is triggered when at least 4 data can be 199 * written into the TX FIFO 200 */ 201 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 202 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK; 203 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA); 204 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 205 } else { 206 sg_dma_len(&dma->sg[0]) = dev->buf_len; 207 sg_dma_address(&dma->sg[0]) = dma_addr; 208 } 209 210 txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len, 211 DMA_MEM_TO_DEV, 212 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 213 if (!txdesc) { 214 dev_err(dev->dev, "dma prep slave sg failed\n"); 215 goto error; 216 } 217 218 txdesc->callback = at91_twi_write_data_dma_callback; 219 txdesc->callback_param = dev; 220 221 dma->xfer_in_progress = true; 222 dmaengine_submit(txdesc); 223 dma_async_issue_pending(chan_tx); 224 225 return; 226 227 error: 228 at91_twi_dma_cleanup(dev); 229 } 230 231 static void at91_twi_read_next_byte(struct at91_twi_dev *dev) 232 { 233 /* 234 * If we are in this case, it means there is garbage data in RHR, so 235 * delete them. 236 */ 237 if (!dev->buf_len) { 238 at91_twi_read(dev, AT91_TWI_RHR); 239 return; 240 } 241 242 /* 8bit read works with and without FIFO */ 243 *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR); 244 --dev->buf_len; 245 246 /* return if aborting, we only needed to read RHR to clear RXRDY*/ 247 if (dev->recv_len_abort) 248 return; 249 250 /* handle I2C_SMBUS_BLOCK_DATA */ 251 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) { 252 /* ensure length byte is a valid value */ 253 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) { 254 dev->msg->flags &= ~I2C_M_RECV_LEN; 255 dev->buf_len += *dev->buf; 256 dev->msg->len = dev->buf_len + 1; 257 dev_dbg(dev->dev, "received block length %zu\n", 258 dev->buf_len); 259 } else { 260 /* abort and send the stop by reading one more byte */ 261 dev->recv_len_abort = true; 262 dev->buf_len = 1; 263 } 264 } 265 266 /* send stop if second but last byte has been read */ 267 if (!dev->use_alt_cmd && dev->buf_len == 1) 268 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 269 270 dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len); 271 272 ++dev->buf; 273 } 274 275 static void at91_twi_read_data_dma_callback(void *data) 276 { 277 struct at91_twi_dev *dev = (struct at91_twi_dev *)data; 278 unsigned ier = AT91_TWI_TXCOMP; 279 280 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), 281 dev->buf_len, DMA_FROM_DEVICE); 282 283 if (!dev->use_alt_cmd) { 284 /* The last two bytes have to be read without using dma */ 285 dev->buf += dev->buf_len - 2; 286 dev->buf_len = 2; 287 ier |= AT91_TWI_RXRDY; 288 } 289 at91_twi_write(dev, AT91_TWI_IER, ier); 290 } 291 292 static void at91_twi_read_data_dma(struct at91_twi_dev *dev) 293 { 294 dma_addr_t dma_addr; 295 struct dma_async_tx_descriptor *rxdesc; 296 struct at91_twi_dma *dma = &dev->dma; 297 struct dma_chan *chan_rx = dma->chan_rx; 298 size_t buf_len; 299 300 buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2; 301 dma->direction = DMA_FROM_DEVICE; 302 303 /* Keep in mind that we won't use dma to read the last two bytes */ 304 at91_twi_irq_save(dev); 305 dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE); 306 if (dma_mapping_error(dev->dev, dma_addr)) { 307 dev_err(dev->dev, "dma map failed\n"); 308 return; 309 } 310 dma->buf_mapped = true; 311 at91_twi_irq_restore(dev); 312 313 if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) { 314 unsigned fifo_mr; 315 316 /* 317 * DMA controller is triggered when at least 4 data can be 318 * read from the RX FIFO 319 */ 320 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 321 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK; 322 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA); 323 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 324 } 325 326 sg_dma_len(&dma->sg[0]) = buf_len; 327 sg_dma_address(&dma->sg[0]) = dma_addr; 328 329 rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM, 330 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 331 if (!rxdesc) { 332 dev_err(dev->dev, "dma prep slave sg failed\n"); 333 goto error; 334 } 335 336 rxdesc->callback = at91_twi_read_data_dma_callback; 337 rxdesc->callback_param = dev; 338 339 dma->xfer_in_progress = true; 340 dmaengine_submit(rxdesc); 341 dma_async_issue_pending(dma->chan_rx); 342 343 return; 344 345 error: 346 at91_twi_dma_cleanup(dev); 347 } 348 349 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id) 350 { 351 struct at91_twi_dev *dev = dev_id; 352 const unsigned status = at91_twi_read(dev, AT91_TWI_SR); 353 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR); 354 355 if (!irqstatus) 356 return IRQ_NONE; 357 /* 358 * In reception, the behavior of the twi device (before sama5d2) is 359 * weird. There is some magic about RXRDY flag! When a data has been 360 * almost received, the reception of a new one is anticipated if there 361 * is no stop command to send. That is the reason why ask for sending 362 * the stop command not on the last data but on the second last one. 363 * 364 * Unfortunately, we could still have the RXRDY flag set even if the 365 * transfer is done and we have read the last data. It might happen 366 * when the i2c slave device sends too quickly data after receiving the 367 * ack from the master. The data has been almost received before having 368 * the order to send stop. In this case, sending the stop command could 369 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage 370 * the RXRDY interrupt first in order to not keep garbage data in the 371 * Receive Holding Register for the next transfer. 372 */ 373 if (irqstatus & AT91_TWI_RXRDY) { 374 /* 375 * Read all available bytes at once by polling RXRDY usable w/ 376 * and w/o FIFO. With FIFO enabled we could also read RXFL and 377 * avoid polling RXRDY. 378 */ 379 do { 380 at91_twi_read_next_byte(dev); 381 } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY); 382 } 383 384 /* 385 * When a NACK condition is detected, the I2C controller sets the NACK, 386 * TXCOMP and TXRDY bits all together in the Status Register (SR). 387 * 388 * 1 - Handling NACK errors with CPU write transfer. 389 * 390 * In such case, we should not write the next byte into the Transmit 391 * Holding Register (THR) otherwise the I2C controller would start a new 392 * transfer and the I2C slave is likely to reply by another NACK. 393 * 394 * 2 - Handling NACK errors with DMA write transfer. 395 * 396 * By setting the TXRDY bit in the SR, the I2C controller also triggers 397 * the DMA controller to write the next data into the THR. Then the 398 * result depends on the hardware version of the I2C controller. 399 * 400 * 2a - Without support of the Alternative Command mode. 401 * 402 * This is the worst case: the DMA controller is triggered to write the 403 * next data into the THR, hence starting a new transfer: the I2C slave 404 * is likely to reply by another NACK. 405 * Concurrently, this interrupt handler is likely to be called to manage 406 * the first NACK before the I2C controller detects the second NACK and 407 * sets once again the NACK bit into the SR. 408 * When handling the first NACK, this interrupt handler disables the I2C 409 * controller interruptions, especially the NACK interrupt. 410 * Hence, the NACK bit is pending into the SR. This is why we should 411 * read the SR to clear all pending interrupts at the beginning of 412 * at91_do_twi_transfer() before actually starting a new transfer. 413 * 414 * 2b - With support of the Alternative Command mode. 415 * 416 * When a NACK condition is detected, the I2C controller also locks the 417 * THR (and sets the LOCK bit in the SR): even though the DMA controller 418 * is triggered by the TXRDY bit to write the next data into the THR, 419 * this data actually won't go on the I2C bus hence a second NACK is not 420 * generated. 421 */ 422 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) { 423 at91_disable_twi_interrupts(dev); 424 complete(&dev->cmd_complete); 425 } else if (irqstatus & AT91_TWI_TXRDY) { 426 at91_twi_write_next_byte(dev); 427 } 428 429 /* catch error flags */ 430 dev->transfer_status |= status; 431 432 return IRQ_HANDLED; 433 } 434 435 static int at91_do_twi_transfer(struct at91_twi_dev *dev) 436 { 437 int ret; 438 unsigned long time_left; 439 bool has_unre_flag = dev->pdata->has_unre_flag; 440 bool has_alt_cmd = dev->pdata->has_alt_cmd; 441 442 /* 443 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on 444 * read flag but shows the state of the transmission at the time the 445 * Status Register is read. According to the programmer datasheet, 446 * TXCOMP is set when both holding register and internal shifter are 447 * empty and STOP condition has been sent. 448 * Consequently, we should enable NACK interrupt rather than TXCOMP to 449 * detect transmission failure. 450 * Indeed let's take the case of an i2c write command using DMA. 451 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and 452 * TXCOMP bits are set together into the Status Register. 453 * LOCK is a clear on write bit, which is set to prevent the DMA 454 * controller from sending new data on the i2c bus after a NACK 455 * condition has happened. Once locked, this i2c peripheral stops 456 * triggering the DMA controller for new data but it is more than 457 * likely that a new DMA transaction is already in progress, writing 458 * into the Transmit Holding Register. Since the peripheral is locked, 459 * these new data won't be sent to the i2c bus but they will remain 460 * into the Transmit Holding Register, so TXCOMP bit is cleared. 461 * Then when the interrupt handler is called, the Status Register is 462 * read: the TXCOMP bit is clear but NACK bit is still set. The driver 463 * manage the error properly, without waiting for timeout. 464 * This case can be reproduced easyly when writing into an at24 eeprom. 465 * 466 * Besides, the TXCOMP bit is already set before the i2c transaction 467 * has been started. For read transactions, this bit is cleared when 468 * writing the START bit into the Control Register. So the 469 * corresponding interrupt can safely be enabled just after. 470 * However for write transactions managed by the CPU, we first write 471 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP 472 * interrupt. If TXCOMP interrupt were enabled before writing into THR, 473 * the interrupt handler would be called immediately and the i2c command 474 * would be reported as completed. 475 * Also when a write transaction is managed by the DMA controller, 476 * enabling the TXCOMP interrupt in this function may lead to a race 477 * condition since we don't know whether the TXCOMP interrupt is enabled 478 * before or after the DMA has started to write into THR. So the TXCOMP 479 * interrupt is enabled later by at91_twi_write_data_dma_callback(). 480 * Immediately after in that DMA callback, if the alternative command 481 * mode is not used, we still need to send the STOP condition manually 482 * writing the corresponding bit into the Control Register. 483 */ 484 485 dev_dbg(dev->dev, "transfer: %s %zu bytes.\n", 486 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len); 487 488 reinit_completion(&dev->cmd_complete); 489 dev->transfer_status = 0; 490 491 /* Clear pending interrupts, such as NACK. */ 492 at91_twi_read(dev, AT91_TWI_SR); 493 494 if (dev->fifo_size) { 495 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 496 497 /* Reset FIFO mode register */ 498 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK | 499 AT91_TWI_FMR_RXRDYM_MASK); 500 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA); 501 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA); 502 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 503 504 /* Flush FIFOs */ 505 at91_twi_write(dev, AT91_TWI_CR, 506 AT91_TWI_THRCLR | AT91_TWI_RHRCLR); 507 } 508 509 if (!dev->buf_len) { 510 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK); 511 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); 512 } else if (dev->msg->flags & I2C_M_RD) { 513 unsigned start_flags = AT91_TWI_START; 514 515 /* if only one byte is to be read, immediately stop transfer */ 516 if (!dev->use_alt_cmd && dev->buf_len <= 1 && 517 !(dev->msg->flags & I2C_M_RECV_LEN)) 518 start_flags |= AT91_TWI_STOP; 519 at91_twi_write(dev, AT91_TWI_CR, start_flags); 520 /* 521 * When using dma without alternative command mode, the last 522 * byte has to be read manually in order to not send the stop 523 * command too late and then to receive extra data. 524 * In practice, there are some issues if you use the dma to 525 * read n-1 bytes because of latency. 526 * Reading n-2 bytes with dma and the two last ones manually 527 * seems to be the best solution. 528 */ 529 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { 530 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); 531 at91_twi_read_data_dma(dev); 532 } else { 533 at91_twi_write(dev, AT91_TWI_IER, 534 AT91_TWI_TXCOMP | 535 AT91_TWI_NACK | 536 AT91_TWI_RXRDY); 537 } 538 } else { 539 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { 540 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); 541 at91_twi_write_data_dma(dev); 542 } else { 543 at91_twi_write_next_byte(dev); 544 at91_twi_write(dev, AT91_TWI_IER, 545 AT91_TWI_TXCOMP | 546 AT91_TWI_NACK | 547 AT91_TWI_TXRDY); 548 } 549 } 550 551 time_left = wait_for_completion_timeout(&dev->cmd_complete, 552 dev->adapter.timeout); 553 if (time_left == 0) { 554 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR); 555 dev_err(dev->dev, "controller timed out\n"); 556 at91_init_twi_bus(dev); 557 ret = -ETIMEDOUT; 558 goto error; 559 } 560 if (dev->transfer_status & AT91_TWI_NACK) { 561 dev_dbg(dev->dev, "received nack\n"); 562 ret = -EREMOTEIO; 563 goto error; 564 } 565 if (dev->transfer_status & AT91_TWI_OVRE) { 566 dev_err(dev->dev, "overrun while reading\n"); 567 ret = -EIO; 568 goto error; 569 } 570 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) { 571 dev_err(dev->dev, "underrun while writing\n"); 572 ret = -EIO; 573 goto error; 574 } 575 if ((has_alt_cmd || dev->fifo_size) && 576 (dev->transfer_status & AT91_TWI_LOCK)) { 577 dev_err(dev->dev, "tx locked\n"); 578 ret = -EIO; 579 goto error; 580 } 581 if (dev->recv_len_abort) { 582 dev_err(dev->dev, "invalid smbus block length recvd\n"); 583 ret = -EPROTO; 584 goto error; 585 } 586 587 dev_dbg(dev->dev, "transfer complete\n"); 588 589 return 0; 590 591 error: 592 /* first stop DMA transfer if still in progress */ 593 at91_twi_dma_cleanup(dev); 594 /* then flush THR/FIFO and unlock TX if locked */ 595 if ((has_alt_cmd || dev->fifo_size) && 596 (dev->transfer_status & AT91_TWI_LOCK)) { 597 dev_dbg(dev->dev, "unlock tx\n"); 598 at91_twi_write(dev, AT91_TWI_CR, 599 AT91_TWI_THRCLR | AT91_TWI_LOCKCLR); 600 } 601 return ret; 602 } 603 604 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num) 605 { 606 struct at91_twi_dev *dev = i2c_get_adapdata(adap); 607 int ret; 608 unsigned int_addr_flag = 0; 609 struct i2c_msg *m_start = msg; 610 bool is_read; 611 612 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num); 613 614 ret = pm_runtime_get_sync(dev->dev); 615 if (ret < 0) 616 goto out; 617 618 if (num == 2) { 619 int internal_address = 0; 620 int i; 621 622 /* 1st msg is put into the internal address, start with 2nd */ 623 m_start = &msg[1]; 624 for (i = 0; i < msg->len; ++i) { 625 const unsigned addr = msg->buf[msg->len - 1 - i]; 626 627 internal_address |= addr << (8 * i); 628 int_addr_flag += AT91_TWI_IADRSZ_1; 629 } 630 at91_twi_write(dev, AT91_TWI_IADR, internal_address); 631 } 632 633 dev->use_alt_cmd = false; 634 is_read = (m_start->flags & I2C_M_RD); 635 if (dev->pdata->has_alt_cmd) { 636 if (m_start->len > 0 && 637 m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) { 638 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN); 639 at91_twi_write(dev, AT91_TWI_ACR, 640 AT91_TWI_ACR_DATAL(m_start->len) | 641 ((is_read) ? AT91_TWI_ACR_DIR : 0)); 642 dev->use_alt_cmd = true; 643 } else { 644 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS); 645 } 646 } 647 648 at91_twi_write(dev, AT91_TWI_MMR, 649 (m_start->addr << 16) | 650 int_addr_flag | 651 ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0)); 652 653 dev->buf_len = m_start->len; 654 dev->buf = m_start->buf; 655 dev->msg = m_start; 656 dev->recv_len_abort = false; 657 658 ret = at91_do_twi_transfer(dev); 659 660 ret = (ret < 0) ? ret : num; 661 out: 662 pm_runtime_mark_last_busy(dev->dev); 663 pm_runtime_put_autosuspend(dev->dev); 664 665 return ret; 666 } 667 668 /* 669 * The hardware can handle at most two messages concatenated by a 670 * repeated start via it's internal address feature. 671 */ 672 static const struct i2c_adapter_quirks at91_twi_quirks = { 673 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR, 674 .max_comb_1st_msg_len = 3, 675 }; 676 677 static u32 at91_twi_func(struct i2c_adapter *adapter) 678 { 679 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL 680 | I2C_FUNC_SMBUS_READ_BLOCK_DATA; 681 } 682 683 static const struct i2c_algorithm at91_twi_algorithm = { 684 .master_xfer = at91_twi_xfer, 685 .functionality = at91_twi_func, 686 }; 687 688 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr) 689 { 690 int ret = 0; 691 struct dma_slave_config slave_config; 692 struct at91_twi_dma *dma = &dev->dma; 693 enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 694 695 /* 696 * The actual width of the access will be chosen in 697 * dmaengine_prep_slave_sg(): 698 * for each buffer in the scatter-gather list, if its size is aligned 699 * to addr_width then addr_width accesses will be performed to transfer 700 * the buffer. On the other hand, if the buffer size is not aligned to 701 * addr_width then the buffer is transferred using single byte accesses. 702 * Please refer to the Atmel eXtended DMA controller driver. 703 * When FIFOs are used, the TXRDYM threshold can always be set to 704 * trigger the XDMAC when at least 4 data can be written into the TX 705 * FIFO, even if single byte accesses are performed. 706 * However the RXRDYM threshold must be set to fit the access width, 707 * deduced from buffer length, so the XDMAC is triggered properly to 708 * read data from the RX FIFO. 709 */ 710 if (dev->fifo_size) 711 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 712 713 memset(&slave_config, 0, sizeof(slave_config)); 714 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR; 715 slave_config.src_addr_width = addr_width; 716 slave_config.src_maxburst = 1; 717 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR; 718 slave_config.dst_addr_width = addr_width; 719 slave_config.dst_maxburst = 1; 720 slave_config.device_fc = false; 721 722 dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx"); 723 if (IS_ERR(dma->chan_tx)) { 724 ret = PTR_ERR(dma->chan_tx); 725 dma->chan_tx = NULL; 726 goto error; 727 } 728 729 dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx"); 730 if (IS_ERR(dma->chan_rx)) { 731 ret = PTR_ERR(dma->chan_rx); 732 dma->chan_rx = NULL; 733 goto error; 734 } 735 736 slave_config.direction = DMA_MEM_TO_DEV; 737 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) { 738 dev_err(dev->dev, "failed to configure tx channel\n"); 739 ret = -EINVAL; 740 goto error; 741 } 742 743 slave_config.direction = DMA_DEV_TO_MEM; 744 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) { 745 dev_err(dev->dev, "failed to configure rx channel\n"); 746 ret = -EINVAL; 747 goto error; 748 } 749 750 sg_init_table(dma->sg, 2); 751 dma->buf_mapped = false; 752 dma->xfer_in_progress = false; 753 dev->use_dma = true; 754 755 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n", 756 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx)); 757 758 return ret; 759 760 error: 761 if (ret != -EPROBE_DEFER) 762 dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n"); 763 if (dma->chan_rx) 764 dma_release_channel(dma->chan_rx); 765 if (dma->chan_tx) 766 dma_release_channel(dma->chan_tx); 767 return ret; 768 } 769 770 int at91_twi_probe_master(struct platform_device *pdev, 771 u32 phy_addr, struct at91_twi_dev *dev) 772 { 773 int rc; 774 775 init_completion(&dev->cmd_complete); 776 777 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0, 778 dev_name(dev->dev), dev); 779 if (rc) { 780 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc); 781 return rc; 782 } 783 784 if (dev->dev->of_node) { 785 rc = at91_twi_configure_dma(dev, phy_addr); 786 if (rc == -EPROBE_DEFER) 787 return rc; 788 } 789 790 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 791 &dev->fifo_size)) { 792 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size); 793 } 794 795 at91_calc_twi_clock(dev); 796 797 dev->adapter.algo = &at91_twi_algorithm; 798 dev->adapter.quirks = &at91_twi_quirks; 799 800 return 0; 801 } 802