1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Trace Module (STM) infrastructure 4 * Copyright (c) 2014, Intel Corporation. 5 * 6 * STM class implements generic infrastructure for System Trace Module devices 7 * as defined in MIPI STPv2 specification. 8 */ 9 10 #include <linux/pm_runtime.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/compat.h> 16 #include <linux/kdev_t.h> 17 #include <linux/srcu.h> 18 #include <linux/slab.h> 19 #include <linux/stm.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/vmalloc.h> 23 #include "stm.h" 24 25 #include <uapi/linux/stm.h> 26 27 static unsigned int stm_core_up; 28 29 /* 30 * The SRCU here makes sure that STM device doesn't disappear from under a 31 * stm_source_write() caller, which may want to have as little overhead as 32 * possible. 33 */ 34 static struct srcu_struct stm_source_srcu; 35 36 static ssize_t masters_show(struct device *dev, 37 struct device_attribute *attr, 38 char *buf) 39 { 40 struct stm_device *stm = to_stm_device(dev); 41 int ret; 42 43 ret = sprintf(buf, "%u %u\n", stm->data->sw_start, stm->data->sw_end); 44 45 return ret; 46 } 47 48 static DEVICE_ATTR_RO(masters); 49 50 static ssize_t channels_show(struct device *dev, 51 struct device_attribute *attr, 52 char *buf) 53 { 54 struct stm_device *stm = to_stm_device(dev); 55 int ret; 56 57 ret = sprintf(buf, "%u\n", stm->data->sw_nchannels); 58 59 return ret; 60 } 61 62 static DEVICE_ATTR_RO(channels); 63 64 static ssize_t hw_override_show(struct device *dev, 65 struct device_attribute *attr, 66 char *buf) 67 { 68 struct stm_device *stm = to_stm_device(dev); 69 int ret; 70 71 ret = sprintf(buf, "%u\n", stm->data->hw_override); 72 73 return ret; 74 } 75 76 static DEVICE_ATTR_RO(hw_override); 77 78 static struct attribute *stm_attrs[] = { 79 &dev_attr_masters.attr, 80 &dev_attr_channels.attr, 81 &dev_attr_hw_override.attr, 82 NULL, 83 }; 84 85 ATTRIBUTE_GROUPS(stm); 86 87 static struct class stm_class = { 88 .name = "stm", 89 .dev_groups = stm_groups, 90 }; 91 92 static int stm_dev_match(struct device *dev, const void *data) 93 { 94 const char *name = data; 95 96 return sysfs_streq(name, dev_name(dev)); 97 } 98 99 /** 100 * stm_find_device() - find stm device by name 101 * @buf: character buffer containing the name 102 * 103 * This is called when either policy gets assigned to an stm device or an 104 * stm_source device gets linked to an stm device. 105 * 106 * This grabs device's reference (get_device()) and module reference, both 107 * of which the calling path needs to make sure to drop with stm_put_device(). 108 * 109 * Return: stm device pointer or null if lookup failed. 110 */ 111 struct stm_device *stm_find_device(const char *buf) 112 { 113 struct stm_device *stm; 114 struct device *dev; 115 116 if (!stm_core_up) 117 return NULL; 118 119 dev = class_find_device(&stm_class, NULL, buf, stm_dev_match); 120 if (!dev) 121 return NULL; 122 123 stm = to_stm_device(dev); 124 if (!try_module_get(stm->owner)) { 125 /* matches class_find_device() above */ 126 put_device(dev); 127 return NULL; 128 } 129 130 return stm; 131 } 132 133 /** 134 * stm_put_device() - drop references on the stm device 135 * @stm: stm device, previously acquired by stm_find_device() 136 * 137 * This drops the module reference and device reference taken by 138 * stm_find_device() or stm_char_open(). 139 */ 140 void stm_put_device(struct stm_device *stm) 141 { 142 module_put(stm->owner); 143 put_device(&stm->dev); 144 } 145 146 /* 147 * Internally we only care about software-writable masters here, that is the 148 * ones in the range [stm_data->sw_start..stm_data..sw_end], however we need 149 * original master numbers to be visible externally, since they are the ones 150 * that will appear in the STP stream. Thus, the internal bookkeeping uses 151 * $master - stm_data->sw_start to reference master descriptors and such. 152 */ 153 154 #define __stm_master(_s, _m) \ 155 ((_s)->masters[(_m) - (_s)->data->sw_start]) 156 157 static inline struct stp_master * 158 stm_master(struct stm_device *stm, unsigned int idx) 159 { 160 if (idx < stm->data->sw_start || idx > stm->data->sw_end) 161 return NULL; 162 163 return __stm_master(stm, idx); 164 } 165 166 static int stp_master_alloc(struct stm_device *stm, unsigned int idx) 167 { 168 struct stp_master *master; 169 170 master = kzalloc(struct_size(master, chan_map, 171 BITS_TO_LONGS(stm->data->sw_nchannels)), 172 GFP_ATOMIC); 173 if (!master) 174 return -ENOMEM; 175 176 master->nr_free = stm->data->sw_nchannels; 177 __stm_master(stm, idx) = master; 178 179 return 0; 180 } 181 182 static void stp_master_free(struct stm_device *stm, unsigned int idx) 183 { 184 struct stp_master *master = stm_master(stm, idx); 185 186 if (!master) 187 return; 188 189 __stm_master(stm, idx) = NULL; 190 kfree(master); 191 } 192 193 static void stm_output_claim(struct stm_device *stm, struct stm_output *output) 194 { 195 struct stp_master *master = stm_master(stm, output->master); 196 197 lockdep_assert_held(&stm->mc_lock); 198 lockdep_assert_held(&output->lock); 199 200 if (WARN_ON_ONCE(master->nr_free < output->nr_chans)) 201 return; 202 203 bitmap_allocate_region(&master->chan_map[0], output->channel, 204 ilog2(output->nr_chans)); 205 206 master->nr_free -= output->nr_chans; 207 } 208 209 static void 210 stm_output_disclaim(struct stm_device *stm, struct stm_output *output) 211 { 212 struct stp_master *master = stm_master(stm, output->master); 213 214 lockdep_assert_held(&stm->mc_lock); 215 lockdep_assert_held(&output->lock); 216 217 bitmap_release_region(&master->chan_map[0], output->channel, 218 ilog2(output->nr_chans)); 219 220 master->nr_free += output->nr_chans; 221 output->nr_chans = 0; 222 } 223 224 /* 225 * This is like bitmap_find_free_region(), except it can ignore @start bits 226 * at the beginning. 227 */ 228 static int find_free_channels(unsigned long *bitmap, unsigned int start, 229 unsigned int end, unsigned int width) 230 { 231 unsigned int pos; 232 int i; 233 234 for (pos = start; pos < end + 1; pos = ALIGN(pos, width)) { 235 pos = find_next_zero_bit(bitmap, end + 1, pos); 236 if (pos + width > end + 1) 237 break; 238 239 if (pos & (width - 1)) 240 continue; 241 242 for (i = 1; i < width && !test_bit(pos + i, bitmap); i++) 243 ; 244 if (i == width) 245 return pos; 246 247 /* step over [pos..pos+i) to continue search */ 248 pos += i; 249 } 250 251 return -1; 252 } 253 254 static int 255 stm_find_master_chan(struct stm_device *stm, unsigned int width, 256 unsigned int *mstart, unsigned int mend, 257 unsigned int *cstart, unsigned int cend) 258 { 259 struct stp_master *master; 260 unsigned int midx; 261 int pos, err; 262 263 for (midx = *mstart; midx <= mend; midx++) { 264 if (!stm_master(stm, midx)) { 265 err = stp_master_alloc(stm, midx); 266 if (err) 267 return err; 268 } 269 270 master = stm_master(stm, midx); 271 272 if (!master->nr_free) 273 continue; 274 275 pos = find_free_channels(master->chan_map, *cstart, cend, 276 width); 277 if (pos < 0) 278 continue; 279 280 *mstart = midx; 281 *cstart = pos; 282 return 0; 283 } 284 285 return -ENOSPC; 286 } 287 288 static int stm_output_assign(struct stm_device *stm, unsigned int width, 289 struct stp_policy_node *policy_node, 290 struct stm_output *output) 291 { 292 unsigned int midx, cidx, mend, cend; 293 int ret = -EINVAL; 294 295 if (width > stm->data->sw_nchannels) 296 return -EINVAL; 297 298 /* We no longer accept policy_node==NULL here */ 299 if (WARN_ON_ONCE(!policy_node)) 300 return -EINVAL; 301 302 /* 303 * Also, the caller holds reference to policy_node, so it won't 304 * disappear on us. 305 */ 306 stp_policy_node_get_ranges(policy_node, &midx, &mend, &cidx, &cend); 307 308 spin_lock(&stm->mc_lock); 309 spin_lock(&output->lock); 310 /* output is already assigned -- shouldn't happen */ 311 if (WARN_ON_ONCE(output->nr_chans)) 312 goto unlock; 313 314 ret = stm_find_master_chan(stm, width, &midx, mend, &cidx, cend); 315 if (ret < 0) 316 goto unlock; 317 318 output->master = midx; 319 output->channel = cidx; 320 output->nr_chans = width; 321 if (stm->pdrv->output_open) { 322 void *priv = stp_policy_node_priv(policy_node); 323 324 if (WARN_ON_ONCE(!priv)) 325 goto unlock; 326 327 /* configfs subsys mutex is held by the caller */ 328 ret = stm->pdrv->output_open(priv, output); 329 if (ret) 330 goto unlock; 331 } 332 333 stm_output_claim(stm, output); 334 dev_dbg(&stm->dev, "assigned %u:%u (+%u)\n", midx, cidx, width); 335 336 ret = 0; 337 unlock: 338 if (ret) 339 output->nr_chans = 0; 340 341 spin_unlock(&output->lock); 342 spin_unlock(&stm->mc_lock); 343 344 return ret; 345 } 346 347 static void stm_output_free(struct stm_device *stm, struct stm_output *output) 348 { 349 spin_lock(&stm->mc_lock); 350 spin_lock(&output->lock); 351 if (output->nr_chans) 352 stm_output_disclaim(stm, output); 353 if (stm->pdrv && stm->pdrv->output_close) 354 stm->pdrv->output_close(output); 355 spin_unlock(&output->lock); 356 spin_unlock(&stm->mc_lock); 357 } 358 359 static void stm_output_init(struct stm_output *output) 360 { 361 spin_lock_init(&output->lock); 362 } 363 364 static int major_match(struct device *dev, const void *data) 365 { 366 unsigned int major = *(unsigned int *)data; 367 368 return MAJOR(dev->devt) == major; 369 } 370 371 /* 372 * Framing protocol management 373 * Modules can implement STM protocol drivers and (un-)register them 374 * with the STM class framework. 375 */ 376 static struct list_head stm_pdrv_head; 377 static struct mutex stm_pdrv_mutex; 378 379 struct stm_pdrv_entry { 380 struct list_head entry; 381 const struct stm_protocol_driver *pdrv; 382 const struct config_item_type *node_type; 383 }; 384 385 static const struct stm_pdrv_entry * 386 __stm_lookup_protocol(const char *name) 387 { 388 struct stm_pdrv_entry *pe; 389 390 /* 391 * If no name is given (NULL or ""), fall back to "p_basic". 392 */ 393 if (!name || !*name) 394 name = "p_basic"; 395 396 list_for_each_entry(pe, &stm_pdrv_head, entry) { 397 if (!strcmp(name, pe->pdrv->name)) 398 return pe; 399 } 400 401 return NULL; 402 } 403 404 int stm_register_protocol(const struct stm_protocol_driver *pdrv) 405 { 406 struct stm_pdrv_entry *pe = NULL; 407 int ret = -ENOMEM; 408 409 mutex_lock(&stm_pdrv_mutex); 410 411 if (__stm_lookup_protocol(pdrv->name)) { 412 ret = -EEXIST; 413 goto unlock; 414 } 415 416 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 417 if (!pe) 418 goto unlock; 419 420 if (pdrv->policy_attr) { 421 pe->node_type = get_policy_node_type(pdrv->policy_attr); 422 if (!pe->node_type) 423 goto unlock; 424 } 425 426 list_add_tail(&pe->entry, &stm_pdrv_head); 427 pe->pdrv = pdrv; 428 429 ret = 0; 430 unlock: 431 mutex_unlock(&stm_pdrv_mutex); 432 433 if (ret) 434 kfree(pe); 435 436 return ret; 437 } 438 EXPORT_SYMBOL_GPL(stm_register_protocol); 439 440 void stm_unregister_protocol(const struct stm_protocol_driver *pdrv) 441 { 442 struct stm_pdrv_entry *pe, *iter; 443 444 mutex_lock(&stm_pdrv_mutex); 445 446 list_for_each_entry_safe(pe, iter, &stm_pdrv_head, entry) { 447 if (pe->pdrv == pdrv) { 448 list_del(&pe->entry); 449 450 if (pe->node_type) { 451 kfree(pe->node_type->ct_attrs); 452 kfree(pe->node_type); 453 } 454 kfree(pe); 455 break; 456 } 457 } 458 459 mutex_unlock(&stm_pdrv_mutex); 460 } 461 EXPORT_SYMBOL_GPL(stm_unregister_protocol); 462 463 static bool stm_get_protocol(const struct stm_protocol_driver *pdrv) 464 { 465 return try_module_get(pdrv->owner); 466 } 467 468 void stm_put_protocol(const struct stm_protocol_driver *pdrv) 469 { 470 module_put(pdrv->owner); 471 } 472 473 int stm_lookup_protocol(const char *name, 474 const struct stm_protocol_driver **pdrv, 475 const struct config_item_type **node_type) 476 { 477 const struct stm_pdrv_entry *pe; 478 479 mutex_lock(&stm_pdrv_mutex); 480 481 pe = __stm_lookup_protocol(name); 482 if (pe && pe->pdrv && stm_get_protocol(pe->pdrv)) { 483 *pdrv = pe->pdrv; 484 *node_type = pe->node_type; 485 } 486 487 mutex_unlock(&stm_pdrv_mutex); 488 489 return pe ? 0 : -ENOENT; 490 } 491 492 static int stm_char_open(struct inode *inode, struct file *file) 493 { 494 struct stm_file *stmf; 495 struct device *dev; 496 unsigned int major = imajor(inode); 497 int err = -ENOMEM; 498 499 dev = class_find_device(&stm_class, NULL, &major, major_match); 500 if (!dev) 501 return -ENODEV; 502 503 stmf = kzalloc(sizeof(*stmf), GFP_KERNEL); 504 if (!stmf) 505 goto err_put_device; 506 507 err = -ENODEV; 508 stm_output_init(&stmf->output); 509 stmf->stm = to_stm_device(dev); 510 511 if (!try_module_get(stmf->stm->owner)) 512 goto err_free; 513 514 file->private_data = stmf; 515 516 return nonseekable_open(inode, file); 517 518 err_free: 519 kfree(stmf); 520 err_put_device: 521 /* matches class_find_device() above */ 522 put_device(dev); 523 524 return err; 525 } 526 527 static int stm_char_release(struct inode *inode, struct file *file) 528 { 529 struct stm_file *stmf = file->private_data; 530 struct stm_device *stm = stmf->stm; 531 532 if (stm->data->unlink) 533 stm->data->unlink(stm->data, stmf->output.master, 534 stmf->output.channel); 535 536 stm_output_free(stm, &stmf->output); 537 538 /* 539 * matches the stm_char_open()'s 540 * class_find_device() + try_module_get() 541 */ 542 stm_put_device(stm); 543 kfree(stmf); 544 545 return 0; 546 } 547 548 static int 549 stm_assign_first_policy(struct stm_device *stm, struct stm_output *output, 550 char **ids, unsigned int width) 551 { 552 struct stp_policy_node *pn; 553 int err, n; 554 555 /* 556 * On success, stp_policy_node_lookup() will return holding the 557 * configfs subsystem mutex, which is then released in 558 * stp_policy_node_put(). This allows the pdrv->output_open() in 559 * stm_output_assign() to serialize against the attribute accessors. 560 */ 561 for (n = 0, pn = NULL; ids[n] && !pn; n++) 562 pn = stp_policy_node_lookup(stm, ids[n]); 563 564 if (!pn) 565 return -EINVAL; 566 567 err = stm_output_assign(stm, width, pn, output); 568 569 stp_policy_node_put(pn); 570 571 return err; 572 } 573 574 /** 575 * stm_data_write() - send the given payload as data packets 576 * @data: stm driver's data 577 * @m: STP master 578 * @c: STP channel 579 * @ts_first: timestamp the first packet 580 * @buf: data payload buffer 581 * @count: data payload size 582 */ 583 ssize_t notrace stm_data_write(struct stm_data *data, unsigned int m, 584 unsigned int c, bool ts_first, const void *buf, 585 size_t count) 586 { 587 unsigned int flags = ts_first ? STP_PACKET_TIMESTAMPED : 0; 588 ssize_t sz; 589 size_t pos; 590 591 for (pos = 0, sz = 0; pos < count; pos += sz) { 592 sz = min_t(unsigned int, count - pos, 8); 593 sz = data->packet(data, m, c, STP_PACKET_DATA, flags, sz, 594 &((u8 *)buf)[pos]); 595 if (sz <= 0) 596 break; 597 598 if (ts_first) { 599 flags = 0; 600 ts_first = false; 601 } 602 } 603 604 return sz < 0 ? sz : pos; 605 } 606 EXPORT_SYMBOL_GPL(stm_data_write); 607 608 static ssize_t notrace 609 stm_write(struct stm_device *stm, struct stm_output *output, 610 unsigned int chan, const char *buf, size_t count) 611 { 612 int err; 613 614 /* stm->pdrv is serialized against policy_mutex */ 615 if (!stm->pdrv) 616 return -ENODEV; 617 618 err = stm->pdrv->write(stm->data, output, chan, buf, count); 619 if (err < 0) 620 return err; 621 622 return err; 623 } 624 625 static ssize_t stm_char_write(struct file *file, const char __user *buf, 626 size_t count, loff_t *ppos) 627 { 628 struct stm_file *stmf = file->private_data; 629 struct stm_device *stm = stmf->stm; 630 char *kbuf; 631 int err; 632 633 if (count + 1 > PAGE_SIZE) 634 count = PAGE_SIZE - 1; 635 636 /* 637 * If no m/c have been assigned to this writer up to this 638 * point, try to use the task name and "default" policy entries. 639 */ 640 if (!stmf->output.nr_chans) { 641 char comm[sizeof(current->comm)]; 642 char *ids[] = { comm, "default", NULL }; 643 644 get_task_comm(comm, current); 645 646 err = stm_assign_first_policy(stmf->stm, &stmf->output, ids, 1); 647 /* 648 * EBUSY means that somebody else just assigned this 649 * output, which is just fine for write() 650 */ 651 if (err) 652 return err; 653 } 654 655 kbuf = kmalloc(count + 1, GFP_KERNEL); 656 if (!kbuf) 657 return -ENOMEM; 658 659 err = copy_from_user(kbuf, buf, count); 660 if (err) { 661 kfree(kbuf); 662 return -EFAULT; 663 } 664 665 pm_runtime_get_sync(&stm->dev); 666 667 count = stm_write(stm, &stmf->output, 0, kbuf, count); 668 669 pm_runtime_mark_last_busy(&stm->dev); 670 pm_runtime_put_autosuspend(&stm->dev); 671 kfree(kbuf); 672 673 return count; 674 } 675 676 static void stm_mmap_open(struct vm_area_struct *vma) 677 { 678 struct stm_file *stmf = vma->vm_file->private_data; 679 struct stm_device *stm = stmf->stm; 680 681 pm_runtime_get(&stm->dev); 682 } 683 684 static void stm_mmap_close(struct vm_area_struct *vma) 685 { 686 struct stm_file *stmf = vma->vm_file->private_data; 687 struct stm_device *stm = stmf->stm; 688 689 pm_runtime_mark_last_busy(&stm->dev); 690 pm_runtime_put_autosuspend(&stm->dev); 691 } 692 693 static const struct vm_operations_struct stm_mmap_vmops = { 694 .open = stm_mmap_open, 695 .close = stm_mmap_close, 696 }; 697 698 static int stm_char_mmap(struct file *file, struct vm_area_struct *vma) 699 { 700 struct stm_file *stmf = file->private_data; 701 struct stm_device *stm = stmf->stm; 702 unsigned long size, phys; 703 704 if (!stm->data->mmio_addr) 705 return -EOPNOTSUPP; 706 707 if (vma->vm_pgoff) 708 return -EINVAL; 709 710 size = vma->vm_end - vma->vm_start; 711 712 if (stmf->output.nr_chans * stm->data->sw_mmiosz != size) 713 return -EINVAL; 714 715 phys = stm->data->mmio_addr(stm->data, stmf->output.master, 716 stmf->output.channel, 717 stmf->output.nr_chans); 718 719 if (!phys) 720 return -EINVAL; 721 722 pm_runtime_get_sync(&stm->dev); 723 724 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 725 vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP; 726 vma->vm_ops = &stm_mmap_vmops; 727 vm_iomap_memory(vma, phys, size); 728 729 return 0; 730 } 731 732 static int stm_char_policy_set_ioctl(struct stm_file *stmf, void __user *arg) 733 { 734 struct stm_device *stm = stmf->stm; 735 struct stp_policy_id *id; 736 char *ids[] = { NULL, NULL }; 737 int ret = -EINVAL, wlimit = 1; 738 u32 size; 739 740 if (stmf->output.nr_chans) 741 return -EBUSY; 742 743 if (copy_from_user(&size, arg, sizeof(size))) 744 return -EFAULT; 745 746 if (size < sizeof(*id) || size >= PATH_MAX + sizeof(*id)) 747 return -EINVAL; 748 749 /* 750 * size + 1 to make sure the .id string at the bottom is terminated, 751 * which is also why memdup_user() is not useful here 752 */ 753 id = kzalloc(size + 1, GFP_KERNEL); 754 if (!id) 755 return -ENOMEM; 756 757 if (copy_from_user(id, arg, size)) { 758 ret = -EFAULT; 759 goto err_free; 760 } 761 762 if (id->__reserved_0 || id->__reserved_1) 763 goto err_free; 764 765 if (stm->data->sw_mmiosz) 766 wlimit = PAGE_SIZE / stm->data->sw_mmiosz; 767 768 if (id->width < 1 || id->width > wlimit) 769 goto err_free; 770 771 ids[0] = id->id; 772 ret = stm_assign_first_policy(stmf->stm, &stmf->output, ids, 773 id->width); 774 if (ret) 775 goto err_free; 776 777 if (stm->data->link) 778 ret = stm->data->link(stm->data, stmf->output.master, 779 stmf->output.channel); 780 781 if (ret) 782 stm_output_free(stmf->stm, &stmf->output); 783 784 err_free: 785 kfree(id); 786 787 return ret; 788 } 789 790 static int stm_char_policy_get_ioctl(struct stm_file *stmf, void __user *arg) 791 { 792 struct stp_policy_id id = { 793 .size = sizeof(id), 794 .master = stmf->output.master, 795 .channel = stmf->output.channel, 796 .width = stmf->output.nr_chans, 797 .__reserved_0 = 0, 798 .__reserved_1 = 0, 799 }; 800 801 return copy_to_user(arg, &id, id.size) ? -EFAULT : 0; 802 } 803 804 static long 805 stm_char_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 806 { 807 struct stm_file *stmf = file->private_data; 808 struct stm_data *stm_data = stmf->stm->data; 809 int err = -ENOTTY; 810 u64 options; 811 812 switch (cmd) { 813 case STP_POLICY_ID_SET: 814 err = stm_char_policy_set_ioctl(stmf, (void __user *)arg); 815 if (err) 816 return err; 817 818 return stm_char_policy_get_ioctl(stmf, (void __user *)arg); 819 820 case STP_POLICY_ID_GET: 821 return stm_char_policy_get_ioctl(stmf, (void __user *)arg); 822 823 case STP_SET_OPTIONS: 824 if (copy_from_user(&options, (u64 __user *)arg, sizeof(u64))) 825 return -EFAULT; 826 827 if (stm_data->set_options) 828 err = stm_data->set_options(stm_data, 829 stmf->output.master, 830 stmf->output.channel, 831 stmf->output.nr_chans, 832 options); 833 834 break; 835 default: 836 break; 837 } 838 839 return err; 840 } 841 842 #ifdef CONFIG_COMPAT 843 static long 844 stm_char_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 845 { 846 return stm_char_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 847 } 848 #else 849 #define stm_char_compat_ioctl NULL 850 #endif 851 852 static const struct file_operations stm_fops = { 853 .open = stm_char_open, 854 .release = stm_char_release, 855 .write = stm_char_write, 856 .mmap = stm_char_mmap, 857 .unlocked_ioctl = stm_char_ioctl, 858 .compat_ioctl = stm_char_compat_ioctl, 859 .llseek = no_llseek, 860 }; 861 862 static void stm_device_release(struct device *dev) 863 { 864 struct stm_device *stm = to_stm_device(dev); 865 866 vfree(stm); 867 } 868 869 int stm_register_device(struct device *parent, struct stm_data *stm_data, 870 struct module *owner) 871 { 872 struct stm_device *stm; 873 unsigned int nmasters; 874 int err = -ENOMEM; 875 876 if (!stm_core_up) 877 return -EPROBE_DEFER; 878 879 if (!stm_data->packet || !stm_data->sw_nchannels) 880 return -EINVAL; 881 882 nmasters = stm_data->sw_end - stm_data->sw_start + 1; 883 stm = vzalloc(sizeof(*stm) + nmasters * sizeof(void *)); 884 if (!stm) 885 return -ENOMEM; 886 887 stm->major = register_chrdev(0, stm_data->name, &stm_fops); 888 if (stm->major < 0) 889 goto err_free; 890 891 device_initialize(&stm->dev); 892 stm->dev.devt = MKDEV(stm->major, 0); 893 stm->dev.class = &stm_class; 894 stm->dev.parent = parent; 895 stm->dev.release = stm_device_release; 896 897 mutex_init(&stm->link_mutex); 898 spin_lock_init(&stm->link_lock); 899 INIT_LIST_HEAD(&stm->link_list); 900 901 /* initialize the object before it is accessible via sysfs */ 902 spin_lock_init(&stm->mc_lock); 903 mutex_init(&stm->policy_mutex); 904 stm->sw_nmasters = nmasters; 905 stm->owner = owner; 906 stm->data = stm_data; 907 stm_data->stm = stm; 908 909 err = kobject_set_name(&stm->dev.kobj, "%s", stm_data->name); 910 if (err) 911 goto err_device; 912 913 err = device_add(&stm->dev); 914 if (err) 915 goto err_device; 916 917 /* 918 * Use delayed autosuspend to avoid bouncing back and forth 919 * on recurring character device writes, with the initial 920 * delay time of 2 seconds. 921 */ 922 pm_runtime_no_callbacks(&stm->dev); 923 pm_runtime_use_autosuspend(&stm->dev); 924 pm_runtime_set_autosuspend_delay(&stm->dev, 2000); 925 pm_runtime_set_suspended(&stm->dev); 926 pm_runtime_enable(&stm->dev); 927 928 return 0; 929 930 err_device: 931 unregister_chrdev(stm->major, stm_data->name); 932 933 /* matches device_initialize() above */ 934 put_device(&stm->dev); 935 err_free: 936 vfree(stm); 937 938 return err; 939 } 940 EXPORT_SYMBOL_GPL(stm_register_device); 941 942 static int __stm_source_link_drop(struct stm_source_device *src, 943 struct stm_device *stm); 944 945 void stm_unregister_device(struct stm_data *stm_data) 946 { 947 struct stm_device *stm = stm_data->stm; 948 struct stm_source_device *src, *iter; 949 int i, ret; 950 951 pm_runtime_dont_use_autosuspend(&stm->dev); 952 pm_runtime_disable(&stm->dev); 953 954 mutex_lock(&stm->link_mutex); 955 list_for_each_entry_safe(src, iter, &stm->link_list, link_entry) { 956 ret = __stm_source_link_drop(src, stm); 957 /* 958 * src <-> stm link must not change under the same 959 * stm::link_mutex, so complain loudly if it has; 960 * also in this situation ret!=0 means this src is 961 * not connected to this stm and it should be otherwise 962 * safe to proceed with the tear-down of stm. 963 */ 964 WARN_ON_ONCE(ret); 965 } 966 mutex_unlock(&stm->link_mutex); 967 968 synchronize_srcu(&stm_source_srcu); 969 970 unregister_chrdev(stm->major, stm_data->name); 971 972 mutex_lock(&stm->policy_mutex); 973 if (stm->policy) 974 stp_policy_unbind(stm->policy); 975 mutex_unlock(&stm->policy_mutex); 976 977 for (i = stm->data->sw_start; i <= stm->data->sw_end; i++) 978 stp_master_free(stm, i); 979 980 device_unregister(&stm->dev); 981 stm_data->stm = NULL; 982 } 983 EXPORT_SYMBOL_GPL(stm_unregister_device); 984 985 /* 986 * stm::link_list access serialization uses a spinlock and a mutex; holding 987 * either of them guarantees that the list is stable; modification requires 988 * holding both of them. 989 * 990 * Lock ordering is as follows: 991 * stm::link_mutex 992 * stm::link_lock 993 * src::link_lock 994 */ 995 996 /** 997 * stm_source_link_add() - connect an stm_source device to an stm device 998 * @src: stm_source device 999 * @stm: stm device 1000 * 1001 * This function establishes a link from stm_source to an stm device so that 1002 * the former can send out trace data to the latter. 1003 * 1004 * Return: 0 on success, -errno otherwise. 1005 */ 1006 static int stm_source_link_add(struct stm_source_device *src, 1007 struct stm_device *stm) 1008 { 1009 char *ids[] = { NULL, "default", NULL }; 1010 int err = -ENOMEM; 1011 1012 mutex_lock(&stm->link_mutex); 1013 spin_lock(&stm->link_lock); 1014 spin_lock(&src->link_lock); 1015 1016 /* src->link is dereferenced under stm_source_srcu but not the list */ 1017 rcu_assign_pointer(src->link, stm); 1018 list_add_tail(&src->link_entry, &stm->link_list); 1019 1020 spin_unlock(&src->link_lock); 1021 spin_unlock(&stm->link_lock); 1022 mutex_unlock(&stm->link_mutex); 1023 1024 ids[0] = kstrdup(src->data->name, GFP_KERNEL); 1025 if (!ids[0]) 1026 goto fail_detach; 1027 1028 err = stm_assign_first_policy(stm, &src->output, ids, 1029 src->data->nr_chans); 1030 kfree(ids[0]); 1031 1032 if (err) 1033 goto fail_detach; 1034 1035 /* this is to notify the STM device that a new link has been made */ 1036 if (stm->data->link) 1037 err = stm->data->link(stm->data, src->output.master, 1038 src->output.channel); 1039 1040 if (err) 1041 goto fail_free_output; 1042 1043 /* this is to let the source carry out all necessary preparations */ 1044 if (src->data->link) 1045 src->data->link(src->data); 1046 1047 return 0; 1048 1049 fail_free_output: 1050 stm_output_free(stm, &src->output); 1051 1052 fail_detach: 1053 mutex_lock(&stm->link_mutex); 1054 spin_lock(&stm->link_lock); 1055 spin_lock(&src->link_lock); 1056 1057 rcu_assign_pointer(src->link, NULL); 1058 list_del_init(&src->link_entry); 1059 1060 spin_unlock(&src->link_lock); 1061 spin_unlock(&stm->link_lock); 1062 mutex_unlock(&stm->link_mutex); 1063 1064 return err; 1065 } 1066 1067 /** 1068 * __stm_source_link_drop() - detach stm_source from an stm device 1069 * @src: stm_source device 1070 * @stm: stm device 1071 * 1072 * If @stm is @src::link, disconnect them from one another and put the 1073 * reference on the @stm device. 1074 * 1075 * Caller must hold stm::link_mutex. 1076 */ 1077 static int __stm_source_link_drop(struct stm_source_device *src, 1078 struct stm_device *stm) 1079 { 1080 struct stm_device *link; 1081 int ret = 0; 1082 1083 lockdep_assert_held(&stm->link_mutex); 1084 1085 /* for stm::link_list modification, we hold both mutex and spinlock */ 1086 spin_lock(&stm->link_lock); 1087 spin_lock(&src->link_lock); 1088 link = srcu_dereference_check(src->link, &stm_source_srcu, 1); 1089 1090 /* 1091 * The linked device may have changed since we last looked, because 1092 * we weren't holding the src::link_lock back then; if this is the 1093 * case, tell the caller to retry. 1094 */ 1095 if (link != stm) { 1096 ret = -EAGAIN; 1097 goto unlock; 1098 } 1099 1100 stm_output_free(link, &src->output); 1101 list_del_init(&src->link_entry); 1102 pm_runtime_mark_last_busy(&link->dev); 1103 pm_runtime_put_autosuspend(&link->dev); 1104 /* matches stm_find_device() from stm_source_link_store() */ 1105 stm_put_device(link); 1106 rcu_assign_pointer(src->link, NULL); 1107 1108 unlock: 1109 spin_unlock(&src->link_lock); 1110 spin_unlock(&stm->link_lock); 1111 1112 /* 1113 * Call the unlink callbacks for both source and stm, when we know 1114 * that we have actually performed the unlinking. 1115 */ 1116 if (!ret) { 1117 if (src->data->unlink) 1118 src->data->unlink(src->data); 1119 1120 if (stm->data->unlink) 1121 stm->data->unlink(stm->data, src->output.master, 1122 src->output.channel); 1123 } 1124 1125 return ret; 1126 } 1127 1128 /** 1129 * stm_source_link_drop() - detach stm_source from its stm device 1130 * @src: stm_source device 1131 * 1132 * Unlinking means disconnecting from source's STM device; after this 1133 * writes will be unsuccessful until it is linked to a new STM device. 1134 * 1135 * This will happen on "stm_source_link" sysfs attribute write to undo 1136 * the existing link (if any), or on linked STM device's de-registration. 1137 */ 1138 static void stm_source_link_drop(struct stm_source_device *src) 1139 { 1140 struct stm_device *stm; 1141 int idx, ret; 1142 1143 retry: 1144 idx = srcu_read_lock(&stm_source_srcu); 1145 /* 1146 * The stm device will be valid for the duration of this 1147 * read section, but the link may change before we grab 1148 * the src::link_lock in __stm_source_link_drop(). 1149 */ 1150 stm = srcu_dereference(src->link, &stm_source_srcu); 1151 1152 ret = 0; 1153 if (stm) { 1154 mutex_lock(&stm->link_mutex); 1155 ret = __stm_source_link_drop(src, stm); 1156 mutex_unlock(&stm->link_mutex); 1157 } 1158 1159 srcu_read_unlock(&stm_source_srcu, idx); 1160 1161 /* if it did change, retry */ 1162 if (ret == -EAGAIN) 1163 goto retry; 1164 } 1165 1166 static ssize_t stm_source_link_show(struct device *dev, 1167 struct device_attribute *attr, 1168 char *buf) 1169 { 1170 struct stm_source_device *src = to_stm_source_device(dev); 1171 struct stm_device *stm; 1172 int idx, ret; 1173 1174 idx = srcu_read_lock(&stm_source_srcu); 1175 stm = srcu_dereference(src->link, &stm_source_srcu); 1176 ret = sprintf(buf, "%s\n", 1177 stm ? dev_name(&stm->dev) : "<none>"); 1178 srcu_read_unlock(&stm_source_srcu, idx); 1179 1180 return ret; 1181 } 1182 1183 static ssize_t stm_source_link_store(struct device *dev, 1184 struct device_attribute *attr, 1185 const char *buf, size_t count) 1186 { 1187 struct stm_source_device *src = to_stm_source_device(dev); 1188 struct stm_device *link; 1189 int err; 1190 1191 stm_source_link_drop(src); 1192 1193 link = stm_find_device(buf); 1194 if (!link) 1195 return -EINVAL; 1196 1197 pm_runtime_get(&link->dev); 1198 1199 err = stm_source_link_add(src, link); 1200 if (err) { 1201 pm_runtime_put_autosuspend(&link->dev); 1202 /* matches the stm_find_device() above */ 1203 stm_put_device(link); 1204 } 1205 1206 return err ? : count; 1207 } 1208 1209 static DEVICE_ATTR_RW(stm_source_link); 1210 1211 static struct attribute *stm_source_attrs[] = { 1212 &dev_attr_stm_source_link.attr, 1213 NULL, 1214 }; 1215 1216 ATTRIBUTE_GROUPS(stm_source); 1217 1218 static struct class stm_source_class = { 1219 .name = "stm_source", 1220 .dev_groups = stm_source_groups, 1221 }; 1222 1223 static void stm_source_device_release(struct device *dev) 1224 { 1225 struct stm_source_device *src = to_stm_source_device(dev); 1226 1227 kfree(src); 1228 } 1229 1230 /** 1231 * stm_source_register_device() - register an stm_source device 1232 * @parent: parent device 1233 * @data: device description structure 1234 * 1235 * This will create a device of stm_source class that can write 1236 * data to an stm device once linked. 1237 * 1238 * Return: 0 on success, -errno otherwise. 1239 */ 1240 int stm_source_register_device(struct device *parent, 1241 struct stm_source_data *data) 1242 { 1243 struct stm_source_device *src; 1244 int err; 1245 1246 if (!stm_core_up) 1247 return -EPROBE_DEFER; 1248 1249 src = kzalloc(sizeof(*src), GFP_KERNEL); 1250 if (!src) 1251 return -ENOMEM; 1252 1253 device_initialize(&src->dev); 1254 src->dev.class = &stm_source_class; 1255 src->dev.parent = parent; 1256 src->dev.release = stm_source_device_release; 1257 1258 err = kobject_set_name(&src->dev.kobj, "%s", data->name); 1259 if (err) 1260 goto err; 1261 1262 pm_runtime_no_callbacks(&src->dev); 1263 pm_runtime_forbid(&src->dev); 1264 1265 err = device_add(&src->dev); 1266 if (err) 1267 goto err; 1268 1269 stm_output_init(&src->output); 1270 spin_lock_init(&src->link_lock); 1271 INIT_LIST_HEAD(&src->link_entry); 1272 src->data = data; 1273 data->src = src; 1274 1275 return 0; 1276 1277 err: 1278 put_device(&src->dev); 1279 kfree(src); 1280 1281 return err; 1282 } 1283 EXPORT_SYMBOL_GPL(stm_source_register_device); 1284 1285 /** 1286 * stm_source_unregister_device() - unregister an stm_source device 1287 * @data: device description that was used to register the device 1288 * 1289 * This will remove a previously created stm_source device from the system. 1290 */ 1291 void stm_source_unregister_device(struct stm_source_data *data) 1292 { 1293 struct stm_source_device *src = data->src; 1294 1295 stm_source_link_drop(src); 1296 1297 device_unregister(&src->dev); 1298 } 1299 EXPORT_SYMBOL_GPL(stm_source_unregister_device); 1300 1301 int notrace stm_source_write(struct stm_source_data *data, 1302 unsigned int chan, 1303 const char *buf, size_t count) 1304 { 1305 struct stm_source_device *src = data->src; 1306 struct stm_device *stm; 1307 int idx; 1308 1309 if (!src->output.nr_chans) 1310 return -ENODEV; 1311 1312 if (chan >= src->output.nr_chans) 1313 return -EINVAL; 1314 1315 idx = srcu_read_lock(&stm_source_srcu); 1316 1317 stm = srcu_dereference(src->link, &stm_source_srcu); 1318 if (stm) 1319 count = stm_write(stm, &src->output, chan, buf, count); 1320 else 1321 count = -ENODEV; 1322 1323 srcu_read_unlock(&stm_source_srcu, idx); 1324 1325 return count; 1326 } 1327 EXPORT_SYMBOL_GPL(stm_source_write); 1328 1329 static int __init stm_core_init(void) 1330 { 1331 int err; 1332 1333 err = class_register(&stm_class); 1334 if (err) 1335 return err; 1336 1337 err = class_register(&stm_source_class); 1338 if (err) 1339 goto err_stm; 1340 1341 err = stp_configfs_init(); 1342 if (err) 1343 goto err_src; 1344 1345 init_srcu_struct(&stm_source_srcu); 1346 INIT_LIST_HEAD(&stm_pdrv_head); 1347 mutex_init(&stm_pdrv_mutex); 1348 1349 /* 1350 * So as to not confuse existing users with a requirement 1351 * to load yet another module, do it here. 1352 */ 1353 if (IS_ENABLED(CONFIG_STM_PROTO_BASIC)) 1354 (void)request_module_nowait("stm_p_basic"); 1355 stm_core_up++; 1356 1357 return 0; 1358 1359 err_src: 1360 class_unregister(&stm_source_class); 1361 err_stm: 1362 class_unregister(&stm_class); 1363 1364 return err; 1365 } 1366 1367 module_init(stm_core_init); 1368 1369 static void __exit stm_core_exit(void) 1370 { 1371 cleanup_srcu_struct(&stm_source_srcu); 1372 class_unregister(&stm_source_class); 1373 class_unregister(&stm_class); 1374 stp_configfs_exit(); 1375 } 1376 1377 module_exit(stm_core_exit); 1378 1379 MODULE_LICENSE("GPL v2"); 1380 MODULE_DESCRIPTION("System Trace Module device class"); 1381 MODULE_AUTHOR("Alexander Shishkin <alexander.shishkin@linux.intel.com>"); 1382