1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 /* 30 * etr_perf_buffer - Perf buffer used for ETR 31 * @drvdata - The ETR drvdaga this buffer has been allocated for. 32 * @etr_buf - Actual buffer used by the ETR 33 * @pid - The PID this etr_perf_buffer belongs to. 34 * @snaphost - Perf session mode 35 * @head - handle->head at the beginning of the session. 36 * @nr_pages - Number of pages in the ring buffer. 37 * @pages - Array of Pages in the ring buffer. 38 */ 39 struct etr_perf_buffer { 40 struct tmc_drvdata *drvdata; 41 struct etr_buf *etr_buf; 42 pid_t pid; 43 bool snapshot; 44 unsigned long head; 45 int nr_pages; 46 void **pages; 47 }; 48 49 /* Convert the perf index to an offset within the ETR buffer */ 50 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 51 52 /* Lower limit for ETR hardware buffer */ 53 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 54 55 /* 56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 59 * contain more than one SG buffer and tables. 60 * 61 * A table entry has the following format: 62 * 63 * ---Bit31------------Bit4-------Bit1-----Bit0-- 64 * | Address[39:12] | SBZ | Entry Type | 65 * ---------------------------------------------- 66 * 67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 68 * always zero. 69 * 70 * Entry type: 71 * b00 - Reserved. 72 * b01 - Last entry in the tables, points to 4K page buffer. 73 * b10 - Normal entry, points to 4K page buffer. 74 * b11 - Link. The address points to the base of next table. 75 */ 76 77 typedef u32 sgte_t; 78 79 #define ETR_SG_PAGE_SHIFT 12 80 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 81 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 82 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 83 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 84 85 #define ETR_SG_ET_MASK 0x3 86 #define ETR_SG_ET_LAST 0x1 87 #define ETR_SG_ET_NORMAL 0x2 88 #define ETR_SG_ET_LINK 0x3 89 90 #define ETR_SG_ADDR_SHIFT 4 91 92 #define ETR_SG_ENTRY(addr, type) \ 93 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 94 (type & ETR_SG_ET_MASK)) 95 96 #define ETR_SG_ADDR(entry) \ 97 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 98 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 99 100 /* 101 * struct etr_sg_table : ETR SG Table 102 * @sg_table: Generic SG Table holding the data/table pages. 103 * @hwaddr: hwaddress used by the TMC, which is the base 104 * address of the table. 105 */ 106 struct etr_sg_table { 107 struct tmc_sg_table *sg_table; 108 dma_addr_t hwaddr; 109 }; 110 111 /* 112 * tmc_etr_sg_table_entries: Total number of table entries required to map 113 * @nr_pages system pages. 114 * 115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 117 * with the last entry pointing to another page of table entries. 118 * If we spill over to a new page for mapping 1 entry, we could as 119 * well replace the link entry of the previous page with the last entry. 120 */ 121 static inline unsigned long __attribute_const__ 122 tmc_etr_sg_table_entries(int nr_pages) 123 { 124 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 125 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 126 /* 127 * If we spill over to a new page for 1 entry, we could as well 128 * make it the LAST entry in the previous page, skipping the Link 129 * address. 130 */ 131 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 132 nr_sglinks--; 133 return nr_sgpages + nr_sglinks; 134 } 135 136 /* 137 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 138 * and map the device address @addr to an offset within the virtual 139 * contiguous buffer. 140 */ 141 static long 142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 143 { 144 int i; 145 dma_addr_t page_start; 146 147 for (i = 0; i < tmc_pages->nr_pages; i++) { 148 page_start = tmc_pages->daddrs[i]; 149 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 150 return i * PAGE_SIZE + (addr - page_start); 151 } 152 153 return -EINVAL; 154 } 155 156 /* 157 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 158 * If the pages were not allocated in tmc_pages_alloc(), we would 159 * simply drop the refcount. 160 */ 161 static void tmc_pages_free(struct tmc_pages *tmc_pages, 162 struct device *dev, enum dma_data_direction dir) 163 { 164 int i; 165 struct device *real_dev = dev->parent; 166 167 for (i = 0; i < tmc_pages->nr_pages; i++) { 168 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 169 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 170 PAGE_SIZE, dir); 171 if (tmc_pages->pages && tmc_pages->pages[i]) 172 __free_page(tmc_pages->pages[i]); 173 } 174 175 kfree(tmc_pages->pages); 176 kfree(tmc_pages->daddrs); 177 tmc_pages->pages = NULL; 178 tmc_pages->daddrs = NULL; 179 tmc_pages->nr_pages = 0; 180 } 181 182 /* 183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 184 * If @pages is not NULL, the list of page virtual addresses are 185 * used as the data pages. The pages are then dma_map'ed for @dev 186 * with dma_direction @dir. 187 * 188 * Returns 0 upon success, else the error number. 189 */ 190 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 191 struct device *dev, int node, 192 enum dma_data_direction dir, void **pages) 193 { 194 int i, nr_pages; 195 dma_addr_t paddr; 196 struct page *page; 197 struct device *real_dev = dev->parent; 198 199 nr_pages = tmc_pages->nr_pages; 200 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 201 GFP_KERNEL); 202 if (!tmc_pages->daddrs) 203 return -ENOMEM; 204 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 205 GFP_KERNEL); 206 if (!tmc_pages->pages) { 207 kfree(tmc_pages->daddrs); 208 tmc_pages->daddrs = NULL; 209 return -ENOMEM; 210 } 211 212 for (i = 0; i < nr_pages; i++) { 213 if (pages && pages[i]) { 214 page = virt_to_page(pages[i]); 215 /* Hold a refcount on the page */ 216 get_page(page); 217 } else { 218 page = alloc_pages_node(node, 219 GFP_KERNEL | __GFP_ZERO, 0); 220 } 221 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 222 if (dma_mapping_error(real_dev, paddr)) 223 goto err; 224 tmc_pages->daddrs[i] = paddr; 225 tmc_pages->pages[i] = page; 226 } 227 return 0; 228 err: 229 tmc_pages_free(tmc_pages, dev, dir); 230 return -ENOMEM; 231 } 232 233 static inline long 234 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 235 { 236 return tmc_pages_get_offset(&sg_table->data_pages, addr); 237 } 238 239 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 240 { 241 if (sg_table->table_vaddr) 242 vunmap(sg_table->table_vaddr); 243 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 244 } 245 246 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 247 { 248 if (sg_table->data_vaddr) 249 vunmap(sg_table->data_vaddr); 250 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 251 } 252 253 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 254 { 255 tmc_free_table_pages(sg_table); 256 tmc_free_data_pages(sg_table); 257 } 258 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 259 260 /* 261 * Alloc pages for the table. Since this will be used by the device, 262 * allocate the pages closer to the device (i.e, dev_to_node(dev) 263 * rather than the CPU node). 264 */ 265 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 266 { 267 int rc; 268 struct tmc_pages *table_pages = &sg_table->table_pages; 269 270 rc = tmc_pages_alloc(table_pages, sg_table->dev, 271 dev_to_node(sg_table->dev), 272 DMA_TO_DEVICE, NULL); 273 if (rc) 274 return rc; 275 sg_table->table_vaddr = vmap(table_pages->pages, 276 table_pages->nr_pages, 277 VM_MAP, 278 PAGE_KERNEL); 279 if (!sg_table->table_vaddr) 280 rc = -ENOMEM; 281 else 282 sg_table->table_daddr = table_pages->daddrs[0]; 283 return rc; 284 } 285 286 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 287 { 288 int rc; 289 290 /* Allocate data pages on the node requested by the caller */ 291 rc = tmc_pages_alloc(&sg_table->data_pages, 292 sg_table->dev, sg_table->node, 293 DMA_FROM_DEVICE, pages); 294 if (!rc) { 295 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 296 sg_table->data_pages.nr_pages, 297 VM_MAP, 298 PAGE_KERNEL); 299 if (!sg_table->data_vaddr) 300 rc = -ENOMEM; 301 } 302 return rc; 303 } 304 305 /* 306 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 307 * and data buffers. TMC writes to the data buffers and reads from the SG 308 * Table pages. 309 * 310 * @dev - Coresight device to which page should be DMA mapped. 311 * @node - Numa node for mem allocations 312 * @nr_tpages - Number of pages for the table entries. 313 * @nr_dpages - Number of pages for Data buffer. 314 * @pages - Optional list of virtual address of pages. 315 */ 316 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 317 int node, 318 int nr_tpages, 319 int nr_dpages, 320 void **pages) 321 { 322 long rc; 323 struct tmc_sg_table *sg_table; 324 325 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 326 if (!sg_table) 327 return ERR_PTR(-ENOMEM); 328 sg_table->data_pages.nr_pages = nr_dpages; 329 sg_table->table_pages.nr_pages = nr_tpages; 330 sg_table->node = node; 331 sg_table->dev = dev; 332 333 rc = tmc_alloc_data_pages(sg_table, pages); 334 if (!rc) 335 rc = tmc_alloc_table_pages(sg_table); 336 if (rc) { 337 tmc_free_sg_table(sg_table); 338 kfree(sg_table); 339 return ERR_PTR(rc); 340 } 341 342 return sg_table; 343 } 344 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 345 346 /* 347 * tmc_sg_table_sync_data_range: Sync the data buffer written 348 * by the device from @offset upto a @size bytes. 349 */ 350 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 351 u64 offset, u64 size) 352 { 353 int i, index, start; 354 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 355 struct device *real_dev = table->dev->parent; 356 struct tmc_pages *data = &table->data_pages; 357 358 start = offset >> PAGE_SHIFT; 359 for (i = start; i < (start + npages); i++) { 360 index = i % data->nr_pages; 361 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 362 PAGE_SIZE, DMA_FROM_DEVICE); 363 } 364 } 365 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 366 367 /* tmc_sg_sync_table: Sync the page table */ 368 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 369 { 370 int i; 371 struct device *real_dev = sg_table->dev->parent; 372 struct tmc_pages *table_pages = &sg_table->table_pages; 373 374 for (i = 0; i < table_pages->nr_pages; i++) 375 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 376 PAGE_SIZE, DMA_TO_DEVICE); 377 } 378 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 379 380 /* 381 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 382 * in the SG buffer. The @bufpp is updated to point to the buffer. 383 * Returns : 384 * the length of linear data available at @offset. 385 * or 386 * <= 0 if no data is available. 387 */ 388 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 389 u64 offset, size_t len, char **bufpp) 390 { 391 size_t size; 392 int pg_idx = offset >> PAGE_SHIFT; 393 int pg_offset = offset & (PAGE_SIZE - 1); 394 struct tmc_pages *data_pages = &sg_table->data_pages; 395 396 size = tmc_sg_table_buf_size(sg_table); 397 if (offset >= size) 398 return -EINVAL; 399 400 /* Make sure we don't go beyond the end */ 401 len = (len < (size - offset)) ? len : size - offset; 402 /* Respect the page boundaries */ 403 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 404 if (len > 0) 405 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 406 return len; 407 } 408 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 409 410 #ifdef ETR_SG_DEBUG 411 /* Map a dma address to virtual address */ 412 static unsigned long 413 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 414 dma_addr_t addr, bool table) 415 { 416 long offset; 417 unsigned long base; 418 struct tmc_pages *tmc_pages; 419 420 if (table) { 421 tmc_pages = &sg_table->table_pages; 422 base = (unsigned long)sg_table->table_vaddr; 423 } else { 424 tmc_pages = &sg_table->data_pages; 425 base = (unsigned long)sg_table->data_vaddr; 426 } 427 428 offset = tmc_pages_get_offset(tmc_pages, addr); 429 if (offset < 0) 430 return 0; 431 return base + offset; 432 } 433 434 /* Dump the given sg_table */ 435 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 436 { 437 sgte_t *ptr; 438 int i = 0; 439 dma_addr_t addr; 440 struct tmc_sg_table *sg_table = etr_table->sg_table; 441 442 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 443 etr_table->hwaddr, true); 444 while (ptr) { 445 addr = ETR_SG_ADDR(*ptr); 446 switch (ETR_SG_ET(*ptr)) { 447 case ETR_SG_ET_NORMAL: 448 dev_dbg(sg_table->dev, 449 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 450 ptr++; 451 break; 452 case ETR_SG_ET_LINK: 453 dev_dbg(sg_table->dev, 454 "%05d: *** %p\t:{L} 0x%llx ***\n", 455 i, ptr, addr); 456 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 457 addr, true); 458 break; 459 case ETR_SG_ET_LAST: 460 dev_dbg(sg_table->dev, 461 "%05d: ### %p\t:[L] 0x%llx ###\n", 462 i, ptr, addr); 463 return; 464 default: 465 dev_dbg(sg_table->dev, 466 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 467 i, ptr, addr); 468 return; 469 } 470 i++; 471 } 472 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 473 } 474 #else 475 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 476 #endif 477 478 /* 479 * Populate the SG Table page table entries from table/data 480 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 481 * So does a Table page. So we keep track of indices of the tables 482 * in each system page and move the pointers accordingly. 483 */ 484 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 485 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 486 { 487 dma_addr_t paddr; 488 int i, type, nr_entries; 489 int tpidx = 0; /* index to the current system table_page */ 490 int sgtidx = 0; /* index to the sg_table within the current syspage */ 491 int sgtentry = 0; /* the entry within the sg_table */ 492 int dpidx = 0; /* index to the current system data_page */ 493 int spidx = 0; /* index to the SG page within the current data page */ 494 sgte_t *ptr; /* pointer to the table entry to fill */ 495 struct tmc_sg_table *sg_table = etr_table->sg_table; 496 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 497 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 498 499 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 500 /* 501 * Use the contiguous virtual address of the table to update entries. 502 */ 503 ptr = sg_table->table_vaddr; 504 /* 505 * Fill all the entries, except the last entry to avoid special 506 * checks within the loop. 507 */ 508 for (i = 0; i < nr_entries - 1; i++) { 509 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 510 /* 511 * Last entry in a sg_table page is a link address to 512 * the next table page. If this sg_table is the last 513 * one in the system page, it links to the first 514 * sg_table in the next system page. Otherwise, it 515 * links to the next sg_table page within the system 516 * page. 517 */ 518 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 519 paddr = table_daddrs[tpidx + 1]; 520 } else { 521 paddr = table_daddrs[tpidx] + 522 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 523 } 524 type = ETR_SG_ET_LINK; 525 } else { 526 /* 527 * Update the indices to the data_pages to point to the 528 * next sg_page in the data buffer. 529 */ 530 type = ETR_SG_ET_NORMAL; 531 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 532 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 533 dpidx++; 534 } 535 *ptr++ = ETR_SG_ENTRY(paddr, type); 536 /* 537 * Move to the next table pointer, moving the table page index 538 * if necessary 539 */ 540 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 541 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 542 tpidx++; 543 } 544 } 545 546 /* Set up the last entry, which is always a data pointer */ 547 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 548 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 549 } 550 551 /* 552 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 553 * populate the table. 554 * 555 * @dev - Device pointer for the TMC 556 * @node - NUMA node where the memory should be allocated 557 * @size - Total size of the data buffer 558 * @pages - Optional list of page virtual address 559 */ 560 static struct etr_sg_table * 561 tmc_init_etr_sg_table(struct device *dev, int node, 562 unsigned long size, void **pages) 563 { 564 int nr_entries, nr_tpages; 565 int nr_dpages = size >> PAGE_SHIFT; 566 struct tmc_sg_table *sg_table; 567 struct etr_sg_table *etr_table; 568 569 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 570 if (!etr_table) 571 return ERR_PTR(-ENOMEM); 572 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 573 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 574 575 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 576 if (IS_ERR(sg_table)) { 577 kfree(etr_table); 578 return ERR_CAST(sg_table); 579 } 580 581 etr_table->sg_table = sg_table; 582 /* TMC should use table base address for DBA */ 583 etr_table->hwaddr = sg_table->table_daddr; 584 tmc_etr_sg_table_populate(etr_table); 585 /* Sync the table pages for the HW */ 586 tmc_sg_table_sync_table(sg_table); 587 tmc_etr_sg_table_dump(etr_table); 588 589 return etr_table; 590 } 591 592 /* 593 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 594 */ 595 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 596 struct etr_buf *etr_buf, int node, 597 void **pages) 598 { 599 struct etr_flat_buf *flat_buf; 600 struct device *real_dev = drvdata->csdev->dev.parent; 601 602 /* We cannot reuse existing pages for flat buf */ 603 if (pages) 604 return -EINVAL; 605 606 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 607 if (!flat_buf) 608 return -ENOMEM; 609 610 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size, 611 &flat_buf->daddr, GFP_KERNEL); 612 if (!flat_buf->vaddr) { 613 kfree(flat_buf); 614 return -ENOMEM; 615 } 616 617 flat_buf->size = etr_buf->size; 618 flat_buf->dev = &drvdata->csdev->dev; 619 etr_buf->hwaddr = flat_buf->daddr; 620 etr_buf->mode = ETR_MODE_FLAT; 621 etr_buf->private = flat_buf; 622 return 0; 623 } 624 625 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 626 { 627 struct etr_flat_buf *flat_buf = etr_buf->private; 628 629 if (flat_buf && flat_buf->daddr) { 630 struct device *real_dev = flat_buf->dev->parent; 631 632 dma_free_coherent(real_dev, flat_buf->size, 633 flat_buf->vaddr, flat_buf->daddr); 634 } 635 kfree(flat_buf); 636 } 637 638 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 639 { 640 /* 641 * Adjust the buffer to point to the beginning of the trace data 642 * and update the available trace data. 643 */ 644 etr_buf->offset = rrp - etr_buf->hwaddr; 645 if (etr_buf->full) 646 etr_buf->len = etr_buf->size; 647 else 648 etr_buf->len = rwp - rrp; 649 } 650 651 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 652 u64 offset, size_t len, char **bufpp) 653 { 654 struct etr_flat_buf *flat_buf = etr_buf->private; 655 656 *bufpp = (char *)flat_buf->vaddr + offset; 657 /* 658 * tmc_etr_buf_get_data already adjusts the length to handle 659 * buffer wrapping around. 660 */ 661 return len; 662 } 663 664 static const struct etr_buf_operations etr_flat_buf_ops = { 665 .alloc = tmc_etr_alloc_flat_buf, 666 .free = tmc_etr_free_flat_buf, 667 .sync = tmc_etr_sync_flat_buf, 668 .get_data = tmc_etr_get_data_flat_buf, 669 }; 670 671 /* 672 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 673 * appropriately. 674 */ 675 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 676 struct etr_buf *etr_buf, int node, 677 void **pages) 678 { 679 struct etr_sg_table *etr_table; 680 struct device *dev = &drvdata->csdev->dev; 681 682 etr_table = tmc_init_etr_sg_table(dev, node, 683 etr_buf->size, pages); 684 if (IS_ERR(etr_table)) 685 return -ENOMEM; 686 etr_buf->hwaddr = etr_table->hwaddr; 687 etr_buf->mode = ETR_MODE_ETR_SG; 688 etr_buf->private = etr_table; 689 return 0; 690 } 691 692 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 693 { 694 struct etr_sg_table *etr_table = etr_buf->private; 695 696 if (etr_table) { 697 tmc_free_sg_table(etr_table->sg_table); 698 kfree(etr_table); 699 } 700 } 701 702 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 703 size_t len, char **bufpp) 704 { 705 struct etr_sg_table *etr_table = etr_buf->private; 706 707 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 708 } 709 710 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 711 { 712 long r_offset, w_offset; 713 struct etr_sg_table *etr_table = etr_buf->private; 714 struct tmc_sg_table *table = etr_table->sg_table; 715 716 /* Convert hw address to offset in the buffer */ 717 r_offset = tmc_sg_get_data_page_offset(table, rrp); 718 if (r_offset < 0) { 719 dev_warn(table->dev, 720 "Unable to map RRP %llx to offset\n", rrp); 721 etr_buf->len = 0; 722 return; 723 } 724 725 w_offset = tmc_sg_get_data_page_offset(table, rwp); 726 if (w_offset < 0) { 727 dev_warn(table->dev, 728 "Unable to map RWP %llx to offset\n", rwp); 729 etr_buf->len = 0; 730 return; 731 } 732 733 etr_buf->offset = r_offset; 734 if (etr_buf->full) 735 etr_buf->len = etr_buf->size; 736 else 737 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 738 w_offset - r_offset; 739 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 740 } 741 742 static const struct etr_buf_operations etr_sg_buf_ops = { 743 .alloc = tmc_etr_alloc_sg_buf, 744 .free = tmc_etr_free_sg_buf, 745 .sync = tmc_etr_sync_sg_buf, 746 .get_data = tmc_etr_get_data_sg_buf, 747 }; 748 749 /* 750 * TMC ETR could be connected to a CATU device, which can provide address 751 * translation service. This is represented by the Output port of the TMC 752 * (ETR) connected to the input port of the CATU. 753 * 754 * Returns : coresight_device ptr for the CATU device if a CATU is found. 755 * : NULL otherwise. 756 */ 757 struct coresight_device * 758 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 759 { 760 int i; 761 struct coresight_device *tmp, *etr = drvdata->csdev; 762 763 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 764 return NULL; 765 766 for (i = 0; i < etr->pdata->nr_outport; i++) { 767 tmp = etr->pdata->conns[i].child_dev; 768 if (tmp && coresight_is_catu_device(tmp)) 769 return tmp; 770 } 771 772 return NULL; 773 } 774 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 775 776 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata, 777 struct etr_buf *etr_buf) 778 { 779 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 780 781 if (catu && helper_ops(catu)->enable) 782 return helper_ops(catu)->enable(catu, etr_buf); 783 return 0; 784 } 785 786 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata) 787 { 788 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 789 790 if (catu && helper_ops(catu)->disable) 791 helper_ops(catu)->disable(catu, drvdata->etr_buf); 792 } 793 794 static const struct etr_buf_operations *etr_buf_ops[] = { 795 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 796 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 797 [ETR_MODE_CATU] = NULL, 798 }; 799 800 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 801 { 802 etr_buf_ops[ETR_MODE_CATU] = catu; 803 } 804 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 805 806 void tmc_etr_remove_catu_ops(void) 807 { 808 etr_buf_ops[ETR_MODE_CATU] = NULL; 809 } 810 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 811 812 static inline int tmc_etr_mode_alloc_buf(int mode, 813 struct tmc_drvdata *drvdata, 814 struct etr_buf *etr_buf, int node, 815 void **pages) 816 { 817 int rc = -EINVAL; 818 819 switch (mode) { 820 case ETR_MODE_FLAT: 821 case ETR_MODE_ETR_SG: 822 case ETR_MODE_CATU: 823 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 824 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 825 node, pages); 826 if (!rc) 827 etr_buf->ops = etr_buf_ops[mode]; 828 return rc; 829 default: 830 return -EINVAL; 831 } 832 } 833 834 /* 835 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 836 * @drvdata : ETR device details. 837 * @size : size of the requested buffer. 838 * @flags : Required properties for the buffer. 839 * @node : Node for memory allocations. 840 * @pages : An optional list of pages. 841 */ 842 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 843 ssize_t size, int flags, 844 int node, void **pages) 845 { 846 int rc = -ENOMEM; 847 bool has_etr_sg, has_iommu; 848 bool has_sg, has_catu; 849 struct etr_buf *etr_buf; 850 struct device *dev = &drvdata->csdev->dev; 851 852 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 853 has_iommu = iommu_get_domain_for_dev(dev->parent); 854 has_catu = !!tmc_etr_get_catu_device(drvdata); 855 856 has_sg = has_catu || has_etr_sg; 857 858 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 859 if (!etr_buf) 860 return ERR_PTR(-ENOMEM); 861 862 etr_buf->size = size; 863 864 /* 865 * If we have to use an existing list of pages, we cannot reliably 866 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 867 * we use the contiguous DMA memory if at least one of the following 868 * conditions is true: 869 * a) The ETR cannot use Scatter-Gather. 870 * b) we have a backing IOMMU 871 * c) The requested memory size is smaller (< 1M). 872 * 873 * Fallback to available mechanisms. 874 * 875 */ 876 if (!pages && 877 (!has_sg || has_iommu || size < SZ_1M)) 878 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 879 etr_buf, node, pages); 880 if (rc && has_etr_sg) 881 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 882 etr_buf, node, pages); 883 if (rc && has_catu) 884 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 885 etr_buf, node, pages); 886 if (rc) { 887 kfree(etr_buf); 888 return ERR_PTR(rc); 889 } 890 891 refcount_set(&etr_buf->refcount, 1); 892 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 893 (unsigned long)size >> 10, etr_buf->mode); 894 return etr_buf; 895 } 896 897 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 898 { 899 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 900 etr_buf->ops->free(etr_buf); 901 kfree(etr_buf); 902 } 903 904 /* 905 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 906 * with a maximum of @len bytes. 907 * Returns: The size of the linear data available @pos, with *bufpp 908 * updated to point to the buffer. 909 */ 910 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 911 u64 offset, size_t len, char **bufpp) 912 { 913 /* Adjust the length to limit this transaction to end of buffer */ 914 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 915 916 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 917 } 918 919 static inline s64 920 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 921 { 922 ssize_t len; 923 char *bufp; 924 925 len = tmc_etr_buf_get_data(etr_buf, offset, 926 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 927 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE)) 928 return -EINVAL; 929 coresight_insert_barrier_packet(bufp); 930 return offset + CORESIGHT_BARRIER_PKT_SIZE; 931 } 932 933 /* 934 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 935 * Makes sure the trace data is synced to the memory for consumption. 936 * @etr_buf->offset will hold the offset to the beginning of the trace data 937 * within the buffer, with @etr_buf->len bytes to consume. 938 */ 939 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 940 { 941 struct etr_buf *etr_buf = drvdata->etr_buf; 942 u64 rrp, rwp; 943 u32 status; 944 945 rrp = tmc_read_rrp(drvdata); 946 rwp = tmc_read_rwp(drvdata); 947 status = readl_relaxed(drvdata->base + TMC_STS); 948 949 /* 950 * If there were memory errors in the session, truncate the 951 * buffer. 952 */ 953 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 954 dev_dbg(&drvdata->csdev->dev, 955 "tmc memory error detected, truncating buffer\n"); 956 etr_buf->len = 0; 957 etr_buf->full = 0; 958 return; 959 } 960 961 etr_buf->full = status & TMC_STS_FULL; 962 963 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 964 965 etr_buf->ops->sync(etr_buf, rrp, rwp); 966 } 967 968 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 969 { 970 u32 axictl, sts; 971 struct etr_buf *etr_buf = drvdata->etr_buf; 972 973 CS_UNLOCK(drvdata->base); 974 975 /* Wait for TMCSReady bit to be set */ 976 tmc_wait_for_tmcready(drvdata); 977 978 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 979 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 980 981 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 982 axictl &= ~TMC_AXICTL_CLEAR_MASK; 983 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16); 984 axictl |= TMC_AXICTL_AXCACHE_OS; 985 986 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 987 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 988 axictl |= TMC_AXICTL_ARCACHE_OS; 989 } 990 991 if (etr_buf->mode == ETR_MODE_ETR_SG) 992 axictl |= TMC_AXICTL_SCT_GAT_MODE; 993 994 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 995 tmc_write_dba(drvdata, etr_buf->hwaddr); 996 /* 997 * If the TMC pointers must be programmed before the session, 998 * we have to set it properly (i.e, RRP/RWP to base address and 999 * STS to "not full"). 1000 */ 1001 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1002 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1003 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1004 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1005 writel_relaxed(sts, drvdata->base + TMC_STS); 1006 } 1007 1008 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1009 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1010 TMC_FFCR_TRIGON_TRIGIN, 1011 drvdata->base + TMC_FFCR); 1012 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1013 tmc_enable_hw(drvdata); 1014 1015 CS_LOCK(drvdata->base); 1016 } 1017 1018 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1019 struct etr_buf *etr_buf) 1020 { 1021 int rc; 1022 1023 /* Callers should provide an appropriate buffer for use */ 1024 if (WARN_ON(!etr_buf)) 1025 return -EINVAL; 1026 1027 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1028 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1029 return -EINVAL; 1030 1031 if (WARN_ON(drvdata->etr_buf)) 1032 return -EBUSY; 1033 1034 /* 1035 * If this ETR is connected to a CATU, enable it before we turn 1036 * this on. 1037 */ 1038 rc = tmc_etr_enable_catu(drvdata, etr_buf); 1039 if (rc) 1040 return rc; 1041 rc = coresight_claim_device(drvdata->base); 1042 if (!rc) { 1043 drvdata->etr_buf = etr_buf; 1044 __tmc_etr_enable_hw(drvdata); 1045 } 1046 1047 return rc; 1048 } 1049 1050 /* 1051 * Return the available trace data in the buffer (starts at etr_buf->offset, 1052 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1053 * also updating the @bufpp on where to find it. Since the trace data 1054 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1055 * @len returned to handle buffer wrapping around. 1056 * 1057 * We are protected here by drvdata->reading != 0, which ensures the 1058 * sysfs_buf stays alive. 1059 */ 1060 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1061 loff_t pos, size_t len, char **bufpp) 1062 { 1063 s64 offset; 1064 ssize_t actual = len; 1065 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1066 1067 if (pos + actual > etr_buf->len) 1068 actual = etr_buf->len - pos; 1069 if (actual <= 0) 1070 return actual; 1071 1072 /* Compute the offset from which we read the data */ 1073 offset = etr_buf->offset + pos; 1074 if (offset >= etr_buf->size) 1075 offset -= etr_buf->size; 1076 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1077 } 1078 1079 static struct etr_buf * 1080 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1081 { 1082 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1083 0, cpu_to_node(0), NULL); 1084 } 1085 1086 static void 1087 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1088 { 1089 if (buf) 1090 tmc_free_etr_buf(buf); 1091 } 1092 1093 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1094 { 1095 struct etr_buf *etr_buf = drvdata->etr_buf; 1096 1097 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1098 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1099 drvdata->sysfs_buf = NULL; 1100 } else { 1101 tmc_sync_etr_buf(drvdata); 1102 /* 1103 * Insert barrier packets at the beginning, if there was 1104 * an overflow. 1105 */ 1106 if (etr_buf->full) 1107 tmc_etr_buf_insert_barrier_packet(etr_buf, 1108 etr_buf->offset); 1109 } 1110 } 1111 1112 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1113 { 1114 CS_UNLOCK(drvdata->base); 1115 1116 tmc_flush_and_stop(drvdata); 1117 /* 1118 * When operating in sysFS mode the content of the buffer needs to be 1119 * read before the TMC is disabled. 1120 */ 1121 if (drvdata->mode == CS_MODE_SYSFS) 1122 tmc_etr_sync_sysfs_buf(drvdata); 1123 1124 tmc_disable_hw(drvdata); 1125 1126 CS_LOCK(drvdata->base); 1127 1128 } 1129 1130 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1131 { 1132 __tmc_etr_disable_hw(drvdata); 1133 /* Disable CATU device if this ETR is connected to one */ 1134 tmc_etr_disable_catu(drvdata); 1135 coresight_disclaim_device(drvdata->base); 1136 /* Reset the ETR buf used by hardware */ 1137 drvdata->etr_buf = NULL; 1138 } 1139 1140 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1141 { 1142 int ret = 0; 1143 unsigned long flags; 1144 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1145 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1146 1147 /* 1148 * If we are enabling the ETR from disabled state, we need to make 1149 * sure we have a buffer with the right size. The etr_buf is not reset 1150 * immediately after we stop the tracing in SYSFS mode as we wait for 1151 * the user to collect the data. We may be able to reuse the existing 1152 * buffer, provided the size matches. Any allocation has to be done 1153 * with the lock released. 1154 */ 1155 spin_lock_irqsave(&drvdata->spinlock, flags); 1156 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1157 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1158 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1159 1160 /* Allocate memory with the locks released */ 1161 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1162 if (IS_ERR(new_buf)) 1163 return PTR_ERR(new_buf); 1164 1165 /* Let's try again */ 1166 spin_lock_irqsave(&drvdata->spinlock, flags); 1167 } 1168 1169 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1170 ret = -EBUSY; 1171 goto out; 1172 } 1173 1174 /* 1175 * In sysFS mode we can have multiple writers per sink. Since this 1176 * sink is already enabled no memory is needed and the HW need not be 1177 * touched, even if the buffer size has changed. 1178 */ 1179 if (drvdata->mode == CS_MODE_SYSFS) { 1180 atomic_inc(csdev->refcnt); 1181 goto out; 1182 } 1183 1184 /* 1185 * If we don't have a buffer or it doesn't match the requested size, 1186 * use the buffer allocated above. Otherwise reuse the existing buffer. 1187 */ 1188 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1189 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1190 free_buf = sysfs_buf; 1191 drvdata->sysfs_buf = new_buf; 1192 } 1193 1194 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf); 1195 if (!ret) { 1196 drvdata->mode = CS_MODE_SYSFS; 1197 atomic_inc(csdev->refcnt); 1198 } 1199 out: 1200 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1201 1202 /* Free memory outside the spinlock if need be */ 1203 if (free_buf) 1204 tmc_etr_free_sysfs_buf(free_buf); 1205 1206 if (!ret) 1207 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1208 1209 return ret; 1210 } 1211 1212 /* 1213 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1214 * The size of the hardware buffer is dependent on the size configured 1215 * via sysfs and the perf ring buffer size. We prefer to allocate the 1216 * largest possible size, scaling down the size by half until it 1217 * reaches a minimum limit (1M), beyond which we give up. 1218 */ 1219 static struct etr_buf * 1220 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1221 int nr_pages, void **pages, bool snapshot) 1222 { 1223 int node; 1224 struct etr_buf *etr_buf; 1225 unsigned long size; 1226 1227 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1228 /* 1229 * Try to match the perf ring buffer size if it is larger 1230 * than the size requested via sysfs. 1231 */ 1232 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1233 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT), 1234 0, node, NULL); 1235 if (!IS_ERR(etr_buf)) 1236 goto done; 1237 } 1238 1239 /* 1240 * Else switch to configured size for this ETR 1241 * and scale down until we hit the minimum limit. 1242 */ 1243 size = drvdata->size; 1244 do { 1245 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1246 if (!IS_ERR(etr_buf)) 1247 goto done; 1248 size /= 2; 1249 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1250 1251 return ERR_PTR(-ENOMEM); 1252 1253 done: 1254 return etr_buf; 1255 } 1256 1257 static struct etr_buf * 1258 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1259 struct perf_event *event, int nr_pages, 1260 void **pages, bool snapshot) 1261 { 1262 int ret; 1263 pid_t pid = task_pid_nr(event->owner); 1264 struct etr_buf *etr_buf; 1265 1266 retry: 1267 /* 1268 * An etr_perf_buffer is associated with an event and holds a reference 1269 * to the AUX ring buffer that was created for that event. In CPU-wide 1270 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1271 * buffer, share a sink. As such an etr_perf_buffer is created for each 1272 * event but a single etr_buf associated with the ETR is shared between 1273 * them. The last event in a trace session will copy the content of the 1274 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1275 * events are simply not used an freed as events are destoyed. We still 1276 * need to allocate a ring buffer for each event since we don't know 1277 * which event will be last. 1278 */ 1279 1280 /* 1281 * The first thing to do here is check if an etr_buf has already been 1282 * allocated for this session. If so it is shared with this event, 1283 * otherwise it is created. 1284 */ 1285 mutex_lock(&drvdata->idr_mutex); 1286 etr_buf = idr_find(&drvdata->idr, pid); 1287 if (etr_buf) { 1288 refcount_inc(&etr_buf->refcount); 1289 mutex_unlock(&drvdata->idr_mutex); 1290 return etr_buf; 1291 } 1292 1293 /* If we made it here no buffer has been allocated, do so now. */ 1294 mutex_unlock(&drvdata->idr_mutex); 1295 1296 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1297 if (IS_ERR(etr_buf)) 1298 return etr_buf; 1299 1300 /* Now that we have a buffer, add it to the IDR. */ 1301 mutex_lock(&drvdata->idr_mutex); 1302 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1303 mutex_unlock(&drvdata->idr_mutex); 1304 1305 /* Another event with this session ID has allocated this buffer. */ 1306 if (ret == -ENOSPC) { 1307 tmc_free_etr_buf(etr_buf); 1308 goto retry; 1309 } 1310 1311 /* The IDR can't allocate room for a new session, abandon ship. */ 1312 if (ret == -ENOMEM) { 1313 tmc_free_etr_buf(etr_buf); 1314 return ERR_PTR(ret); 1315 } 1316 1317 1318 return etr_buf; 1319 } 1320 1321 static struct etr_buf * 1322 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1323 struct perf_event *event, int nr_pages, 1324 void **pages, bool snapshot) 1325 { 1326 /* 1327 * In per-thread mode the etr_buf isn't shared, so just go ahead 1328 * with memory allocation. 1329 */ 1330 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1331 } 1332 1333 static struct etr_buf * 1334 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1335 int nr_pages, void **pages, bool snapshot) 1336 { 1337 if (event->cpu == -1) 1338 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1339 pages, snapshot); 1340 1341 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1342 pages, snapshot); 1343 } 1344 1345 static struct etr_perf_buffer * 1346 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1347 int nr_pages, void **pages, bool snapshot) 1348 { 1349 int node; 1350 struct etr_buf *etr_buf; 1351 struct etr_perf_buffer *etr_perf; 1352 1353 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1354 1355 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1356 if (!etr_perf) 1357 return ERR_PTR(-ENOMEM); 1358 1359 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1360 if (!IS_ERR(etr_buf)) 1361 goto done; 1362 1363 kfree(etr_perf); 1364 return ERR_PTR(-ENOMEM); 1365 1366 done: 1367 /* 1368 * Keep a reference to the ETR this buffer has been allocated for 1369 * in order to have access to the IDR in tmc_free_etr_buffer(). 1370 */ 1371 etr_perf->drvdata = drvdata; 1372 etr_perf->etr_buf = etr_buf; 1373 1374 return etr_perf; 1375 } 1376 1377 1378 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1379 struct perf_event *event, void **pages, 1380 int nr_pages, bool snapshot) 1381 { 1382 struct etr_perf_buffer *etr_perf; 1383 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1384 1385 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1386 nr_pages, pages, snapshot); 1387 if (IS_ERR(etr_perf)) { 1388 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1389 return NULL; 1390 } 1391 1392 etr_perf->pid = task_pid_nr(event->owner); 1393 etr_perf->snapshot = snapshot; 1394 etr_perf->nr_pages = nr_pages; 1395 etr_perf->pages = pages; 1396 1397 return etr_perf; 1398 } 1399 1400 static void tmc_free_etr_buffer(void *config) 1401 { 1402 struct etr_perf_buffer *etr_perf = config; 1403 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1404 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1405 1406 if (!etr_buf) 1407 goto free_etr_perf_buffer; 1408 1409 mutex_lock(&drvdata->idr_mutex); 1410 /* If we are not the last one to use the buffer, don't touch it. */ 1411 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1412 mutex_unlock(&drvdata->idr_mutex); 1413 goto free_etr_perf_buffer; 1414 } 1415 1416 /* We are the last one, remove from the IDR and free the buffer. */ 1417 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1418 mutex_unlock(&drvdata->idr_mutex); 1419 1420 /* 1421 * Something went very wrong if the buffer associated with this ID 1422 * is not the same in the IDR. Leak to avoid use after free. 1423 */ 1424 if (buf && WARN_ON(buf != etr_buf)) 1425 goto free_etr_perf_buffer; 1426 1427 tmc_free_etr_buf(etr_perf->etr_buf); 1428 1429 free_etr_perf_buffer: 1430 kfree(etr_perf); 1431 } 1432 1433 /* 1434 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1435 * buffer to the perf ring buffer. 1436 */ 1437 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1438 unsigned long src_offset, 1439 unsigned long to_copy) 1440 { 1441 long bytes; 1442 long pg_idx, pg_offset; 1443 unsigned long head = etr_perf->head; 1444 char **dst_pages, *src_buf; 1445 struct etr_buf *etr_buf = etr_perf->etr_buf; 1446 1447 head = etr_perf->head; 1448 pg_idx = head >> PAGE_SHIFT; 1449 pg_offset = head & (PAGE_SIZE - 1); 1450 dst_pages = (char **)etr_perf->pages; 1451 1452 while (to_copy > 0) { 1453 /* 1454 * In one iteration, we can copy minimum of : 1455 * 1) what is available in the source buffer, 1456 * 2) what is available in the source buffer, before it 1457 * wraps around. 1458 * 3) what is available in the destination page. 1459 * in one iteration. 1460 */ 1461 if (src_offset >= etr_buf->size) 1462 src_offset -= etr_buf->size; 1463 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1464 &src_buf); 1465 if (WARN_ON_ONCE(bytes <= 0)) 1466 break; 1467 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1468 1469 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1470 1471 to_copy -= bytes; 1472 1473 /* Move destination pointers */ 1474 pg_offset += bytes; 1475 if (pg_offset == PAGE_SIZE) { 1476 pg_offset = 0; 1477 if (++pg_idx == etr_perf->nr_pages) 1478 pg_idx = 0; 1479 } 1480 1481 /* Move source pointers */ 1482 src_offset += bytes; 1483 } 1484 } 1485 1486 /* 1487 * tmc_update_etr_buffer : Update the perf ring buffer with the 1488 * available trace data. We use software double buffering at the moment. 1489 * 1490 * TODO: Add support for reusing the perf ring buffer. 1491 */ 1492 static unsigned long 1493 tmc_update_etr_buffer(struct coresight_device *csdev, 1494 struct perf_output_handle *handle, 1495 void *config) 1496 { 1497 bool lost = false; 1498 unsigned long flags, offset, size = 0; 1499 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1500 struct etr_perf_buffer *etr_perf = config; 1501 struct etr_buf *etr_buf = etr_perf->etr_buf; 1502 1503 spin_lock_irqsave(&drvdata->spinlock, flags); 1504 1505 /* Don't do anything if another tracer is using this sink */ 1506 if (atomic_read(csdev->refcnt) != 1) { 1507 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1508 goto out; 1509 } 1510 1511 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1512 lost = true; 1513 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1514 goto out; 1515 } 1516 1517 CS_UNLOCK(drvdata->base); 1518 1519 tmc_flush_and_stop(drvdata); 1520 tmc_sync_etr_buf(drvdata); 1521 1522 CS_LOCK(drvdata->base); 1523 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1524 1525 lost = etr_buf->full; 1526 offset = etr_buf->offset; 1527 size = etr_buf->len; 1528 1529 /* 1530 * The ETR buffer may be bigger than the space available in the 1531 * perf ring buffer (handle->size). If so advance the offset so that we 1532 * get the latest trace data. In snapshot mode none of that matters 1533 * since we are expected to clobber stale data in favour of the latest 1534 * traces. 1535 */ 1536 if (!etr_perf->snapshot && size > handle->size) { 1537 u32 mask = tmc_get_memwidth_mask(drvdata); 1538 1539 /* 1540 * Make sure the new size is aligned in accordance with the 1541 * requirement explained in function tmc_get_memwidth_mask(). 1542 */ 1543 size = handle->size & mask; 1544 offset = etr_buf->offset + etr_buf->len - size; 1545 1546 if (offset >= etr_buf->size) 1547 offset -= etr_buf->size; 1548 lost = true; 1549 } 1550 1551 /* Insert barrier packets at the beginning, if there was an overflow */ 1552 if (lost) 1553 tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset); 1554 tmc_etr_sync_perf_buffer(etr_perf, offset, size); 1555 1556 /* 1557 * In snapshot mode we simply increment the head by the number of byte 1558 * that were written. User space function cs_etm_find_snapshot() will 1559 * figure out how many bytes to get from the AUX buffer based on the 1560 * position of the head. 1561 */ 1562 if (etr_perf->snapshot) 1563 handle->head += size; 1564 out: 1565 /* 1566 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1567 * captured buffer is expected to be truncated and 2) a full buffer 1568 * prevents the event from being re-enabled by the perf core, 1569 * resulting in stale data being send to user space. 1570 */ 1571 if (!etr_perf->snapshot && lost) 1572 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1573 return size; 1574 } 1575 1576 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1577 { 1578 int rc = 0; 1579 pid_t pid; 1580 unsigned long flags; 1581 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1582 struct perf_output_handle *handle = data; 1583 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1584 1585 spin_lock_irqsave(&drvdata->spinlock, flags); 1586 /* Don't use this sink if it is already claimed by sysFS */ 1587 if (drvdata->mode == CS_MODE_SYSFS) { 1588 rc = -EBUSY; 1589 goto unlock_out; 1590 } 1591 1592 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1593 rc = -EINVAL; 1594 goto unlock_out; 1595 } 1596 1597 /* Get a handle on the pid of the process to monitor */ 1598 pid = etr_perf->pid; 1599 1600 /* Do not proceed if this device is associated with another session */ 1601 if (drvdata->pid != -1 && drvdata->pid != pid) { 1602 rc = -EBUSY; 1603 goto unlock_out; 1604 } 1605 1606 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf); 1607 1608 /* 1609 * No HW configuration is needed if the sink is already in 1610 * use for this session. 1611 */ 1612 if (drvdata->pid == pid) { 1613 atomic_inc(csdev->refcnt); 1614 goto unlock_out; 1615 } 1616 1617 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1618 if (!rc) { 1619 /* Associate with monitored process. */ 1620 drvdata->pid = pid; 1621 drvdata->mode = CS_MODE_PERF; 1622 drvdata->perf_buf = etr_perf->etr_buf; 1623 atomic_inc(csdev->refcnt); 1624 } 1625 1626 unlock_out: 1627 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1628 return rc; 1629 } 1630 1631 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1632 u32 mode, void *data) 1633 { 1634 switch (mode) { 1635 case CS_MODE_SYSFS: 1636 return tmc_enable_etr_sink_sysfs(csdev); 1637 case CS_MODE_PERF: 1638 return tmc_enable_etr_sink_perf(csdev, data); 1639 } 1640 1641 /* We shouldn't be here */ 1642 return -EINVAL; 1643 } 1644 1645 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1646 { 1647 unsigned long flags; 1648 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1649 1650 spin_lock_irqsave(&drvdata->spinlock, flags); 1651 1652 if (drvdata->reading) { 1653 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1654 return -EBUSY; 1655 } 1656 1657 if (atomic_dec_return(csdev->refcnt)) { 1658 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1659 return -EBUSY; 1660 } 1661 1662 /* Complain if we (somehow) got out of sync */ 1663 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1664 tmc_etr_disable_hw(drvdata); 1665 /* Dissociate from monitored process. */ 1666 drvdata->pid = -1; 1667 drvdata->mode = CS_MODE_DISABLED; 1668 /* Reset perf specific data */ 1669 drvdata->perf_buf = NULL; 1670 1671 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1672 1673 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1674 return 0; 1675 } 1676 1677 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1678 .enable = tmc_enable_etr_sink, 1679 .disable = tmc_disable_etr_sink, 1680 .alloc_buffer = tmc_alloc_etr_buffer, 1681 .update_buffer = tmc_update_etr_buffer, 1682 .free_buffer = tmc_free_etr_buffer, 1683 }; 1684 1685 const struct coresight_ops tmc_etr_cs_ops = { 1686 .sink_ops = &tmc_etr_sink_ops, 1687 }; 1688 1689 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1690 { 1691 int ret = 0; 1692 unsigned long flags; 1693 1694 /* config types are set a boot time and never change */ 1695 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1696 return -EINVAL; 1697 1698 spin_lock_irqsave(&drvdata->spinlock, flags); 1699 if (drvdata->reading) { 1700 ret = -EBUSY; 1701 goto out; 1702 } 1703 1704 /* 1705 * We can safely allow reads even if the ETR is operating in PERF mode, 1706 * since the sysfs session is captured in mode specific data. 1707 * If drvdata::sysfs_data is NULL the trace data has been read already. 1708 */ 1709 if (!drvdata->sysfs_buf) { 1710 ret = -EINVAL; 1711 goto out; 1712 } 1713 1714 /* Disable the TMC if we are trying to read from a running session. */ 1715 if (drvdata->mode == CS_MODE_SYSFS) 1716 __tmc_etr_disable_hw(drvdata); 1717 1718 drvdata->reading = true; 1719 out: 1720 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1721 1722 return ret; 1723 } 1724 1725 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1726 { 1727 unsigned long flags; 1728 struct etr_buf *sysfs_buf = NULL; 1729 1730 /* config types are set a boot time and never change */ 1731 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1732 return -EINVAL; 1733 1734 spin_lock_irqsave(&drvdata->spinlock, flags); 1735 1736 /* RE-enable the TMC if need be */ 1737 if (drvdata->mode == CS_MODE_SYSFS) { 1738 /* 1739 * The trace run will continue with the same allocated trace 1740 * buffer. Since the tracer is still enabled drvdata::buf can't 1741 * be NULL. 1742 */ 1743 __tmc_etr_enable_hw(drvdata); 1744 } else { 1745 /* 1746 * The ETR is not tracing and the buffer was just read. 1747 * As such prepare to free the trace buffer. 1748 */ 1749 sysfs_buf = drvdata->sysfs_buf; 1750 drvdata->sysfs_buf = NULL; 1751 } 1752 1753 drvdata->reading = false; 1754 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1755 1756 /* Free allocated memory out side of the spinlock */ 1757 if (sysfs_buf) 1758 tmc_etr_free_sysfs_buf(sysfs_buf); 1759 1760 return 0; 1761 } 1762