xref: /openbmc/linux/drivers/hwtracing/stm/core.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Trace Module (STM) infrastructure
4  * Copyright (c) 2014, Intel Corporation.
5  *
6  * STM class implements generic infrastructure for  System Trace Module devices
7  * as defined in MIPI STPv2 specification.
8  */
9 
10 #include <linux/pm_runtime.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/compat.h>
16 #include <linux/kdev_t.h>
17 #include <linux/srcu.h>
18 #include <linux/slab.h>
19 #include <linux/stm.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/vmalloc.h>
23 #include "stm.h"
24 
25 #include <uapi/linux/stm.h>
26 
27 static unsigned int stm_core_up;
28 
29 /*
30  * The SRCU here makes sure that STM device doesn't disappear from under a
31  * stm_source_write() caller, which may want to have as little overhead as
32  * possible.
33  */
34 static struct srcu_struct stm_source_srcu;
35 
36 static ssize_t masters_show(struct device *dev,
37 			    struct device_attribute *attr,
38 			    char *buf)
39 {
40 	struct stm_device *stm = to_stm_device(dev);
41 	int ret;
42 
43 	ret = sprintf(buf, "%u %u\n", stm->data->sw_start, stm->data->sw_end);
44 
45 	return ret;
46 }
47 
48 static DEVICE_ATTR_RO(masters);
49 
50 static ssize_t channels_show(struct device *dev,
51 			     struct device_attribute *attr,
52 			     char *buf)
53 {
54 	struct stm_device *stm = to_stm_device(dev);
55 	int ret;
56 
57 	ret = sprintf(buf, "%u\n", stm->data->sw_nchannels);
58 
59 	return ret;
60 }
61 
62 static DEVICE_ATTR_RO(channels);
63 
64 static ssize_t hw_override_show(struct device *dev,
65 				struct device_attribute *attr,
66 				char *buf)
67 {
68 	struct stm_device *stm = to_stm_device(dev);
69 	int ret;
70 
71 	ret = sprintf(buf, "%u\n", stm->data->hw_override);
72 
73 	return ret;
74 }
75 
76 static DEVICE_ATTR_RO(hw_override);
77 
78 static struct attribute *stm_attrs[] = {
79 	&dev_attr_masters.attr,
80 	&dev_attr_channels.attr,
81 	&dev_attr_hw_override.attr,
82 	NULL,
83 };
84 
85 ATTRIBUTE_GROUPS(stm);
86 
87 static struct class stm_class = {
88 	.name		= "stm",
89 	.dev_groups	= stm_groups,
90 };
91 
92 static int stm_dev_match(struct device *dev, const void *data)
93 {
94 	const char *name = data;
95 
96 	return sysfs_streq(name, dev_name(dev));
97 }
98 
99 /**
100  * stm_find_device() - find stm device by name
101  * @buf:	character buffer containing the name
102  *
103  * This is called when either policy gets assigned to an stm device or an
104  * stm_source device gets linked to an stm device.
105  *
106  * This grabs device's reference (get_device()) and module reference, both
107  * of which the calling path needs to make sure to drop with stm_put_device().
108  *
109  * Return:	stm device pointer or null if lookup failed.
110  */
111 struct stm_device *stm_find_device(const char *buf)
112 {
113 	struct stm_device *stm;
114 	struct device *dev;
115 
116 	if (!stm_core_up)
117 		return NULL;
118 
119 	dev = class_find_device(&stm_class, NULL, buf, stm_dev_match);
120 	if (!dev)
121 		return NULL;
122 
123 	stm = to_stm_device(dev);
124 	if (!try_module_get(stm->owner)) {
125 		/* matches class_find_device() above */
126 		put_device(dev);
127 		return NULL;
128 	}
129 
130 	return stm;
131 }
132 
133 /**
134  * stm_put_device() - drop references on the stm device
135  * @stm:	stm device, previously acquired by stm_find_device()
136  *
137  * This drops the module reference and device reference taken by
138  * stm_find_device() or stm_char_open().
139  */
140 void stm_put_device(struct stm_device *stm)
141 {
142 	module_put(stm->owner);
143 	put_device(&stm->dev);
144 }
145 
146 /*
147  * Internally we only care about software-writable masters here, that is the
148  * ones in the range [stm_data->sw_start..stm_data..sw_end], however we need
149  * original master numbers to be visible externally, since they are the ones
150  * that will appear in the STP stream. Thus, the internal bookkeeping uses
151  * $master - stm_data->sw_start to reference master descriptors and such.
152  */
153 
154 #define __stm_master(_s, _m)				\
155 	((_s)->masters[(_m) - (_s)->data->sw_start])
156 
157 static inline struct stp_master *
158 stm_master(struct stm_device *stm, unsigned int idx)
159 {
160 	if (idx < stm->data->sw_start || idx > stm->data->sw_end)
161 		return NULL;
162 
163 	return __stm_master(stm, idx);
164 }
165 
166 static int stp_master_alloc(struct stm_device *stm, unsigned int idx)
167 {
168 	struct stp_master *master;
169 	size_t size;
170 
171 	size = ALIGN(stm->data->sw_nchannels, 8) / 8;
172 	size += sizeof(struct stp_master);
173 	master = kzalloc(size, GFP_ATOMIC);
174 	if (!master)
175 		return -ENOMEM;
176 
177 	master->nr_free = stm->data->sw_nchannels;
178 	__stm_master(stm, idx) = master;
179 
180 	return 0;
181 }
182 
183 static void stp_master_free(struct stm_device *stm, unsigned int idx)
184 {
185 	struct stp_master *master = stm_master(stm, idx);
186 
187 	if (!master)
188 		return;
189 
190 	__stm_master(stm, idx) = NULL;
191 	kfree(master);
192 }
193 
194 static void stm_output_claim(struct stm_device *stm, struct stm_output *output)
195 {
196 	struct stp_master *master = stm_master(stm, output->master);
197 
198 	lockdep_assert_held(&stm->mc_lock);
199 	lockdep_assert_held(&output->lock);
200 
201 	if (WARN_ON_ONCE(master->nr_free < output->nr_chans))
202 		return;
203 
204 	bitmap_allocate_region(&master->chan_map[0], output->channel,
205 			       ilog2(output->nr_chans));
206 
207 	master->nr_free -= output->nr_chans;
208 }
209 
210 static void
211 stm_output_disclaim(struct stm_device *stm, struct stm_output *output)
212 {
213 	struct stp_master *master = stm_master(stm, output->master);
214 
215 	lockdep_assert_held(&stm->mc_lock);
216 	lockdep_assert_held(&output->lock);
217 
218 	bitmap_release_region(&master->chan_map[0], output->channel,
219 			      ilog2(output->nr_chans));
220 
221 	output->nr_chans = 0;
222 	master->nr_free += output->nr_chans;
223 }
224 
225 /*
226  * This is like bitmap_find_free_region(), except it can ignore @start bits
227  * at the beginning.
228  */
229 static int find_free_channels(unsigned long *bitmap, unsigned int start,
230 			      unsigned int end, unsigned int width)
231 {
232 	unsigned int pos;
233 	int i;
234 
235 	for (pos = start; pos < end + 1; pos = ALIGN(pos, width)) {
236 		pos = find_next_zero_bit(bitmap, end + 1, pos);
237 		if (pos + width > end + 1)
238 			break;
239 
240 		if (pos & (width - 1))
241 			continue;
242 
243 		for (i = 1; i < width && !test_bit(pos + i, bitmap); i++)
244 			;
245 		if (i == width)
246 			return pos;
247 	}
248 
249 	return -1;
250 }
251 
252 static int
253 stm_find_master_chan(struct stm_device *stm, unsigned int width,
254 		     unsigned int *mstart, unsigned int mend,
255 		     unsigned int *cstart, unsigned int cend)
256 {
257 	struct stp_master *master;
258 	unsigned int midx;
259 	int pos, err;
260 
261 	for (midx = *mstart; midx <= mend; midx++) {
262 		if (!stm_master(stm, midx)) {
263 			err = stp_master_alloc(stm, midx);
264 			if (err)
265 				return err;
266 		}
267 
268 		master = stm_master(stm, midx);
269 
270 		if (!master->nr_free)
271 			continue;
272 
273 		pos = find_free_channels(master->chan_map, *cstart, cend,
274 					 width);
275 		if (pos < 0)
276 			continue;
277 
278 		*mstart = midx;
279 		*cstart = pos;
280 		return 0;
281 	}
282 
283 	return -ENOSPC;
284 }
285 
286 static int stm_output_assign(struct stm_device *stm, unsigned int width,
287 			     struct stp_policy_node *policy_node,
288 			     struct stm_output *output)
289 {
290 	unsigned int midx, cidx, mend, cend;
291 	int ret = -EINVAL;
292 
293 	if (width > stm->data->sw_nchannels)
294 		return -EINVAL;
295 
296 	/* We no longer accept policy_node==NULL here */
297 	if (WARN_ON_ONCE(!policy_node))
298 		return -EINVAL;
299 
300 	/*
301 	 * Also, the caller holds reference to policy_node, so it won't
302 	 * disappear on us.
303 	 */
304 	stp_policy_node_get_ranges(policy_node, &midx, &mend, &cidx, &cend);
305 
306 	spin_lock(&stm->mc_lock);
307 	spin_lock(&output->lock);
308 	/* output is already assigned -- shouldn't happen */
309 	if (WARN_ON_ONCE(output->nr_chans))
310 		goto unlock;
311 
312 	ret = stm_find_master_chan(stm, width, &midx, mend, &cidx, cend);
313 	if (ret < 0)
314 		goto unlock;
315 
316 	output->master = midx;
317 	output->channel = cidx;
318 	output->nr_chans = width;
319 	if (stm->pdrv->output_open) {
320 		void *priv = stp_policy_node_priv(policy_node);
321 
322 		if (WARN_ON_ONCE(!priv))
323 			goto unlock;
324 
325 		/* configfs subsys mutex is held by the caller */
326 		ret = stm->pdrv->output_open(priv, output);
327 		if (ret)
328 			goto unlock;
329 	}
330 
331 	stm_output_claim(stm, output);
332 	dev_dbg(&stm->dev, "assigned %u:%u (+%u)\n", midx, cidx, width);
333 
334 	ret = 0;
335 unlock:
336 	if (ret)
337 		output->nr_chans = 0;
338 
339 	spin_unlock(&output->lock);
340 	spin_unlock(&stm->mc_lock);
341 
342 	return ret;
343 }
344 
345 static void stm_output_free(struct stm_device *stm, struct stm_output *output)
346 {
347 	spin_lock(&stm->mc_lock);
348 	spin_lock(&output->lock);
349 	if (output->nr_chans)
350 		stm_output_disclaim(stm, output);
351 	if (stm->pdrv && stm->pdrv->output_close)
352 		stm->pdrv->output_close(output);
353 	spin_unlock(&output->lock);
354 	spin_unlock(&stm->mc_lock);
355 }
356 
357 static void stm_output_init(struct stm_output *output)
358 {
359 	spin_lock_init(&output->lock);
360 }
361 
362 static int major_match(struct device *dev, const void *data)
363 {
364 	unsigned int major = *(unsigned int *)data;
365 
366 	return MAJOR(dev->devt) == major;
367 }
368 
369 /*
370  * Framing protocol management
371  * Modules can implement STM protocol drivers and (un-)register them
372  * with the STM class framework.
373  */
374 static struct list_head stm_pdrv_head;
375 static struct mutex stm_pdrv_mutex;
376 
377 struct stm_pdrv_entry {
378 	struct list_head			entry;
379 	const struct stm_protocol_driver	*pdrv;
380 	const struct config_item_type		*node_type;
381 };
382 
383 static const struct stm_pdrv_entry *
384 __stm_lookup_protocol(const char *name)
385 {
386 	struct stm_pdrv_entry *pe;
387 
388 	/*
389 	 * If no name is given (NULL or ""), fall back to "p_basic".
390 	 */
391 	if (!name || !*name)
392 		name = "p_basic";
393 
394 	list_for_each_entry(pe, &stm_pdrv_head, entry) {
395 		if (!strcmp(name, pe->pdrv->name))
396 			return pe;
397 	}
398 
399 	return NULL;
400 }
401 
402 int stm_register_protocol(const struct stm_protocol_driver *pdrv)
403 {
404 	struct stm_pdrv_entry *pe = NULL;
405 	int ret = -ENOMEM;
406 
407 	mutex_lock(&stm_pdrv_mutex);
408 
409 	if (__stm_lookup_protocol(pdrv->name)) {
410 		ret = -EEXIST;
411 		goto unlock;
412 	}
413 
414 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
415 	if (!pe)
416 		goto unlock;
417 
418 	if (pdrv->policy_attr) {
419 		pe->node_type = get_policy_node_type(pdrv->policy_attr);
420 		if (!pe->node_type)
421 			goto unlock;
422 	}
423 
424 	list_add_tail(&pe->entry, &stm_pdrv_head);
425 	pe->pdrv = pdrv;
426 
427 	ret = 0;
428 unlock:
429 	mutex_unlock(&stm_pdrv_mutex);
430 
431 	if (ret)
432 		kfree(pe);
433 
434 	return ret;
435 }
436 EXPORT_SYMBOL_GPL(stm_register_protocol);
437 
438 void stm_unregister_protocol(const struct stm_protocol_driver *pdrv)
439 {
440 	struct stm_pdrv_entry *pe, *iter;
441 
442 	mutex_lock(&stm_pdrv_mutex);
443 
444 	list_for_each_entry_safe(pe, iter, &stm_pdrv_head, entry) {
445 		if (pe->pdrv == pdrv) {
446 			list_del(&pe->entry);
447 
448 			if (pe->node_type) {
449 				kfree(pe->node_type->ct_attrs);
450 				kfree(pe->node_type);
451 			}
452 			kfree(pe);
453 			break;
454 		}
455 	}
456 
457 	mutex_unlock(&stm_pdrv_mutex);
458 }
459 EXPORT_SYMBOL_GPL(stm_unregister_protocol);
460 
461 static bool stm_get_protocol(const struct stm_protocol_driver *pdrv)
462 {
463 	return try_module_get(pdrv->owner);
464 }
465 
466 void stm_put_protocol(const struct stm_protocol_driver *pdrv)
467 {
468 	module_put(pdrv->owner);
469 }
470 
471 int stm_lookup_protocol(const char *name,
472 			const struct stm_protocol_driver **pdrv,
473 			const struct config_item_type **node_type)
474 {
475 	const struct stm_pdrv_entry *pe;
476 
477 	mutex_lock(&stm_pdrv_mutex);
478 
479 	pe = __stm_lookup_protocol(name);
480 	if (pe && pe->pdrv && stm_get_protocol(pe->pdrv)) {
481 		*pdrv = pe->pdrv;
482 		*node_type = pe->node_type;
483 	}
484 
485 	mutex_unlock(&stm_pdrv_mutex);
486 
487 	return pe ? 0 : -ENOENT;
488 }
489 
490 static int stm_char_open(struct inode *inode, struct file *file)
491 {
492 	struct stm_file *stmf;
493 	struct device *dev;
494 	unsigned int major = imajor(inode);
495 	int err = -ENOMEM;
496 
497 	dev = class_find_device(&stm_class, NULL, &major, major_match);
498 	if (!dev)
499 		return -ENODEV;
500 
501 	stmf = kzalloc(sizeof(*stmf), GFP_KERNEL);
502 	if (!stmf)
503 		goto err_put_device;
504 
505 	err = -ENODEV;
506 	stm_output_init(&stmf->output);
507 	stmf->stm = to_stm_device(dev);
508 
509 	if (!try_module_get(stmf->stm->owner))
510 		goto err_free;
511 
512 	file->private_data = stmf;
513 
514 	return nonseekable_open(inode, file);
515 
516 err_free:
517 	kfree(stmf);
518 err_put_device:
519 	/* matches class_find_device() above */
520 	put_device(dev);
521 
522 	return err;
523 }
524 
525 static int stm_char_release(struct inode *inode, struct file *file)
526 {
527 	struct stm_file *stmf = file->private_data;
528 	struct stm_device *stm = stmf->stm;
529 
530 	if (stm->data->unlink)
531 		stm->data->unlink(stm->data, stmf->output.master,
532 				  stmf->output.channel);
533 
534 	stm_output_free(stm, &stmf->output);
535 
536 	/*
537 	 * matches the stm_char_open()'s
538 	 * class_find_device() + try_module_get()
539 	 */
540 	stm_put_device(stm);
541 	kfree(stmf);
542 
543 	return 0;
544 }
545 
546 static int
547 stm_assign_first_policy(struct stm_device *stm, struct stm_output *output,
548 			char **ids, unsigned int width)
549 {
550 	struct stp_policy_node *pn;
551 	int err, n;
552 
553 	/*
554 	 * On success, stp_policy_node_lookup() will return holding the
555 	 * configfs subsystem mutex, which is then released in
556 	 * stp_policy_node_put(). This allows the pdrv->output_open() in
557 	 * stm_output_assign() to serialize against the attribute accessors.
558 	 */
559 	for (n = 0, pn = NULL; ids[n] && !pn; n++)
560 		pn = stp_policy_node_lookup(stm, ids[n]);
561 
562 	if (!pn)
563 		return -EINVAL;
564 
565 	err = stm_output_assign(stm, width, pn, output);
566 
567 	stp_policy_node_put(pn);
568 
569 	return err;
570 }
571 
572 /**
573  * stm_data_write() - send the given payload as data packets
574  * @data:	stm driver's data
575  * @m:		STP master
576  * @c:		STP channel
577  * @ts_first:	timestamp the first packet
578  * @buf:	data payload buffer
579  * @count:	data payload size
580  */
581 ssize_t notrace stm_data_write(struct stm_data *data, unsigned int m,
582 			       unsigned int c, bool ts_first, const void *buf,
583 			       size_t count)
584 {
585 	unsigned int flags = ts_first ? STP_PACKET_TIMESTAMPED : 0;
586 	ssize_t sz;
587 	size_t pos;
588 
589 	for (pos = 0, sz = 0; pos < count; pos += sz) {
590 		sz = min_t(unsigned int, count - pos, 8);
591 		sz = data->packet(data, m, c, STP_PACKET_DATA, flags, sz,
592 				  &((u8 *)buf)[pos]);
593 		if (sz <= 0)
594 			break;
595 
596 		if (ts_first) {
597 			flags = 0;
598 			ts_first = false;
599 		}
600 	}
601 
602 	return sz < 0 ? sz : pos;
603 }
604 EXPORT_SYMBOL_GPL(stm_data_write);
605 
606 static ssize_t notrace
607 stm_write(struct stm_device *stm, struct stm_output *output,
608 	  unsigned int chan, const char *buf, size_t count)
609 {
610 	int err;
611 
612 	/* stm->pdrv is serialized against policy_mutex */
613 	if (!stm->pdrv)
614 		return -ENODEV;
615 
616 	err = stm->pdrv->write(stm->data, output, chan, buf, count);
617 	if (err < 0)
618 		return err;
619 
620 	return err;
621 }
622 
623 static ssize_t stm_char_write(struct file *file, const char __user *buf,
624 			      size_t count, loff_t *ppos)
625 {
626 	struct stm_file *stmf = file->private_data;
627 	struct stm_device *stm = stmf->stm;
628 	char *kbuf;
629 	int err;
630 
631 	if (count + 1 > PAGE_SIZE)
632 		count = PAGE_SIZE - 1;
633 
634 	/*
635 	 * If no m/c have been assigned to this writer up to this
636 	 * point, try to use the task name and "default" policy entries.
637 	 */
638 	if (!stmf->output.nr_chans) {
639 		char comm[sizeof(current->comm)];
640 		char *ids[] = { comm, "default", NULL };
641 
642 		get_task_comm(comm, current);
643 
644 		err = stm_assign_first_policy(stmf->stm, &stmf->output, ids, 1);
645 		/*
646 		 * EBUSY means that somebody else just assigned this
647 		 * output, which is just fine for write()
648 		 */
649 		if (err)
650 			return err;
651 	}
652 
653 	kbuf = kmalloc(count + 1, GFP_KERNEL);
654 	if (!kbuf)
655 		return -ENOMEM;
656 
657 	err = copy_from_user(kbuf, buf, count);
658 	if (err) {
659 		kfree(kbuf);
660 		return -EFAULT;
661 	}
662 
663 	pm_runtime_get_sync(&stm->dev);
664 
665 	count = stm_write(stm, &stmf->output, 0, kbuf, count);
666 
667 	pm_runtime_mark_last_busy(&stm->dev);
668 	pm_runtime_put_autosuspend(&stm->dev);
669 	kfree(kbuf);
670 
671 	return count;
672 }
673 
674 static void stm_mmap_open(struct vm_area_struct *vma)
675 {
676 	struct stm_file *stmf = vma->vm_file->private_data;
677 	struct stm_device *stm = stmf->stm;
678 
679 	pm_runtime_get(&stm->dev);
680 }
681 
682 static void stm_mmap_close(struct vm_area_struct *vma)
683 {
684 	struct stm_file *stmf = vma->vm_file->private_data;
685 	struct stm_device *stm = stmf->stm;
686 
687 	pm_runtime_mark_last_busy(&stm->dev);
688 	pm_runtime_put_autosuspend(&stm->dev);
689 }
690 
691 static const struct vm_operations_struct stm_mmap_vmops = {
692 	.open	= stm_mmap_open,
693 	.close	= stm_mmap_close,
694 };
695 
696 static int stm_char_mmap(struct file *file, struct vm_area_struct *vma)
697 {
698 	struct stm_file *stmf = file->private_data;
699 	struct stm_device *stm = stmf->stm;
700 	unsigned long size, phys;
701 
702 	if (!stm->data->mmio_addr)
703 		return -EOPNOTSUPP;
704 
705 	if (vma->vm_pgoff)
706 		return -EINVAL;
707 
708 	size = vma->vm_end - vma->vm_start;
709 
710 	if (stmf->output.nr_chans * stm->data->sw_mmiosz != size)
711 		return -EINVAL;
712 
713 	phys = stm->data->mmio_addr(stm->data, stmf->output.master,
714 				    stmf->output.channel,
715 				    stmf->output.nr_chans);
716 
717 	if (!phys)
718 		return -EINVAL;
719 
720 	pm_runtime_get_sync(&stm->dev);
721 
722 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
723 	vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP;
724 	vma->vm_ops = &stm_mmap_vmops;
725 	vm_iomap_memory(vma, phys, size);
726 
727 	return 0;
728 }
729 
730 static int stm_char_policy_set_ioctl(struct stm_file *stmf, void __user *arg)
731 {
732 	struct stm_device *stm = stmf->stm;
733 	struct stp_policy_id *id;
734 	char *ids[] = { NULL, NULL };
735 	int ret = -EINVAL;
736 	u32 size;
737 
738 	if (stmf->output.nr_chans)
739 		return -EBUSY;
740 
741 	if (copy_from_user(&size, arg, sizeof(size)))
742 		return -EFAULT;
743 
744 	if (size < sizeof(*id) || size >= PATH_MAX + sizeof(*id))
745 		return -EINVAL;
746 
747 	/*
748 	 * size + 1 to make sure the .id string at the bottom is terminated,
749 	 * which is also why memdup_user() is not useful here
750 	 */
751 	id = kzalloc(size + 1, GFP_KERNEL);
752 	if (!id)
753 		return -ENOMEM;
754 
755 	if (copy_from_user(id, arg, size)) {
756 		ret = -EFAULT;
757 		goto err_free;
758 	}
759 
760 	if (id->__reserved_0 || id->__reserved_1)
761 		goto err_free;
762 
763 	if (id->width < 1 ||
764 	    id->width > PAGE_SIZE / stm->data->sw_mmiosz)
765 		goto err_free;
766 
767 	ids[0] = id->id;
768 	ret = stm_assign_first_policy(stmf->stm, &stmf->output, ids,
769 				      id->width);
770 	if (ret)
771 		goto err_free;
772 
773 	if (stm->data->link)
774 		ret = stm->data->link(stm->data, stmf->output.master,
775 				      stmf->output.channel);
776 
777 	if (ret)
778 		stm_output_free(stmf->stm, &stmf->output);
779 
780 err_free:
781 	kfree(id);
782 
783 	return ret;
784 }
785 
786 static int stm_char_policy_get_ioctl(struct stm_file *stmf, void __user *arg)
787 {
788 	struct stp_policy_id id = {
789 		.size		= sizeof(id),
790 		.master		= stmf->output.master,
791 		.channel	= stmf->output.channel,
792 		.width		= stmf->output.nr_chans,
793 		.__reserved_0	= 0,
794 		.__reserved_1	= 0,
795 	};
796 
797 	return copy_to_user(arg, &id, id.size) ? -EFAULT : 0;
798 }
799 
800 static long
801 stm_char_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
802 {
803 	struct stm_file *stmf = file->private_data;
804 	struct stm_data *stm_data = stmf->stm->data;
805 	int err = -ENOTTY;
806 	u64 options;
807 
808 	switch (cmd) {
809 	case STP_POLICY_ID_SET:
810 		err = stm_char_policy_set_ioctl(stmf, (void __user *)arg);
811 		if (err)
812 			return err;
813 
814 		return stm_char_policy_get_ioctl(stmf, (void __user *)arg);
815 
816 	case STP_POLICY_ID_GET:
817 		return stm_char_policy_get_ioctl(stmf, (void __user *)arg);
818 
819 	case STP_SET_OPTIONS:
820 		if (copy_from_user(&options, (u64 __user *)arg, sizeof(u64)))
821 			return -EFAULT;
822 
823 		if (stm_data->set_options)
824 			err = stm_data->set_options(stm_data,
825 						    stmf->output.master,
826 						    stmf->output.channel,
827 						    stmf->output.nr_chans,
828 						    options);
829 
830 		break;
831 	default:
832 		break;
833 	}
834 
835 	return err;
836 }
837 
838 #ifdef CONFIG_COMPAT
839 static long
840 stm_char_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
841 {
842 	return stm_char_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
843 }
844 #else
845 #define stm_char_compat_ioctl	NULL
846 #endif
847 
848 static const struct file_operations stm_fops = {
849 	.open		= stm_char_open,
850 	.release	= stm_char_release,
851 	.write		= stm_char_write,
852 	.mmap		= stm_char_mmap,
853 	.unlocked_ioctl	= stm_char_ioctl,
854 	.compat_ioctl	= stm_char_compat_ioctl,
855 	.llseek		= no_llseek,
856 };
857 
858 static void stm_device_release(struct device *dev)
859 {
860 	struct stm_device *stm = to_stm_device(dev);
861 
862 	vfree(stm);
863 }
864 
865 int stm_register_device(struct device *parent, struct stm_data *stm_data,
866 			struct module *owner)
867 {
868 	struct stm_device *stm;
869 	unsigned int nmasters;
870 	int err = -ENOMEM;
871 
872 	if (!stm_core_up)
873 		return -EPROBE_DEFER;
874 
875 	if (!stm_data->packet || !stm_data->sw_nchannels)
876 		return -EINVAL;
877 
878 	nmasters = stm_data->sw_end - stm_data->sw_start + 1;
879 	stm = vzalloc(sizeof(*stm) + nmasters * sizeof(void *));
880 	if (!stm)
881 		return -ENOMEM;
882 
883 	stm->major = register_chrdev(0, stm_data->name, &stm_fops);
884 	if (stm->major < 0)
885 		goto err_free;
886 
887 	device_initialize(&stm->dev);
888 	stm->dev.devt = MKDEV(stm->major, 0);
889 	stm->dev.class = &stm_class;
890 	stm->dev.parent = parent;
891 	stm->dev.release = stm_device_release;
892 
893 	mutex_init(&stm->link_mutex);
894 	spin_lock_init(&stm->link_lock);
895 	INIT_LIST_HEAD(&stm->link_list);
896 
897 	/* initialize the object before it is accessible via sysfs */
898 	spin_lock_init(&stm->mc_lock);
899 	mutex_init(&stm->policy_mutex);
900 	stm->sw_nmasters = nmasters;
901 	stm->owner = owner;
902 	stm->data = stm_data;
903 	stm_data->stm = stm;
904 
905 	err = kobject_set_name(&stm->dev.kobj, "%s", stm_data->name);
906 	if (err)
907 		goto err_device;
908 
909 	err = device_add(&stm->dev);
910 	if (err)
911 		goto err_device;
912 
913 	/*
914 	 * Use delayed autosuspend to avoid bouncing back and forth
915 	 * on recurring character device writes, with the initial
916 	 * delay time of 2 seconds.
917 	 */
918 	pm_runtime_no_callbacks(&stm->dev);
919 	pm_runtime_use_autosuspend(&stm->dev);
920 	pm_runtime_set_autosuspend_delay(&stm->dev, 2000);
921 	pm_runtime_set_suspended(&stm->dev);
922 	pm_runtime_enable(&stm->dev);
923 
924 	return 0;
925 
926 err_device:
927 	unregister_chrdev(stm->major, stm_data->name);
928 
929 	/* matches device_initialize() above */
930 	put_device(&stm->dev);
931 err_free:
932 	vfree(stm);
933 
934 	return err;
935 }
936 EXPORT_SYMBOL_GPL(stm_register_device);
937 
938 static int __stm_source_link_drop(struct stm_source_device *src,
939 				  struct stm_device *stm);
940 
941 void stm_unregister_device(struct stm_data *stm_data)
942 {
943 	struct stm_device *stm = stm_data->stm;
944 	struct stm_source_device *src, *iter;
945 	int i, ret;
946 
947 	pm_runtime_dont_use_autosuspend(&stm->dev);
948 	pm_runtime_disable(&stm->dev);
949 
950 	mutex_lock(&stm->link_mutex);
951 	list_for_each_entry_safe(src, iter, &stm->link_list, link_entry) {
952 		ret = __stm_source_link_drop(src, stm);
953 		/*
954 		 * src <-> stm link must not change under the same
955 		 * stm::link_mutex, so complain loudly if it has;
956 		 * also in this situation ret!=0 means this src is
957 		 * not connected to this stm and it should be otherwise
958 		 * safe to proceed with the tear-down of stm.
959 		 */
960 		WARN_ON_ONCE(ret);
961 	}
962 	mutex_unlock(&stm->link_mutex);
963 
964 	synchronize_srcu(&stm_source_srcu);
965 
966 	unregister_chrdev(stm->major, stm_data->name);
967 
968 	mutex_lock(&stm->policy_mutex);
969 	if (stm->policy)
970 		stp_policy_unbind(stm->policy);
971 	mutex_unlock(&stm->policy_mutex);
972 
973 	for (i = stm->data->sw_start; i <= stm->data->sw_end; i++)
974 		stp_master_free(stm, i);
975 
976 	device_unregister(&stm->dev);
977 	stm_data->stm = NULL;
978 }
979 EXPORT_SYMBOL_GPL(stm_unregister_device);
980 
981 /*
982  * stm::link_list access serialization uses a spinlock and a mutex; holding
983  * either of them guarantees that the list is stable; modification requires
984  * holding both of them.
985  *
986  * Lock ordering is as follows:
987  *   stm::link_mutex
988  *     stm::link_lock
989  *       src::link_lock
990  */
991 
992 /**
993  * stm_source_link_add() - connect an stm_source device to an stm device
994  * @src:	stm_source device
995  * @stm:	stm device
996  *
997  * This function establishes a link from stm_source to an stm device so that
998  * the former can send out trace data to the latter.
999  *
1000  * Return:	0 on success, -errno otherwise.
1001  */
1002 static int stm_source_link_add(struct stm_source_device *src,
1003 			       struct stm_device *stm)
1004 {
1005 	char *ids[] = { NULL, "default", NULL };
1006 	int err = -ENOMEM;
1007 
1008 	mutex_lock(&stm->link_mutex);
1009 	spin_lock(&stm->link_lock);
1010 	spin_lock(&src->link_lock);
1011 
1012 	/* src->link is dereferenced under stm_source_srcu but not the list */
1013 	rcu_assign_pointer(src->link, stm);
1014 	list_add_tail(&src->link_entry, &stm->link_list);
1015 
1016 	spin_unlock(&src->link_lock);
1017 	spin_unlock(&stm->link_lock);
1018 	mutex_unlock(&stm->link_mutex);
1019 
1020 	ids[0] = kstrdup(src->data->name, GFP_KERNEL);
1021 	if (!ids[0])
1022 		goto fail_detach;
1023 
1024 	err = stm_assign_first_policy(stm, &src->output, ids,
1025 				      src->data->nr_chans);
1026 	kfree(ids[0]);
1027 
1028 	if (err)
1029 		goto fail_detach;
1030 
1031 	/* this is to notify the STM device that a new link has been made */
1032 	if (stm->data->link)
1033 		err = stm->data->link(stm->data, src->output.master,
1034 				      src->output.channel);
1035 
1036 	if (err)
1037 		goto fail_free_output;
1038 
1039 	/* this is to let the source carry out all necessary preparations */
1040 	if (src->data->link)
1041 		src->data->link(src->data);
1042 
1043 	return 0;
1044 
1045 fail_free_output:
1046 	stm_output_free(stm, &src->output);
1047 
1048 fail_detach:
1049 	mutex_lock(&stm->link_mutex);
1050 	spin_lock(&stm->link_lock);
1051 	spin_lock(&src->link_lock);
1052 
1053 	rcu_assign_pointer(src->link, NULL);
1054 	list_del_init(&src->link_entry);
1055 
1056 	spin_unlock(&src->link_lock);
1057 	spin_unlock(&stm->link_lock);
1058 	mutex_unlock(&stm->link_mutex);
1059 
1060 	return err;
1061 }
1062 
1063 /**
1064  * __stm_source_link_drop() - detach stm_source from an stm device
1065  * @src:	stm_source device
1066  * @stm:	stm device
1067  *
1068  * If @stm is @src::link, disconnect them from one another and put the
1069  * reference on the @stm device.
1070  *
1071  * Caller must hold stm::link_mutex.
1072  */
1073 static int __stm_source_link_drop(struct stm_source_device *src,
1074 				  struct stm_device *stm)
1075 {
1076 	struct stm_device *link;
1077 	int ret = 0;
1078 
1079 	lockdep_assert_held(&stm->link_mutex);
1080 
1081 	/* for stm::link_list modification, we hold both mutex and spinlock */
1082 	spin_lock(&stm->link_lock);
1083 	spin_lock(&src->link_lock);
1084 	link = srcu_dereference_check(src->link, &stm_source_srcu, 1);
1085 
1086 	/*
1087 	 * The linked device may have changed since we last looked, because
1088 	 * we weren't holding the src::link_lock back then; if this is the
1089 	 * case, tell the caller to retry.
1090 	 */
1091 	if (link != stm) {
1092 		ret = -EAGAIN;
1093 		goto unlock;
1094 	}
1095 
1096 	stm_output_free(link, &src->output);
1097 	list_del_init(&src->link_entry);
1098 	pm_runtime_mark_last_busy(&link->dev);
1099 	pm_runtime_put_autosuspend(&link->dev);
1100 	/* matches stm_find_device() from stm_source_link_store() */
1101 	stm_put_device(link);
1102 	rcu_assign_pointer(src->link, NULL);
1103 
1104 unlock:
1105 	spin_unlock(&src->link_lock);
1106 	spin_unlock(&stm->link_lock);
1107 
1108 	/*
1109 	 * Call the unlink callbacks for both source and stm, when we know
1110 	 * that we have actually performed the unlinking.
1111 	 */
1112 	if (!ret) {
1113 		if (src->data->unlink)
1114 			src->data->unlink(src->data);
1115 
1116 		if (stm->data->unlink)
1117 			stm->data->unlink(stm->data, src->output.master,
1118 					  src->output.channel);
1119 	}
1120 
1121 	return ret;
1122 }
1123 
1124 /**
1125  * stm_source_link_drop() - detach stm_source from its stm device
1126  * @src:	stm_source device
1127  *
1128  * Unlinking means disconnecting from source's STM device; after this
1129  * writes will be unsuccessful until it is linked to a new STM device.
1130  *
1131  * This will happen on "stm_source_link" sysfs attribute write to undo
1132  * the existing link (if any), or on linked STM device's de-registration.
1133  */
1134 static void stm_source_link_drop(struct stm_source_device *src)
1135 {
1136 	struct stm_device *stm;
1137 	int idx, ret;
1138 
1139 retry:
1140 	idx = srcu_read_lock(&stm_source_srcu);
1141 	/*
1142 	 * The stm device will be valid for the duration of this
1143 	 * read section, but the link may change before we grab
1144 	 * the src::link_lock in __stm_source_link_drop().
1145 	 */
1146 	stm = srcu_dereference(src->link, &stm_source_srcu);
1147 
1148 	ret = 0;
1149 	if (stm) {
1150 		mutex_lock(&stm->link_mutex);
1151 		ret = __stm_source_link_drop(src, stm);
1152 		mutex_unlock(&stm->link_mutex);
1153 	}
1154 
1155 	srcu_read_unlock(&stm_source_srcu, idx);
1156 
1157 	/* if it did change, retry */
1158 	if (ret == -EAGAIN)
1159 		goto retry;
1160 }
1161 
1162 static ssize_t stm_source_link_show(struct device *dev,
1163 				    struct device_attribute *attr,
1164 				    char *buf)
1165 {
1166 	struct stm_source_device *src = to_stm_source_device(dev);
1167 	struct stm_device *stm;
1168 	int idx, ret;
1169 
1170 	idx = srcu_read_lock(&stm_source_srcu);
1171 	stm = srcu_dereference(src->link, &stm_source_srcu);
1172 	ret = sprintf(buf, "%s\n",
1173 		      stm ? dev_name(&stm->dev) : "<none>");
1174 	srcu_read_unlock(&stm_source_srcu, idx);
1175 
1176 	return ret;
1177 }
1178 
1179 static ssize_t stm_source_link_store(struct device *dev,
1180 				     struct device_attribute *attr,
1181 				     const char *buf, size_t count)
1182 {
1183 	struct stm_source_device *src = to_stm_source_device(dev);
1184 	struct stm_device *link;
1185 	int err;
1186 
1187 	stm_source_link_drop(src);
1188 
1189 	link = stm_find_device(buf);
1190 	if (!link)
1191 		return -EINVAL;
1192 
1193 	pm_runtime_get(&link->dev);
1194 
1195 	err = stm_source_link_add(src, link);
1196 	if (err) {
1197 		pm_runtime_put_autosuspend(&link->dev);
1198 		/* matches the stm_find_device() above */
1199 		stm_put_device(link);
1200 	}
1201 
1202 	return err ? : count;
1203 }
1204 
1205 static DEVICE_ATTR_RW(stm_source_link);
1206 
1207 static struct attribute *stm_source_attrs[] = {
1208 	&dev_attr_stm_source_link.attr,
1209 	NULL,
1210 };
1211 
1212 ATTRIBUTE_GROUPS(stm_source);
1213 
1214 static struct class stm_source_class = {
1215 	.name		= "stm_source",
1216 	.dev_groups	= stm_source_groups,
1217 };
1218 
1219 static void stm_source_device_release(struct device *dev)
1220 {
1221 	struct stm_source_device *src = to_stm_source_device(dev);
1222 
1223 	kfree(src);
1224 }
1225 
1226 /**
1227  * stm_source_register_device() - register an stm_source device
1228  * @parent:	parent device
1229  * @data:	device description structure
1230  *
1231  * This will create a device of stm_source class that can write
1232  * data to an stm device once linked.
1233  *
1234  * Return:	0 on success, -errno otherwise.
1235  */
1236 int stm_source_register_device(struct device *parent,
1237 			       struct stm_source_data *data)
1238 {
1239 	struct stm_source_device *src;
1240 	int err;
1241 
1242 	if (!stm_core_up)
1243 		return -EPROBE_DEFER;
1244 
1245 	src = kzalloc(sizeof(*src), GFP_KERNEL);
1246 	if (!src)
1247 		return -ENOMEM;
1248 
1249 	device_initialize(&src->dev);
1250 	src->dev.class = &stm_source_class;
1251 	src->dev.parent = parent;
1252 	src->dev.release = stm_source_device_release;
1253 
1254 	err = kobject_set_name(&src->dev.kobj, "%s", data->name);
1255 	if (err)
1256 		goto err;
1257 
1258 	pm_runtime_no_callbacks(&src->dev);
1259 	pm_runtime_forbid(&src->dev);
1260 
1261 	err = device_add(&src->dev);
1262 	if (err)
1263 		goto err;
1264 
1265 	stm_output_init(&src->output);
1266 	spin_lock_init(&src->link_lock);
1267 	INIT_LIST_HEAD(&src->link_entry);
1268 	src->data = data;
1269 	data->src = src;
1270 
1271 	return 0;
1272 
1273 err:
1274 	put_device(&src->dev);
1275 	kfree(src);
1276 
1277 	return err;
1278 }
1279 EXPORT_SYMBOL_GPL(stm_source_register_device);
1280 
1281 /**
1282  * stm_source_unregister_device() - unregister an stm_source device
1283  * @data:	device description that was used to register the device
1284  *
1285  * This will remove a previously created stm_source device from the system.
1286  */
1287 void stm_source_unregister_device(struct stm_source_data *data)
1288 {
1289 	struct stm_source_device *src = data->src;
1290 
1291 	stm_source_link_drop(src);
1292 
1293 	device_unregister(&src->dev);
1294 }
1295 EXPORT_SYMBOL_GPL(stm_source_unregister_device);
1296 
1297 int notrace stm_source_write(struct stm_source_data *data,
1298 			     unsigned int chan,
1299 			     const char *buf, size_t count)
1300 {
1301 	struct stm_source_device *src = data->src;
1302 	struct stm_device *stm;
1303 	int idx;
1304 
1305 	if (!src->output.nr_chans)
1306 		return -ENODEV;
1307 
1308 	if (chan >= src->output.nr_chans)
1309 		return -EINVAL;
1310 
1311 	idx = srcu_read_lock(&stm_source_srcu);
1312 
1313 	stm = srcu_dereference(src->link, &stm_source_srcu);
1314 	if (stm)
1315 		count = stm_write(stm, &src->output, chan, buf, count);
1316 	else
1317 		count = -ENODEV;
1318 
1319 	srcu_read_unlock(&stm_source_srcu, idx);
1320 
1321 	return count;
1322 }
1323 EXPORT_SYMBOL_GPL(stm_source_write);
1324 
1325 static int __init stm_core_init(void)
1326 {
1327 	int err;
1328 
1329 	err = class_register(&stm_class);
1330 	if (err)
1331 		return err;
1332 
1333 	err = class_register(&stm_source_class);
1334 	if (err)
1335 		goto err_stm;
1336 
1337 	err = stp_configfs_init();
1338 	if (err)
1339 		goto err_src;
1340 
1341 	init_srcu_struct(&stm_source_srcu);
1342 	INIT_LIST_HEAD(&stm_pdrv_head);
1343 	mutex_init(&stm_pdrv_mutex);
1344 
1345 	/*
1346 	 * So as to not confuse existing users with a requirement
1347 	 * to load yet another module, do it here.
1348 	 */
1349 	if (IS_ENABLED(CONFIG_STM_PROTO_BASIC))
1350 		(void)request_module_nowait("stm_p_basic");
1351 	stm_core_up++;
1352 
1353 	return 0;
1354 
1355 err_src:
1356 	class_unregister(&stm_source_class);
1357 err_stm:
1358 	class_unregister(&stm_class);
1359 
1360 	return err;
1361 }
1362 
1363 module_init(stm_core_init);
1364 
1365 static void __exit stm_core_exit(void)
1366 {
1367 	cleanup_srcu_struct(&stm_source_srcu);
1368 	class_unregister(&stm_source_class);
1369 	class_unregister(&stm_class);
1370 	stp_configfs_exit();
1371 }
1372 
1373 module_exit(stm_core_exit);
1374 
1375 MODULE_LICENSE("GPL v2");
1376 MODULE_DESCRIPTION("System Trace Module device class");
1377 MODULE_AUTHOR("Alexander Shishkin <alexander.shishkin@linux.intel.com>");
1378