1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI) 4 * 5 * Copyright (C) 2011 Weinmann Medical GmbH 6 * Author: Nikolaus Voss <n.voss@weinmann.de> 7 * 8 * Evolved from original work by: 9 * Copyright (C) 2004 Rick Bronson 10 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com> 11 * 12 * Borrowed heavily from original work by: 13 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com> 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/completion.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/i2c.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/platform_device.h> 27 #include <linux/platform_data/dma-atmel.h> 28 #include <linux/pm_runtime.h> 29 30 #include "i2c-at91.h" 31 32 void at91_init_twi_bus_master(struct at91_twi_dev *dev) 33 { 34 struct at91_twi_pdata *pdata = dev->pdata; 35 u32 filtr = 0; 36 37 /* FIFO should be enabled immediately after the software reset */ 38 if (dev->fifo_size) 39 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN); 40 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN); 41 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS); 42 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg); 43 44 /* enable digital filter */ 45 if (pdata->has_dig_filtr && dev->enable_dig_filt) 46 filtr |= AT91_TWI_FILTR_FILT; 47 48 /* enable advanced digital filter */ 49 if (pdata->has_adv_dig_filtr && dev->enable_dig_filt) 50 filtr |= AT91_TWI_FILTR_FILT | 51 (AT91_TWI_FILTR_THRES(dev->filter_width) & 52 AT91_TWI_FILTR_THRES_MASK); 53 54 /* enable analog filter */ 55 if (pdata->has_ana_filtr && dev->enable_ana_filt) 56 filtr |= AT91_TWI_FILTR_PADFEN; 57 58 if (filtr) 59 at91_twi_write(dev, AT91_TWI_FILTR, filtr); 60 } 61 62 /* 63 * Calculate symmetric clock as stated in datasheet: 64 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset)) 65 */ 66 static void at91_calc_twi_clock(struct at91_twi_dev *dev) 67 { 68 int ckdiv, cdiv, div, hold = 0, filter_width = 0; 69 struct at91_twi_pdata *pdata = dev->pdata; 70 int offset = pdata->clk_offset; 71 int max_ckdiv = pdata->clk_max_div; 72 struct i2c_timings timings, *t = &timings; 73 74 i2c_parse_fw_timings(dev->dev, t, true); 75 76 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk), 77 2 * t->bus_freq_hz) - offset); 78 ckdiv = fls(div >> 8); 79 cdiv = div >> ckdiv; 80 81 if (ckdiv > max_ckdiv) { 82 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n", 83 ckdiv, max_ckdiv); 84 ckdiv = max_ckdiv; 85 cdiv = 255; 86 } 87 88 if (pdata->has_hold_field) { 89 /* 90 * hold time = HOLD + 3 x T_peripheral_clock 91 * Use clk rate in kHz to prevent overflows when computing 92 * hold. 93 */ 94 hold = DIV_ROUND_UP(t->sda_hold_ns 95 * (clk_get_rate(dev->clk) / 1000), 1000000); 96 hold -= 3; 97 if (hold < 0) 98 hold = 0; 99 if (hold > AT91_TWI_CWGR_HOLD_MAX) { 100 dev_warn(dev->dev, 101 "HOLD field set to its maximum value (%d instead of %d)\n", 102 AT91_TWI_CWGR_HOLD_MAX, hold); 103 hold = AT91_TWI_CWGR_HOLD_MAX; 104 } 105 } 106 107 if (pdata->has_adv_dig_filtr) { 108 /* 109 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX 110 * peripheral clocks 111 */ 112 filter_width = DIV_ROUND_UP(t->digital_filter_width_ns 113 * (clk_get_rate(dev->clk) / 1000), 1000000); 114 if (filter_width > AT91_TWI_FILTR_THRES_MAX) { 115 dev_warn(dev->dev, 116 "Filter threshold set to its maximum value (%d instead of %d)\n", 117 AT91_TWI_FILTR_THRES_MAX, filter_width); 118 filter_width = AT91_TWI_FILTR_THRES_MAX; 119 } 120 } 121 122 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv 123 | AT91_TWI_CWGR_HOLD(hold); 124 125 dev->filter_width = filter_width; 126 127 dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n", 128 cdiv, ckdiv, hold, t->sda_hold_ns, filter_width, 129 t->digital_filter_width_ns); 130 } 131 132 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev) 133 { 134 struct at91_twi_dma *dma = &dev->dma; 135 136 at91_twi_irq_save(dev); 137 138 if (dma->xfer_in_progress) { 139 if (dma->direction == DMA_FROM_DEVICE) 140 dmaengine_terminate_all(dma->chan_rx); 141 else 142 dmaengine_terminate_all(dma->chan_tx); 143 dma->xfer_in_progress = false; 144 } 145 if (dma->buf_mapped) { 146 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]), 147 dev->buf_len, dma->direction); 148 dma->buf_mapped = false; 149 } 150 151 at91_twi_irq_restore(dev); 152 } 153 154 static void at91_twi_write_next_byte(struct at91_twi_dev *dev) 155 { 156 if (!dev->buf_len) 157 return; 158 159 /* 8bit write works with and without FIFO */ 160 writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR); 161 162 /* send stop when last byte has been written */ 163 if (--dev->buf_len == 0) { 164 if (!dev->use_alt_cmd) 165 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 166 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY); 167 } 168 169 dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len); 170 171 ++dev->buf; 172 } 173 174 static void at91_twi_write_data_dma_callback(void *data) 175 { 176 struct at91_twi_dev *dev = (struct at91_twi_dev *)data; 177 178 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), 179 dev->buf_len, DMA_TO_DEVICE); 180 181 /* 182 * When this callback is called, THR/TX FIFO is likely not to be empty 183 * yet. So we have to wait for TXCOMP or NACK bits to be set into the 184 * Status Register to be sure that the STOP bit has been sent and the 185 * transfer is completed. The NACK interrupt has already been enabled, 186 * we just have to enable TXCOMP one. 187 */ 188 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); 189 if (!dev->use_alt_cmd) 190 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 191 } 192 193 static void at91_twi_write_data_dma(struct at91_twi_dev *dev) 194 { 195 dma_addr_t dma_addr; 196 struct dma_async_tx_descriptor *txdesc; 197 struct at91_twi_dma *dma = &dev->dma; 198 struct dma_chan *chan_tx = dma->chan_tx; 199 unsigned int sg_len = 1; 200 201 if (!dev->buf_len) 202 return; 203 204 dma->direction = DMA_TO_DEVICE; 205 206 at91_twi_irq_save(dev); 207 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len, 208 DMA_TO_DEVICE); 209 if (dma_mapping_error(dev->dev, dma_addr)) { 210 dev_err(dev->dev, "dma map failed\n"); 211 return; 212 } 213 dma->buf_mapped = true; 214 at91_twi_irq_restore(dev); 215 216 if (dev->fifo_size) { 217 size_t part1_len, part2_len; 218 struct scatterlist *sg; 219 unsigned fifo_mr; 220 221 sg_len = 0; 222 223 part1_len = dev->buf_len & ~0x3; 224 if (part1_len) { 225 sg = &dma->sg[sg_len++]; 226 sg_dma_len(sg) = part1_len; 227 sg_dma_address(sg) = dma_addr; 228 } 229 230 part2_len = dev->buf_len & 0x3; 231 if (part2_len) { 232 sg = &dma->sg[sg_len++]; 233 sg_dma_len(sg) = part2_len; 234 sg_dma_address(sg) = dma_addr + part1_len; 235 } 236 237 /* 238 * DMA controller is triggered when at least 4 data can be 239 * written into the TX FIFO 240 */ 241 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 242 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK; 243 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA); 244 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 245 } else { 246 sg_dma_len(&dma->sg[0]) = dev->buf_len; 247 sg_dma_address(&dma->sg[0]) = dma_addr; 248 } 249 250 txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len, 251 DMA_MEM_TO_DEV, 252 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 253 if (!txdesc) { 254 dev_err(dev->dev, "dma prep slave sg failed\n"); 255 goto error; 256 } 257 258 txdesc->callback = at91_twi_write_data_dma_callback; 259 txdesc->callback_param = dev; 260 261 dma->xfer_in_progress = true; 262 dmaengine_submit(txdesc); 263 dma_async_issue_pending(chan_tx); 264 265 return; 266 267 error: 268 at91_twi_dma_cleanup(dev); 269 } 270 271 static void at91_twi_read_next_byte(struct at91_twi_dev *dev) 272 { 273 /* 274 * If we are in this case, it means there is garbage data in RHR, so 275 * delete them. 276 */ 277 if (!dev->buf_len) { 278 at91_twi_read(dev, AT91_TWI_RHR); 279 return; 280 } 281 282 /* 8bit read works with and without FIFO */ 283 *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR); 284 --dev->buf_len; 285 286 /* return if aborting, we only needed to read RHR to clear RXRDY*/ 287 if (dev->recv_len_abort) 288 return; 289 290 /* handle I2C_SMBUS_BLOCK_DATA */ 291 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) { 292 /* ensure length byte is a valid value */ 293 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) { 294 dev->msg->flags &= ~I2C_M_RECV_LEN; 295 dev->buf_len += *dev->buf; 296 dev->msg->len = dev->buf_len + 1; 297 dev_dbg(dev->dev, "received block length %zu\n", 298 dev->buf_len); 299 } else { 300 /* abort and send the stop by reading one more byte */ 301 dev->recv_len_abort = true; 302 dev->buf_len = 1; 303 } 304 } 305 306 /* send stop if second but last byte has been read */ 307 if (!dev->use_alt_cmd && dev->buf_len == 1) 308 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 309 310 dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len); 311 312 ++dev->buf; 313 } 314 315 static void at91_twi_read_data_dma_callback(void *data) 316 { 317 struct at91_twi_dev *dev = (struct at91_twi_dev *)data; 318 unsigned ier = AT91_TWI_TXCOMP; 319 320 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), 321 dev->buf_len, DMA_FROM_DEVICE); 322 323 if (!dev->use_alt_cmd) { 324 /* The last two bytes have to be read without using dma */ 325 dev->buf += dev->buf_len - 2; 326 dev->buf_len = 2; 327 ier |= AT91_TWI_RXRDY; 328 } 329 at91_twi_write(dev, AT91_TWI_IER, ier); 330 } 331 332 static void at91_twi_read_data_dma(struct at91_twi_dev *dev) 333 { 334 dma_addr_t dma_addr; 335 struct dma_async_tx_descriptor *rxdesc; 336 struct at91_twi_dma *dma = &dev->dma; 337 struct dma_chan *chan_rx = dma->chan_rx; 338 size_t buf_len; 339 340 buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2; 341 dma->direction = DMA_FROM_DEVICE; 342 343 /* Keep in mind that we won't use dma to read the last two bytes */ 344 at91_twi_irq_save(dev); 345 dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE); 346 if (dma_mapping_error(dev->dev, dma_addr)) { 347 dev_err(dev->dev, "dma map failed\n"); 348 return; 349 } 350 dma->buf_mapped = true; 351 at91_twi_irq_restore(dev); 352 353 if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) { 354 unsigned fifo_mr; 355 356 /* 357 * DMA controller is triggered when at least 4 data can be 358 * read from the RX FIFO 359 */ 360 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 361 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK; 362 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA); 363 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 364 } 365 366 sg_dma_len(&dma->sg[0]) = buf_len; 367 sg_dma_address(&dma->sg[0]) = dma_addr; 368 369 rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM, 370 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 371 if (!rxdesc) { 372 dev_err(dev->dev, "dma prep slave sg failed\n"); 373 goto error; 374 } 375 376 rxdesc->callback = at91_twi_read_data_dma_callback; 377 rxdesc->callback_param = dev; 378 379 dma->xfer_in_progress = true; 380 dmaengine_submit(rxdesc); 381 dma_async_issue_pending(dma->chan_rx); 382 383 return; 384 385 error: 386 at91_twi_dma_cleanup(dev); 387 } 388 389 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id) 390 { 391 struct at91_twi_dev *dev = dev_id; 392 const unsigned status = at91_twi_read(dev, AT91_TWI_SR); 393 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR); 394 395 if (!irqstatus) 396 return IRQ_NONE; 397 /* 398 * In reception, the behavior of the twi device (before sama5d2) is 399 * weird. There is some magic about RXRDY flag! When a data has been 400 * almost received, the reception of a new one is anticipated if there 401 * is no stop command to send. That is the reason why ask for sending 402 * the stop command not on the last data but on the second last one. 403 * 404 * Unfortunately, we could still have the RXRDY flag set even if the 405 * transfer is done and we have read the last data. It might happen 406 * when the i2c slave device sends too quickly data after receiving the 407 * ack from the master. The data has been almost received before having 408 * the order to send stop. In this case, sending the stop command could 409 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage 410 * the RXRDY interrupt first in order to not keep garbage data in the 411 * Receive Holding Register for the next transfer. 412 */ 413 if (irqstatus & AT91_TWI_RXRDY) { 414 /* 415 * Read all available bytes at once by polling RXRDY usable w/ 416 * and w/o FIFO. With FIFO enabled we could also read RXFL and 417 * avoid polling RXRDY. 418 */ 419 do { 420 at91_twi_read_next_byte(dev); 421 } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY); 422 } 423 424 /* 425 * When a NACK condition is detected, the I2C controller sets the NACK, 426 * TXCOMP and TXRDY bits all together in the Status Register (SR). 427 * 428 * 1 - Handling NACK errors with CPU write transfer. 429 * 430 * In such case, we should not write the next byte into the Transmit 431 * Holding Register (THR) otherwise the I2C controller would start a new 432 * transfer and the I2C slave is likely to reply by another NACK. 433 * 434 * 2 - Handling NACK errors with DMA write transfer. 435 * 436 * By setting the TXRDY bit in the SR, the I2C controller also triggers 437 * the DMA controller to write the next data into the THR. Then the 438 * result depends on the hardware version of the I2C controller. 439 * 440 * 2a - Without support of the Alternative Command mode. 441 * 442 * This is the worst case: the DMA controller is triggered to write the 443 * next data into the THR, hence starting a new transfer: the I2C slave 444 * is likely to reply by another NACK. 445 * Concurrently, this interrupt handler is likely to be called to manage 446 * the first NACK before the I2C controller detects the second NACK and 447 * sets once again the NACK bit into the SR. 448 * When handling the first NACK, this interrupt handler disables the I2C 449 * controller interruptions, especially the NACK interrupt. 450 * Hence, the NACK bit is pending into the SR. This is why we should 451 * read the SR to clear all pending interrupts at the beginning of 452 * at91_do_twi_transfer() before actually starting a new transfer. 453 * 454 * 2b - With support of the Alternative Command mode. 455 * 456 * When a NACK condition is detected, the I2C controller also locks the 457 * THR (and sets the LOCK bit in the SR): even though the DMA controller 458 * is triggered by the TXRDY bit to write the next data into the THR, 459 * this data actually won't go on the I2C bus hence a second NACK is not 460 * generated. 461 */ 462 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) { 463 at91_disable_twi_interrupts(dev); 464 complete(&dev->cmd_complete); 465 } else if (irqstatus & AT91_TWI_TXRDY) { 466 at91_twi_write_next_byte(dev); 467 } 468 469 /* catch error flags */ 470 dev->transfer_status |= status; 471 472 return IRQ_HANDLED; 473 } 474 475 static int at91_do_twi_transfer(struct at91_twi_dev *dev) 476 { 477 int ret; 478 unsigned long time_left; 479 bool has_unre_flag = dev->pdata->has_unre_flag; 480 bool has_alt_cmd = dev->pdata->has_alt_cmd; 481 482 /* 483 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on 484 * read flag but shows the state of the transmission at the time the 485 * Status Register is read. According to the programmer datasheet, 486 * TXCOMP is set when both holding register and internal shifter are 487 * empty and STOP condition has been sent. 488 * Consequently, we should enable NACK interrupt rather than TXCOMP to 489 * detect transmission failure. 490 * Indeed let's take the case of an i2c write command using DMA. 491 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and 492 * TXCOMP bits are set together into the Status Register. 493 * LOCK is a clear on write bit, which is set to prevent the DMA 494 * controller from sending new data on the i2c bus after a NACK 495 * condition has happened. Once locked, this i2c peripheral stops 496 * triggering the DMA controller for new data but it is more than 497 * likely that a new DMA transaction is already in progress, writing 498 * into the Transmit Holding Register. Since the peripheral is locked, 499 * these new data won't be sent to the i2c bus but they will remain 500 * into the Transmit Holding Register, so TXCOMP bit is cleared. 501 * Then when the interrupt handler is called, the Status Register is 502 * read: the TXCOMP bit is clear but NACK bit is still set. The driver 503 * manage the error properly, without waiting for timeout. 504 * This case can be reproduced easyly when writing into an at24 eeprom. 505 * 506 * Besides, the TXCOMP bit is already set before the i2c transaction 507 * has been started. For read transactions, this bit is cleared when 508 * writing the START bit into the Control Register. So the 509 * corresponding interrupt can safely be enabled just after. 510 * However for write transactions managed by the CPU, we first write 511 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP 512 * interrupt. If TXCOMP interrupt were enabled before writing into THR, 513 * the interrupt handler would be called immediately and the i2c command 514 * would be reported as completed. 515 * Also when a write transaction is managed by the DMA controller, 516 * enabling the TXCOMP interrupt in this function may lead to a race 517 * condition since we don't know whether the TXCOMP interrupt is enabled 518 * before or after the DMA has started to write into THR. So the TXCOMP 519 * interrupt is enabled later by at91_twi_write_data_dma_callback(). 520 * Immediately after in that DMA callback, if the alternative command 521 * mode is not used, we still need to send the STOP condition manually 522 * writing the corresponding bit into the Control Register. 523 */ 524 525 dev_dbg(dev->dev, "transfer: %s %zu bytes.\n", 526 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len); 527 528 reinit_completion(&dev->cmd_complete); 529 dev->transfer_status = 0; 530 531 /* Clear pending interrupts, such as NACK. */ 532 at91_twi_read(dev, AT91_TWI_SR); 533 534 if (dev->fifo_size) { 535 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 536 537 /* Reset FIFO mode register */ 538 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK | 539 AT91_TWI_FMR_RXRDYM_MASK); 540 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA); 541 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA); 542 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 543 544 /* Flush FIFOs */ 545 at91_twi_write(dev, AT91_TWI_CR, 546 AT91_TWI_THRCLR | AT91_TWI_RHRCLR); 547 } 548 549 if (!dev->buf_len) { 550 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK); 551 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); 552 } else if (dev->msg->flags & I2C_M_RD) { 553 unsigned start_flags = AT91_TWI_START; 554 555 /* if only one byte is to be read, immediately stop transfer */ 556 if (!dev->use_alt_cmd && dev->buf_len <= 1 && 557 !(dev->msg->flags & I2C_M_RECV_LEN)) 558 start_flags |= AT91_TWI_STOP; 559 at91_twi_write(dev, AT91_TWI_CR, start_flags); 560 /* 561 * When using dma without alternative command mode, the last 562 * byte has to be read manually in order to not send the stop 563 * command too late and then to receive extra data. 564 * In practice, there are some issues if you use the dma to 565 * read n-1 bytes because of latency. 566 * Reading n-2 bytes with dma and the two last ones manually 567 * seems to be the best solution. 568 */ 569 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { 570 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); 571 at91_twi_read_data_dma(dev); 572 } else { 573 at91_twi_write(dev, AT91_TWI_IER, 574 AT91_TWI_TXCOMP | 575 AT91_TWI_NACK | 576 AT91_TWI_RXRDY); 577 } 578 } else { 579 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { 580 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); 581 at91_twi_write_data_dma(dev); 582 } else { 583 at91_twi_write_next_byte(dev); 584 at91_twi_write(dev, AT91_TWI_IER, 585 AT91_TWI_TXCOMP | AT91_TWI_NACK | 586 (dev->buf_len ? AT91_TWI_TXRDY : 0)); 587 } 588 } 589 590 time_left = wait_for_completion_timeout(&dev->cmd_complete, 591 dev->adapter.timeout); 592 if (time_left == 0) { 593 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR); 594 dev_err(dev->dev, "controller timed out\n"); 595 at91_init_twi_bus(dev); 596 ret = -ETIMEDOUT; 597 goto error; 598 } 599 if (dev->transfer_status & AT91_TWI_NACK) { 600 dev_dbg(dev->dev, "received nack\n"); 601 ret = -EREMOTEIO; 602 goto error; 603 } 604 if (dev->transfer_status & AT91_TWI_OVRE) { 605 dev_err(dev->dev, "overrun while reading\n"); 606 ret = -EIO; 607 goto error; 608 } 609 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) { 610 dev_err(dev->dev, "underrun while writing\n"); 611 ret = -EIO; 612 goto error; 613 } 614 if ((has_alt_cmd || dev->fifo_size) && 615 (dev->transfer_status & AT91_TWI_LOCK)) { 616 dev_err(dev->dev, "tx locked\n"); 617 ret = -EIO; 618 goto error; 619 } 620 if (dev->recv_len_abort) { 621 dev_err(dev->dev, "invalid smbus block length recvd\n"); 622 ret = -EPROTO; 623 goto error; 624 } 625 626 dev_dbg(dev->dev, "transfer complete\n"); 627 628 return 0; 629 630 error: 631 /* first stop DMA transfer if still in progress */ 632 at91_twi_dma_cleanup(dev); 633 /* then flush THR/FIFO and unlock TX if locked */ 634 if ((has_alt_cmd || dev->fifo_size) && 635 (dev->transfer_status & AT91_TWI_LOCK)) { 636 dev_dbg(dev->dev, "unlock tx\n"); 637 at91_twi_write(dev, AT91_TWI_CR, 638 AT91_TWI_THRCLR | AT91_TWI_LOCKCLR); 639 } 640 return ret; 641 } 642 643 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num) 644 { 645 struct at91_twi_dev *dev = i2c_get_adapdata(adap); 646 int ret; 647 unsigned int_addr_flag = 0; 648 struct i2c_msg *m_start = msg; 649 bool is_read; 650 651 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num); 652 653 ret = pm_runtime_get_sync(dev->dev); 654 if (ret < 0) 655 goto out; 656 657 if (num == 2) { 658 int internal_address = 0; 659 int i; 660 661 /* 1st msg is put into the internal address, start with 2nd */ 662 m_start = &msg[1]; 663 for (i = 0; i < msg->len; ++i) { 664 const unsigned addr = msg->buf[msg->len - 1 - i]; 665 666 internal_address |= addr << (8 * i); 667 int_addr_flag += AT91_TWI_IADRSZ_1; 668 } 669 at91_twi_write(dev, AT91_TWI_IADR, internal_address); 670 } 671 672 dev->use_alt_cmd = false; 673 is_read = (m_start->flags & I2C_M_RD); 674 if (dev->pdata->has_alt_cmd) { 675 if (m_start->len > 0 && 676 m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) { 677 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN); 678 at91_twi_write(dev, AT91_TWI_ACR, 679 AT91_TWI_ACR_DATAL(m_start->len) | 680 ((is_read) ? AT91_TWI_ACR_DIR : 0)); 681 dev->use_alt_cmd = true; 682 } else { 683 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS); 684 } 685 } 686 687 at91_twi_write(dev, AT91_TWI_MMR, 688 (m_start->addr << 16) | 689 int_addr_flag | 690 ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0)); 691 692 dev->buf_len = m_start->len; 693 dev->buf = m_start->buf; 694 dev->msg = m_start; 695 dev->recv_len_abort = false; 696 697 ret = at91_do_twi_transfer(dev); 698 699 ret = (ret < 0) ? ret : num; 700 out: 701 pm_runtime_mark_last_busy(dev->dev); 702 pm_runtime_put_autosuspend(dev->dev); 703 704 return ret; 705 } 706 707 /* 708 * The hardware can handle at most two messages concatenated by a 709 * repeated start via it's internal address feature. 710 */ 711 static const struct i2c_adapter_quirks at91_twi_quirks = { 712 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR, 713 .max_comb_1st_msg_len = 3, 714 }; 715 716 static u32 at91_twi_func(struct i2c_adapter *adapter) 717 { 718 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL 719 | I2C_FUNC_SMBUS_READ_BLOCK_DATA; 720 } 721 722 static const struct i2c_algorithm at91_twi_algorithm = { 723 .master_xfer = at91_twi_xfer, 724 .functionality = at91_twi_func, 725 }; 726 727 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr) 728 { 729 int ret = 0; 730 struct dma_slave_config slave_config; 731 struct at91_twi_dma *dma = &dev->dma; 732 enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 733 734 /* 735 * The actual width of the access will be chosen in 736 * dmaengine_prep_slave_sg(): 737 * for each buffer in the scatter-gather list, if its size is aligned 738 * to addr_width then addr_width accesses will be performed to transfer 739 * the buffer. On the other hand, if the buffer size is not aligned to 740 * addr_width then the buffer is transferred using single byte accesses. 741 * Please refer to the Atmel eXtended DMA controller driver. 742 * When FIFOs are used, the TXRDYM threshold can always be set to 743 * trigger the XDMAC when at least 4 data can be written into the TX 744 * FIFO, even if single byte accesses are performed. 745 * However the RXRDYM threshold must be set to fit the access width, 746 * deduced from buffer length, so the XDMAC is triggered properly to 747 * read data from the RX FIFO. 748 */ 749 if (dev->fifo_size) 750 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 751 752 memset(&slave_config, 0, sizeof(slave_config)); 753 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR; 754 slave_config.src_addr_width = addr_width; 755 slave_config.src_maxburst = 1; 756 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR; 757 slave_config.dst_addr_width = addr_width; 758 slave_config.dst_maxburst = 1; 759 slave_config.device_fc = false; 760 761 dma->chan_tx = dma_request_chan(dev->dev, "tx"); 762 if (IS_ERR(dma->chan_tx)) { 763 ret = PTR_ERR(dma->chan_tx); 764 dma->chan_tx = NULL; 765 goto error; 766 } 767 768 dma->chan_rx = dma_request_chan(dev->dev, "rx"); 769 if (IS_ERR(dma->chan_rx)) { 770 ret = PTR_ERR(dma->chan_rx); 771 dma->chan_rx = NULL; 772 goto error; 773 } 774 775 slave_config.direction = DMA_MEM_TO_DEV; 776 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) { 777 dev_err(dev->dev, "failed to configure tx channel\n"); 778 ret = -EINVAL; 779 goto error; 780 } 781 782 slave_config.direction = DMA_DEV_TO_MEM; 783 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) { 784 dev_err(dev->dev, "failed to configure rx channel\n"); 785 ret = -EINVAL; 786 goto error; 787 } 788 789 sg_init_table(dma->sg, 2); 790 dma->buf_mapped = false; 791 dma->xfer_in_progress = false; 792 dev->use_dma = true; 793 794 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n", 795 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx)); 796 797 return ret; 798 799 error: 800 if (ret != -EPROBE_DEFER) 801 dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n"); 802 if (dma->chan_rx) 803 dma_release_channel(dma->chan_rx); 804 if (dma->chan_tx) 805 dma_release_channel(dma->chan_tx); 806 return ret; 807 } 808 809 int at91_twi_probe_master(struct platform_device *pdev, 810 u32 phy_addr, struct at91_twi_dev *dev) 811 { 812 int rc; 813 814 init_completion(&dev->cmd_complete); 815 816 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0, 817 dev_name(dev->dev), dev); 818 if (rc) { 819 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc); 820 return rc; 821 } 822 823 if (dev->dev->of_node) { 824 rc = at91_twi_configure_dma(dev, phy_addr); 825 if (rc == -EPROBE_DEFER) 826 return rc; 827 } 828 829 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 830 &dev->fifo_size)) { 831 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size); 832 } 833 834 dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node, 835 "i2c-digital-filter"); 836 837 dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node, 838 "i2c-analog-filter"); 839 at91_calc_twi_clock(dev); 840 841 dev->adapter.algo = &at91_twi_algorithm; 842 dev->adapter.quirks = &at91_twi_quirks; 843 844 return 0; 845 } 846