1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI) 4 * 5 * Copyright (C) 2011 Weinmann Medical GmbH 6 * Author: Nikolaus Voss <n.voss@weinmann.de> 7 * 8 * Evolved from original work by: 9 * Copyright (C) 2004 Rick Bronson 10 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com> 11 * 12 * Borrowed heavily from original work by: 13 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com> 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/completion.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/i2c.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/of.h> 26 #include <linux/of_device.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/platform_device.h> 29 #include <linux/pm_runtime.h> 30 31 #include "i2c-at91.h" 32 33 void at91_init_twi_bus_master(struct at91_twi_dev *dev) 34 { 35 struct at91_twi_pdata *pdata = dev->pdata; 36 u32 filtr = 0; 37 38 /* FIFO should be enabled immediately after the software reset */ 39 if (dev->fifo_size) 40 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN); 41 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN); 42 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS); 43 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg); 44 45 /* enable digital filter */ 46 if (pdata->has_dig_filtr && dev->enable_dig_filt) 47 filtr |= AT91_TWI_FILTR_FILT; 48 49 /* enable advanced digital filter */ 50 if (pdata->has_adv_dig_filtr && dev->enable_dig_filt) 51 filtr |= AT91_TWI_FILTR_FILT | 52 (AT91_TWI_FILTR_THRES(dev->filter_width) & 53 AT91_TWI_FILTR_THRES_MASK); 54 55 /* enable analog filter */ 56 if (pdata->has_ana_filtr && dev->enable_ana_filt) 57 filtr |= AT91_TWI_FILTR_PADFEN; 58 59 if (filtr) 60 at91_twi_write(dev, AT91_TWI_FILTR, filtr); 61 } 62 63 /* 64 * Calculate symmetric clock as stated in datasheet: 65 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset)) 66 */ 67 static void at91_calc_twi_clock(struct at91_twi_dev *dev) 68 { 69 int ckdiv, cdiv, div, hold = 0, filter_width = 0; 70 struct at91_twi_pdata *pdata = dev->pdata; 71 int offset = pdata->clk_offset; 72 int max_ckdiv = pdata->clk_max_div; 73 struct i2c_timings timings, *t = &timings; 74 75 i2c_parse_fw_timings(dev->dev, t, true); 76 77 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk), 78 2 * t->bus_freq_hz) - offset); 79 ckdiv = fls(div >> 8); 80 cdiv = div >> ckdiv; 81 82 if (ckdiv > max_ckdiv) { 83 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n", 84 ckdiv, max_ckdiv); 85 ckdiv = max_ckdiv; 86 cdiv = 255; 87 } 88 89 if (pdata->has_hold_field) { 90 /* 91 * hold time = HOLD + 3 x T_peripheral_clock 92 * Use clk rate in kHz to prevent overflows when computing 93 * hold. 94 */ 95 hold = DIV_ROUND_UP(t->sda_hold_ns 96 * (clk_get_rate(dev->clk) / 1000), 1000000); 97 hold -= 3; 98 if (hold < 0) 99 hold = 0; 100 if (hold > AT91_TWI_CWGR_HOLD_MAX) { 101 dev_warn(dev->dev, 102 "HOLD field set to its maximum value (%d instead of %d)\n", 103 AT91_TWI_CWGR_HOLD_MAX, hold); 104 hold = AT91_TWI_CWGR_HOLD_MAX; 105 } 106 } 107 108 if (pdata->has_adv_dig_filtr) { 109 /* 110 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX 111 * peripheral clocks 112 */ 113 filter_width = DIV_ROUND_UP(t->digital_filter_width_ns 114 * (clk_get_rate(dev->clk) / 1000), 1000000); 115 if (filter_width > AT91_TWI_FILTR_THRES_MAX) { 116 dev_warn(dev->dev, 117 "Filter threshold set to its maximum value (%d instead of %d)\n", 118 AT91_TWI_FILTR_THRES_MAX, filter_width); 119 filter_width = AT91_TWI_FILTR_THRES_MAX; 120 } 121 } 122 123 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv 124 | AT91_TWI_CWGR_HOLD(hold); 125 126 dev->filter_width = filter_width; 127 128 dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n", 129 cdiv, ckdiv, hold, t->sda_hold_ns, filter_width, 130 t->digital_filter_width_ns); 131 } 132 133 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev) 134 { 135 struct at91_twi_dma *dma = &dev->dma; 136 137 at91_twi_irq_save(dev); 138 139 if (dma->xfer_in_progress) { 140 if (dma->direction == DMA_FROM_DEVICE) 141 dmaengine_terminate_sync(dma->chan_rx); 142 else 143 dmaengine_terminate_sync(dma->chan_tx); 144 dma->xfer_in_progress = false; 145 } 146 if (dma->buf_mapped) { 147 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]), 148 dev->buf_len, dma->direction); 149 dma->buf_mapped = false; 150 } 151 152 at91_twi_irq_restore(dev); 153 } 154 155 static void at91_twi_write_next_byte(struct at91_twi_dev *dev) 156 { 157 if (!dev->buf_len) 158 return; 159 160 /* 8bit write works with and without FIFO */ 161 writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR); 162 163 /* send stop when last byte has been written */ 164 if (--dev->buf_len == 0) { 165 if (!dev->use_alt_cmd) 166 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 167 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY); 168 } 169 170 dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len); 171 172 ++dev->buf; 173 } 174 175 static void at91_twi_write_data_dma_callback(void *data) 176 { 177 struct at91_twi_dev *dev = (struct at91_twi_dev *)data; 178 179 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), 180 dev->buf_len, DMA_TO_DEVICE); 181 182 /* 183 * When this callback is called, THR/TX FIFO is likely not to be empty 184 * yet. So we have to wait for TXCOMP or NACK bits to be set into the 185 * Status Register to be sure that the STOP bit has been sent and the 186 * transfer is completed. The NACK interrupt has already been enabled, 187 * we just have to enable TXCOMP one. 188 */ 189 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); 190 if (!dev->use_alt_cmd) 191 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 192 } 193 194 static void at91_twi_write_data_dma(struct at91_twi_dev *dev) 195 { 196 dma_addr_t dma_addr; 197 struct dma_async_tx_descriptor *txdesc; 198 struct at91_twi_dma *dma = &dev->dma; 199 struct dma_chan *chan_tx = dma->chan_tx; 200 unsigned int sg_len = 1; 201 202 if (!dev->buf_len) 203 return; 204 205 dma->direction = DMA_TO_DEVICE; 206 207 at91_twi_irq_save(dev); 208 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len, 209 DMA_TO_DEVICE); 210 if (dma_mapping_error(dev->dev, dma_addr)) { 211 dev_err(dev->dev, "dma map failed\n"); 212 return; 213 } 214 dma->buf_mapped = true; 215 at91_twi_irq_restore(dev); 216 217 if (dev->fifo_size) { 218 size_t part1_len, part2_len; 219 struct scatterlist *sg; 220 unsigned fifo_mr; 221 222 sg_len = 0; 223 224 part1_len = dev->buf_len & ~0x3; 225 if (part1_len) { 226 sg = &dma->sg[sg_len++]; 227 sg_dma_len(sg) = part1_len; 228 sg_dma_address(sg) = dma_addr; 229 } 230 231 part2_len = dev->buf_len & 0x3; 232 if (part2_len) { 233 sg = &dma->sg[sg_len++]; 234 sg_dma_len(sg) = part2_len; 235 sg_dma_address(sg) = dma_addr + part1_len; 236 } 237 238 /* 239 * DMA controller is triggered when at least 4 data can be 240 * written into the TX FIFO 241 */ 242 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 243 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK; 244 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA); 245 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 246 } else { 247 sg_dma_len(&dma->sg[0]) = dev->buf_len; 248 sg_dma_address(&dma->sg[0]) = dma_addr; 249 } 250 251 txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len, 252 DMA_MEM_TO_DEV, 253 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 254 if (!txdesc) { 255 dev_err(dev->dev, "dma prep slave sg failed\n"); 256 goto error; 257 } 258 259 txdesc->callback = at91_twi_write_data_dma_callback; 260 txdesc->callback_param = dev; 261 262 dma->xfer_in_progress = true; 263 dmaengine_submit(txdesc); 264 dma_async_issue_pending(chan_tx); 265 266 return; 267 268 error: 269 at91_twi_dma_cleanup(dev); 270 } 271 272 static void at91_twi_read_next_byte(struct at91_twi_dev *dev) 273 { 274 /* 275 * If we are in this case, it means there is garbage data in RHR, so 276 * delete them. 277 */ 278 if (!dev->buf_len) { 279 at91_twi_read(dev, AT91_TWI_RHR); 280 return; 281 } 282 283 /* 8bit read works with and without FIFO */ 284 *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR); 285 --dev->buf_len; 286 287 /* return if aborting, we only needed to read RHR to clear RXRDY*/ 288 if (dev->recv_len_abort) 289 return; 290 291 /* handle I2C_SMBUS_BLOCK_DATA */ 292 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) { 293 /* ensure length byte is a valid value */ 294 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) { 295 dev->msg->flags &= ~I2C_M_RECV_LEN; 296 dev->buf_len += *dev->buf; 297 dev->msg->len = dev->buf_len + 1; 298 dev_dbg(dev->dev, "received block length %zu\n", 299 dev->buf_len); 300 } else { 301 /* abort and send the stop by reading one more byte */ 302 dev->recv_len_abort = true; 303 dev->buf_len = 1; 304 } 305 } 306 307 /* send stop if second but last byte has been read */ 308 if (!dev->use_alt_cmd && dev->buf_len == 1) 309 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); 310 311 dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len); 312 313 ++dev->buf; 314 } 315 316 static void at91_twi_read_data_dma_callback(void *data) 317 { 318 struct at91_twi_dev *dev = (struct at91_twi_dev *)data; 319 unsigned ier = AT91_TWI_TXCOMP; 320 321 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), 322 dev->buf_len, DMA_FROM_DEVICE); 323 324 if (!dev->use_alt_cmd) { 325 /* The last two bytes have to be read without using dma */ 326 dev->buf += dev->buf_len - 2; 327 dev->buf_len = 2; 328 ier |= AT91_TWI_RXRDY; 329 } 330 at91_twi_write(dev, AT91_TWI_IER, ier); 331 } 332 333 static void at91_twi_read_data_dma(struct at91_twi_dev *dev) 334 { 335 dma_addr_t dma_addr; 336 struct dma_async_tx_descriptor *rxdesc; 337 struct at91_twi_dma *dma = &dev->dma; 338 struct dma_chan *chan_rx = dma->chan_rx; 339 size_t buf_len; 340 341 buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2; 342 dma->direction = DMA_FROM_DEVICE; 343 344 /* Keep in mind that we won't use dma to read the last two bytes */ 345 at91_twi_irq_save(dev); 346 dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE); 347 if (dma_mapping_error(dev->dev, dma_addr)) { 348 dev_err(dev->dev, "dma map failed\n"); 349 return; 350 } 351 dma->buf_mapped = true; 352 at91_twi_irq_restore(dev); 353 354 if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) { 355 unsigned fifo_mr; 356 357 /* 358 * DMA controller is triggered when at least 4 data can be 359 * read from the RX FIFO 360 */ 361 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 362 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK; 363 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA); 364 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 365 } 366 367 sg_dma_len(&dma->sg[0]) = buf_len; 368 sg_dma_address(&dma->sg[0]) = dma_addr; 369 370 rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM, 371 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 372 if (!rxdesc) { 373 dev_err(dev->dev, "dma prep slave sg failed\n"); 374 goto error; 375 } 376 377 rxdesc->callback = at91_twi_read_data_dma_callback; 378 rxdesc->callback_param = dev; 379 380 dma->xfer_in_progress = true; 381 dmaengine_submit(rxdesc); 382 dma_async_issue_pending(dma->chan_rx); 383 384 return; 385 386 error: 387 at91_twi_dma_cleanup(dev); 388 } 389 390 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id) 391 { 392 struct at91_twi_dev *dev = dev_id; 393 const unsigned status = at91_twi_read(dev, AT91_TWI_SR); 394 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR); 395 396 if (!irqstatus) 397 return IRQ_NONE; 398 /* 399 * In reception, the behavior of the twi device (before sama5d2) is 400 * weird. There is some magic about RXRDY flag! When a data has been 401 * almost received, the reception of a new one is anticipated if there 402 * is no stop command to send. That is the reason why ask for sending 403 * the stop command not on the last data but on the second last one. 404 * 405 * Unfortunately, we could still have the RXRDY flag set even if the 406 * transfer is done and we have read the last data. It might happen 407 * when the i2c slave device sends too quickly data after receiving the 408 * ack from the master. The data has been almost received before having 409 * the order to send stop. In this case, sending the stop command could 410 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage 411 * the RXRDY interrupt first in order to not keep garbage data in the 412 * Receive Holding Register for the next transfer. 413 */ 414 if (irqstatus & AT91_TWI_RXRDY) { 415 /* 416 * Read all available bytes at once by polling RXRDY usable w/ 417 * and w/o FIFO. With FIFO enabled we could also read RXFL and 418 * avoid polling RXRDY. 419 */ 420 do { 421 at91_twi_read_next_byte(dev); 422 } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY); 423 } 424 425 /* 426 * When a NACK condition is detected, the I2C controller sets the NACK, 427 * TXCOMP and TXRDY bits all together in the Status Register (SR). 428 * 429 * 1 - Handling NACK errors with CPU write transfer. 430 * 431 * In such case, we should not write the next byte into the Transmit 432 * Holding Register (THR) otherwise the I2C controller would start a new 433 * transfer and the I2C slave is likely to reply by another NACK. 434 * 435 * 2 - Handling NACK errors with DMA write transfer. 436 * 437 * By setting the TXRDY bit in the SR, the I2C controller also triggers 438 * the DMA controller to write the next data into the THR. Then the 439 * result depends on the hardware version of the I2C controller. 440 * 441 * 2a - Without support of the Alternative Command mode. 442 * 443 * This is the worst case: the DMA controller is triggered to write the 444 * next data into the THR, hence starting a new transfer: the I2C slave 445 * is likely to reply by another NACK. 446 * Concurrently, this interrupt handler is likely to be called to manage 447 * the first NACK before the I2C controller detects the second NACK and 448 * sets once again the NACK bit into the SR. 449 * When handling the first NACK, this interrupt handler disables the I2C 450 * controller interruptions, especially the NACK interrupt. 451 * Hence, the NACK bit is pending into the SR. This is why we should 452 * read the SR to clear all pending interrupts at the beginning of 453 * at91_do_twi_transfer() before actually starting a new transfer. 454 * 455 * 2b - With support of the Alternative Command mode. 456 * 457 * When a NACK condition is detected, the I2C controller also locks the 458 * THR (and sets the LOCK bit in the SR): even though the DMA controller 459 * is triggered by the TXRDY bit to write the next data into the THR, 460 * this data actually won't go on the I2C bus hence a second NACK is not 461 * generated. 462 */ 463 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) { 464 at91_disable_twi_interrupts(dev); 465 complete(&dev->cmd_complete); 466 } else if (irqstatus & AT91_TWI_TXRDY) { 467 at91_twi_write_next_byte(dev); 468 } 469 470 /* catch error flags */ 471 dev->transfer_status |= status; 472 473 return IRQ_HANDLED; 474 } 475 476 static int at91_do_twi_transfer(struct at91_twi_dev *dev) 477 { 478 int ret; 479 unsigned long time_left; 480 bool has_unre_flag = dev->pdata->has_unre_flag; 481 bool has_alt_cmd = dev->pdata->has_alt_cmd; 482 483 /* 484 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on 485 * read flag but shows the state of the transmission at the time the 486 * Status Register is read. According to the programmer datasheet, 487 * TXCOMP is set when both holding register and internal shifter are 488 * empty and STOP condition has been sent. 489 * Consequently, we should enable NACK interrupt rather than TXCOMP to 490 * detect transmission failure. 491 * Indeed let's take the case of an i2c write command using DMA. 492 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and 493 * TXCOMP bits are set together into the Status Register. 494 * LOCK is a clear on write bit, which is set to prevent the DMA 495 * controller from sending new data on the i2c bus after a NACK 496 * condition has happened. Once locked, this i2c peripheral stops 497 * triggering the DMA controller for new data but it is more than 498 * likely that a new DMA transaction is already in progress, writing 499 * into the Transmit Holding Register. Since the peripheral is locked, 500 * these new data won't be sent to the i2c bus but they will remain 501 * into the Transmit Holding Register, so TXCOMP bit is cleared. 502 * Then when the interrupt handler is called, the Status Register is 503 * read: the TXCOMP bit is clear but NACK bit is still set. The driver 504 * manage the error properly, without waiting for timeout. 505 * This case can be reproduced easyly when writing into an at24 eeprom. 506 * 507 * Besides, the TXCOMP bit is already set before the i2c transaction 508 * has been started. For read transactions, this bit is cleared when 509 * writing the START bit into the Control Register. So the 510 * corresponding interrupt can safely be enabled just after. 511 * However for write transactions managed by the CPU, we first write 512 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP 513 * interrupt. If TXCOMP interrupt were enabled before writing into THR, 514 * the interrupt handler would be called immediately and the i2c command 515 * would be reported as completed. 516 * Also when a write transaction is managed by the DMA controller, 517 * enabling the TXCOMP interrupt in this function may lead to a race 518 * condition since we don't know whether the TXCOMP interrupt is enabled 519 * before or after the DMA has started to write into THR. So the TXCOMP 520 * interrupt is enabled later by at91_twi_write_data_dma_callback(). 521 * Immediately after in that DMA callback, if the alternative command 522 * mode is not used, we still need to send the STOP condition manually 523 * writing the corresponding bit into the Control Register. 524 */ 525 526 dev_dbg(dev->dev, "transfer: %s %zu bytes.\n", 527 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len); 528 529 reinit_completion(&dev->cmd_complete); 530 dev->transfer_status = 0; 531 532 /* Clear pending interrupts, such as NACK. */ 533 at91_twi_read(dev, AT91_TWI_SR); 534 535 if (dev->fifo_size) { 536 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); 537 538 /* Reset FIFO mode register */ 539 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK | 540 AT91_TWI_FMR_RXRDYM_MASK); 541 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA); 542 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA); 543 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); 544 545 /* Flush FIFOs */ 546 at91_twi_write(dev, AT91_TWI_CR, 547 AT91_TWI_THRCLR | AT91_TWI_RHRCLR); 548 } 549 550 if (!dev->buf_len) { 551 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK); 552 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); 553 } else if (dev->msg->flags & I2C_M_RD) { 554 unsigned start_flags = AT91_TWI_START; 555 556 /* if only one byte is to be read, immediately stop transfer */ 557 if (!dev->use_alt_cmd && dev->buf_len <= 1 && 558 !(dev->msg->flags & I2C_M_RECV_LEN)) 559 start_flags |= AT91_TWI_STOP; 560 at91_twi_write(dev, AT91_TWI_CR, start_flags); 561 /* 562 * When using dma without alternative command mode, the last 563 * byte has to be read manually in order to not send the stop 564 * command too late and then to receive extra data. 565 * In practice, there are some issues if you use the dma to 566 * read n-1 bytes because of latency. 567 * Reading n-2 bytes with dma and the two last ones manually 568 * seems to be the best solution. 569 */ 570 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { 571 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); 572 at91_twi_read_data_dma(dev); 573 } else { 574 at91_twi_write(dev, AT91_TWI_IER, 575 AT91_TWI_TXCOMP | 576 AT91_TWI_NACK | 577 AT91_TWI_RXRDY); 578 } 579 } else { 580 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { 581 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); 582 at91_twi_write_data_dma(dev); 583 } else { 584 at91_twi_write_next_byte(dev); 585 at91_twi_write(dev, AT91_TWI_IER, 586 AT91_TWI_TXCOMP | AT91_TWI_NACK | 587 (dev->buf_len ? AT91_TWI_TXRDY : 0)); 588 } 589 } 590 591 time_left = wait_for_completion_timeout(&dev->cmd_complete, 592 dev->adapter.timeout); 593 if (time_left == 0) { 594 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR); 595 dev_err(dev->dev, "controller timed out\n"); 596 at91_init_twi_bus(dev); 597 ret = -ETIMEDOUT; 598 goto error; 599 } 600 if (dev->transfer_status & AT91_TWI_NACK) { 601 dev_dbg(dev->dev, "received nack\n"); 602 ret = -EREMOTEIO; 603 goto error; 604 } 605 if (dev->transfer_status & AT91_TWI_OVRE) { 606 dev_err(dev->dev, "overrun while reading\n"); 607 ret = -EIO; 608 goto error; 609 } 610 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) { 611 dev_err(dev->dev, "underrun while writing\n"); 612 ret = -EIO; 613 goto error; 614 } 615 if ((has_alt_cmd || dev->fifo_size) && 616 (dev->transfer_status & AT91_TWI_LOCK)) { 617 dev_err(dev->dev, "tx locked\n"); 618 ret = -EIO; 619 goto error; 620 } 621 if (dev->recv_len_abort) { 622 dev_err(dev->dev, "invalid smbus block length recvd\n"); 623 ret = -EPROTO; 624 goto error; 625 } 626 627 dev_dbg(dev->dev, "transfer complete\n"); 628 629 return 0; 630 631 error: 632 /* first stop DMA transfer if still in progress */ 633 at91_twi_dma_cleanup(dev); 634 /* then flush THR/FIFO and unlock TX if locked */ 635 if ((has_alt_cmd || dev->fifo_size) && 636 (dev->transfer_status & AT91_TWI_LOCK)) { 637 dev_dbg(dev->dev, "unlock tx\n"); 638 at91_twi_write(dev, AT91_TWI_CR, 639 AT91_TWI_THRCLR | AT91_TWI_LOCKCLR); 640 } 641 642 /* 643 * some faulty I2C slave devices might hold SDA down; 644 * we can send a bus clear command, hoping that the pins will be 645 * released 646 */ 647 i2c_recover_bus(&dev->adapter); 648 649 return ret; 650 } 651 652 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num) 653 { 654 struct at91_twi_dev *dev = i2c_get_adapdata(adap); 655 int ret; 656 unsigned int_addr_flag = 0; 657 struct i2c_msg *m_start = msg; 658 bool is_read; 659 660 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num); 661 662 ret = pm_runtime_get_sync(dev->dev); 663 if (ret < 0) 664 goto out; 665 666 if (num == 2) { 667 int internal_address = 0; 668 int i; 669 670 /* 1st msg is put into the internal address, start with 2nd */ 671 m_start = &msg[1]; 672 for (i = 0; i < msg->len; ++i) { 673 const unsigned addr = msg->buf[msg->len - 1 - i]; 674 675 internal_address |= addr << (8 * i); 676 int_addr_flag += AT91_TWI_IADRSZ_1; 677 } 678 at91_twi_write(dev, AT91_TWI_IADR, internal_address); 679 } 680 681 dev->use_alt_cmd = false; 682 is_read = (m_start->flags & I2C_M_RD); 683 if (dev->pdata->has_alt_cmd) { 684 if (m_start->len > 0 && 685 m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) { 686 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN); 687 at91_twi_write(dev, AT91_TWI_ACR, 688 AT91_TWI_ACR_DATAL(m_start->len) | 689 ((is_read) ? AT91_TWI_ACR_DIR : 0)); 690 dev->use_alt_cmd = true; 691 } else { 692 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS); 693 } 694 } 695 696 at91_twi_write(dev, AT91_TWI_MMR, 697 (m_start->addr << 16) | 698 int_addr_flag | 699 ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0)); 700 701 dev->buf_len = m_start->len; 702 dev->buf = m_start->buf; 703 dev->msg = m_start; 704 dev->recv_len_abort = false; 705 706 ret = at91_do_twi_transfer(dev); 707 708 ret = (ret < 0) ? ret : num; 709 out: 710 pm_runtime_mark_last_busy(dev->dev); 711 pm_runtime_put_autosuspend(dev->dev); 712 713 return ret; 714 } 715 716 /* 717 * The hardware can handle at most two messages concatenated by a 718 * repeated start via it's internal address feature. 719 */ 720 static const struct i2c_adapter_quirks at91_twi_quirks = { 721 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR, 722 .max_comb_1st_msg_len = 3, 723 }; 724 725 static u32 at91_twi_func(struct i2c_adapter *adapter) 726 { 727 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL 728 | I2C_FUNC_SMBUS_READ_BLOCK_DATA; 729 } 730 731 static const struct i2c_algorithm at91_twi_algorithm = { 732 .master_xfer = at91_twi_xfer, 733 .functionality = at91_twi_func, 734 }; 735 736 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr) 737 { 738 int ret = 0; 739 struct dma_slave_config slave_config; 740 struct at91_twi_dma *dma = &dev->dma; 741 enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 742 743 /* 744 * The actual width of the access will be chosen in 745 * dmaengine_prep_slave_sg(): 746 * for each buffer in the scatter-gather list, if its size is aligned 747 * to addr_width then addr_width accesses will be performed to transfer 748 * the buffer. On the other hand, if the buffer size is not aligned to 749 * addr_width then the buffer is transferred using single byte accesses. 750 * Please refer to the Atmel eXtended DMA controller driver. 751 * When FIFOs are used, the TXRDYM threshold can always be set to 752 * trigger the XDMAC when at least 4 data can be written into the TX 753 * FIFO, even if single byte accesses are performed. 754 * However the RXRDYM threshold must be set to fit the access width, 755 * deduced from buffer length, so the XDMAC is triggered properly to 756 * read data from the RX FIFO. 757 */ 758 if (dev->fifo_size) 759 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 760 761 memset(&slave_config, 0, sizeof(slave_config)); 762 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR; 763 slave_config.src_addr_width = addr_width; 764 slave_config.src_maxburst = 1; 765 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR; 766 slave_config.dst_addr_width = addr_width; 767 slave_config.dst_maxburst = 1; 768 slave_config.device_fc = false; 769 770 dma->chan_tx = dma_request_chan(dev->dev, "tx"); 771 if (IS_ERR(dma->chan_tx)) { 772 ret = PTR_ERR(dma->chan_tx); 773 dma->chan_tx = NULL; 774 goto error; 775 } 776 777 dma->chan_rx = dma_request_chan(dev->dev, "rx"); 778 if (IS_ERR(dma->chan_rx)) { 779 ret = PTR_ERR(dma->chan_rx); 780 dma->chan_rx = NULL; 781 goto error; 782 } 783 784 slave_config.direction = DMA_MEM_TO_DEV; 785 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) { 786 dev_err(dev->dev, "failed to configure tx channel\n"); 787 ret = -EINVAL; 788 goto error; 789 } 790 791 slave_config.direction = DMA_DEV_TO_MEM; 792 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) { 793 dev_err(dev->dev, "failed to configure rx channel\n"); 794 ret = -EINVAL; 795 goto error; 796 } 797 798 sg_init_table(dma->sg, 2); 799 dma->buf_mapped = false; 800 dma->xfer_in_progress = false; 801 dev->use_dma = true; 802 803 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n", 804 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx)); 805 806 return ret; 807 808 error: 809 if (ret != -EPROBE_DEFER) 810 dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n"); 811 if (dma->chan_rx) 812 dma_release_channel(dma->chan_rx); 813 if (dma->chan_tx) 814 dma_release_channel(dma->chan_tx); 815 return ret; 816 } 817 818 static int at91_init_twi_recovery_gpio(struct platform_device *pdev, 819 struct at91_twi_dev *dev) 820 { 821 struct i2c_bus_recovery_info *rinfo = &dev->rinfo; 822 823 rinfo->pinctrl = devm_pinctrl_get(&pdev->dev); 824 if (!rinfo->pinctrl || IS_ERR(rinfo->pinctrl)) { 825 dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n"); 826 return PTR_ERR(rinfo->pinctrl); 827 } 828 dev->adapter.bus_recovery_info = rinfo; 829 830 return 0; 831 } 832 833 static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap) 834 { 835 struct at91_twi_dev *dev = i2c_get_adapdata(adap); 836 837 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR); 838 if (!(dev->transfer_status & AT91_TWI_SDA)) { 839 dev_dbg(dev->dev, "SDA is down; sending bus clear command\n"); 840 if (dev->use_alt_cmd) { 841 unsigned int acr; 842 843 acr = at91_twi_read(dev, AT91_TWI_ACR); 844 acr &= ~AT91_TWI_ACR_DATAL_MASK; 845 at91_twi_write(dev, AT91_TWI_ACR, acr); 846 } 847 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR); 848 } 849 850 return 0; 851 } 852 853 static int at91_init_twi_recovery_info(struct platform_device *pdev, 854 struct at91_twi_dev *dev) 855 { 856 struct i2c_bus_recovery_info *rinfo = &dev->rinfo; 857 bool has_clear_cmd = dev->pdata->has_clear_cmd; 858 859 if (!has_clear_cmd) 860 return at91_init_twi_recovery_gpio(pdev, dev); 861 862 rinfo->recover_bus = at91_twi_recover_bus_cmd; 863 dev->adapter.bus_recovery_info = rinfo; 864 865 return 0; 866 } 867 868 int at91_twi_probe_master(struct platform_device *pdev, 869 u32 phy_addr, struct at91_twi_dev *dev) 870 { 871 int rc; 872 873 init_completion(&dev->cmd_complete); 874 875 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0, 876 dev_name(dev->dev), dev); 877 if (rc) { 878 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc); 879 return rc; 880 } 881 882 if (dev->dev->of_node) { 883 rc = at91_twi_configure_dma(dev, phy_addr); 884 if (rc == -EPROBE_DEFER) 885 return rc; 886 } 887 888 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 889 &dev->fifo_size)) { 890 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size); 891 } 892 893 dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node, 894 "i2c-digital-filter"); 895 896 dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node, 897 "i2c-analog-filter"); 898 at91_calc_twi_clock(dev); 899 900 rc = at91_init_twi_recovery_info(pdev, dev); 901 if (rc == -EPROBE_DEFER) 902 return rc; 903 904 dev->adapter.algo = &at91_twi_algorithm; 905 dev->adapter.quirks = &at91_twi_quirks; 906 907 return 0; 908 } 909