1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2016 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21 
22 struct etr_flat_buf {
23 	struct device	*dev;
24 	dma_addr_t	daddr;
25 	void		*vaddr;
26 	size_t		size;
27 };
28 
29 /*
30  * etr_perf_buffer - Perf buffer used for ETR
31  * @drvdata		- The ETR drvdaga this buffer has been allocated for.
32  * @etr_buf		- Actual buffer used by the ETR
33  * @pid			- The PID this etr_perf_buffer belongs to.
34  * @snaphost		- Perf session mode
35  * @head		- handle->head at the beginning of the session.
36  * @nr_pages		- Number of pages in the ring buffer.
37  * @pages		- Array of Pages in the ring buffer.
38  */
39 struct etr_perf_buffer {
40 	struct tmc_drvdata	*drvdata;
41 	struct etr_buf		*etr_buf;
42 	pid_t			pid;
43 	bool			snapshot;
44 	unsigned long		head;
45 	int			nr_pages;
46 	void			**pages;
47 };
48 
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
51 
52 /* Lower limit for ETR hardware buffer */
53 #define TMC_ETR_PERF_MIN_BUF_SIZE	SZ_1M
54 
55 /*
56  * The TMC ETR SG has a page size of 4K. The SG table contains pointers
57  * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
58  * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
59  * contain more than one SG buffer and tables.
60  *
61  * A table entry has the following format:
62  *
63  * ---Bit31------------Bit4-------Bit1-----Bit0--
64  * |     Address[39:12]    | SBZ |  Entry Type  |
65  * ----------------------------------------------
66  *
67  * Address: Bits [39:12] of a physical page address. Bits [11:0] are
68  *	    always zero.
69  *
70  * Entry type:
71  *	b00 - Reserved.
72  *	b01 - Last entry in the tables, points to 4K page buffer.
73  *	b10 - Normal entry, points to 4K page buffer.
74  *	b11 - Link. The address points to the base of next table.
75  */
76 
77 typedef u32 sgte_t;
78 
79 #define ETR_SG_PAGE_SHIFT		12
80 #define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
81 #define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
82 #define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
83 #define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))
84 
85 #define ETR_SG_ET_MASK			0x3
86 #define ETR_SG_ET_LAST			0x1
87 #define ETR_SG_ET_NORMAL		0x2
88 #define ETR_SG_ET_LINK			0x3
89 
90 #define ETR_SG_ADDR_SHIFT		4
91 
92 #define ETR_SG_ENTRY(addr, type) \
93 	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
94 		 (type & ETR_SG_ET_MASK))
95 
96 #define ETR_SG_ADDR(entry) \
97 	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
98 #define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)
99 
100 /*
101  * struct etr_sg_table : ETR SG Table
102  * @sg_table:		Generic SG Table holding the data/table pages.
103  * @hwaddr:		hwaddress used by the TMC, which is the base
104  *			address of the table.
105  */
106 struct etr_sg_table {
107 	struct tmc_sg_table	*sg_table;
108 	dma_addr_t		hwaddr;
109 };
110 
111 /*
112  * tmc_etr_sg_table_entries: Total number of table entries required to map
113  * @nr_pages system pages.
114  *
115  * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
116  * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
117  * with the last entry pointing to another page of table entries.
118  * If we spill over to a new page for mapping 1 entry, we could as
119  * well replace the link entry of the previous page with the last entry.
120  */
121 static inline unsigned long __attribute_const__
122 tmc_etr_sg_table_entries(int nr_pages)
123 {
124 	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
125 	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
126 	/*
127 	 * If we spill over to a new page for 1 entry, we could as well
128 	 * make it the LAST entry in the previous page, skipping the Link
129 	 * address.
130 	 */
131 	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
132 		nr_sglinks--;
133 	return nr_sgpages + nr_sglinks;
134 }
135 
136 /*
137  * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
138  * and map the device address @addr to an offset within the virtual
139  * contiguous buffer.
140  */
141 static long
142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
143 {
144 	int i;
145 	dma_addr_t page_start;
146 
147 	for (i = 0; i < tmc_pages->nr_pages; i++) {
148 		page_start = tmc_pages->daddrs[i];
149 		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
150 			return i * PAGE_SIZE + (addr - page_start);
151 	}
152 
153 	return -EINVAL;
154 }
155 
156 /*
157  * tmc_pages_free : Unmap and free the pages used by tmc_pages.
158  * If the pages were not allocated in tmc_pages_alloc(), we would
159  * simply drop the refcount.
160  */
161 static void tmc_pages_free(struct tmc_pages *tmc_pages,
162 			   struct device *dev, enum dma_data_direction dir)
163 {
164 	int i;
165 	struct device *real_dev = dev->parent;
166 
167 	for (i = 0; i < tmc_pages->nr_pages; i++) {
168 		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
169 			dma_unmap_page(real_dev, tmc_pages->daddrs[i],
170 					 PAGE_SIZE, dir);
171 		if (tmc_pages->pages && tmc_pages->pages[i])
172 			__free_page(tmc_pages->pages[i]);
173 	}
174 
175 	kfree(tmc_pages->pages);
176 	kfree(tmc_pages->daddrs);
177 	tmc_pages->pages = NULL;
178 	tmc_pages->daddrs = NULL;
179 	tmc_pages->nr_pages = 0;
180 }
181 
182 /*
183  * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
184  * If @pages is not NULL, the list of page virtual addresses are
185  * used as the data pages. The pages are then dma_map'ed for @dev
186  * with dma_direction @dir.
187  *
188  * Returns 0 upon success, else the error number.
189  */
190 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
191 			   struct device *dev, int node,
192 			   enum dma_data_direction dir, void **pages)
193 {
194 	int i, nr_pages;
195 	dma_addr_t paddr;
196 	struct page *page;
197 	struct device *real_dev = dev->parent;
198 
199 	nr_pages = tmc_pages->nr_pages;
200 	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
201 					 GFP_KERNEL);
202 	if (!tmc_pages->daddrs)
203 		return -ENOMEM;
204 	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
205 					 GFP_KERNEL);
206 	if (!tmc_pages->pages) {
207 		kfree(tmc_pages->daddrs);
208 		tmc_pages->daddrs = NULL;
209 		return -ENOMEM;
210 	}
211 
212 	for (i = 0; i < nr_pages; i++) {
213 		if (pages && pages[i]) {
214 			page = virt_to_page(pages[i]);
215 			/* Hold a refcount on the page */
216 			get_page(page);
217 		} else {
218 			page = alloc_pages_node(node,
219 						GFP_KERNEL | __GFP_ZERO, 0);
220 			if (!page)
221 				goto err;
222 		}
223 		paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
224 		if (dma_mapping_error(real_dev, paddr))
225 			goto err;
226 		tmc_pages->daddrs[i] = paddr;
227 		tmc_pages->pages[i] = page;
228 	}
229 	return 0;
230 err:
231 	tmc_pages_free(tmc_pages, dev, dir);
232 	return -ENOMEM;
233 }
234 
235 static inline long
236 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
237 {
238 	return tmc_pages_get_offset(&sg_table->data_pages, addr);
239 }
240 
241 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
242 {
243 	if (sg_table->table_vaddr)
244 		vunmap(sg_table->table_vaddr);
245 	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
246 }
247 
248 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
249 {
250 	if (sg_table->data_vaddr)
251 		vunmap(sg_table->data_vaddr);
252 	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
253 }
254 
255 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
256 {
257 	tmc_free_table_pages(sg_table);
258 	tmc_free_data_pages(sg_table);
259 }
260 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
261 
262 /*
263  * Alloc pages for the table. Since this will be used by the device,
264  * allocate the pages closer to the device (i.e, dev_to_node(dev)
265  * rather than the CPU node).
266  */
267 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
268 {
269 	int rc;
270 	struct tmc_pages *table_pages = &sg_table->table_pages;
271 
272 	rc = tmc_pages_alloc(table_pages, sg_table->dev,
273 			     dev_to_node(sg_table->dev),
274 			     DMA_TO_DEVICE, NULL);
275 	if (rc)
276 		return rc;
277 	sg_table->table_vaddr = vmap(table_pages->pages,
278 				     table_pages->nr_pages,
279 				     VM_MAP,
280 				     PAGE_KERNEL);
281 	if (!sg_table->table_vaddr)
282 		rc = -ENOMEM;
283 	else
284 		sg_table->table_daddr = table_pages->daddrs[0];
285 	return rc;
286 }
287 
288 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
289 {
290 	int rc;
291 
292 	/* Allocate data pages on the node requested by the caller */
293 	rc = tmc_pages_alloc(&sg_table->data_pages,
294 			     sg_table->dev, sg_table->node,
295 			     DMA_FROM_DEVICE, pages);
296 	if (!rc) {
297 		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
298 					    sg_table->data_pages.nr_pages,
299 					    VM_MAP,
300 					    PAGE_KERNEL);
301 		if (!sg_table->data_vaddr)
302 			rc = -ENOMEM;
303 	}
304 	return rc;
305 }
306 
307 /*
308  * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
309  * and data buffers. TMC writes to the data buffers and reads from the SG
310  * Table pages.
311  *
312  * @dev		- Coresight device to which page should be DMA mapped.
313  * @node	- Numa node for mem allocations
314  * @nr_tpages	- Number of pages for the table entries.
315  * @nr_dpages	- Number of pages for Data buffer.
316  * @pages	- Optional list of virtual address of pages.
317  */
318 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
319 					int node,
320 					int nr_tpages,
321 					int nr_dpages,
322 					void **pages)
323 {
324 	long rc;
325 	struct tmc_sg_table *sg_table;
326 
327 	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
328 	if (!sg_table)
329 		return ERR_PTR(-ENOMEM);
330 	sg_table->data_pages.nr_pages = nr_dpages;
331 	sg_table->table_pages.nr_pages = nr_tpages;
332 	sg_table->node = node;
333 	sg_table->dev = dev;
334 
335 	rc  = tmc_alloc_data_pages(sg_table, pages);
336 	if (!rc)
337 		rc = tmc_alloc_table_pages(sg_table);
338 	if (rc) {
339 		tmc_free_sg_table(sg_table);
340 		kfree(sg_table);
341 		return ERR_PTR(rc);
342 	}
343 
344 	return sg_table;
345 }
346 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
347 
348 /*
349  * tmc_sg_table_sync_data_range: Sync the data buffer written
350  * by the device from @offset upto a @size bytes.
351  */
352 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
353 				  u64 offset, u64 size)
354 {
355 	int i, index, start;
356 	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
357 	struct device *real_dev = table->dev->parent;
358 	struct tmc_pages *data = &table->data_pages;
359 
360 	start = offset >> PAGE_SHIFT;
361 	for (i = start; i < (start + npages); i++) {
362 		index = i % data->nr_pages;
363 		dma_sync_single_for_cpu(real_dev, data->daddrs[index],
364 					PAGE_SIZE, DMA_FROM_DEVICE);
365 	}
366 }
367 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
368 
369 /* tmc_sg_sync_table: Sync the page table */
370 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
371 {
372 	int i;
373 	struct device *real_dev = sg_table->dev->parent;
374 	struct tmc_pages *table_pages = &sg_table->table_pages;
375 
376 	for (i = 0; i < table_pages->nr_pages; i++)
377 		dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
378 					   PAGE_SIZE, DMA_TO_DEVICE);
379 }
380 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
381 
382 /*
383  * tmc_sg_table_get_data: Get the buffer pointer for data @offset
384  * in the SG buffer. The @bufpp is updated to point to the buffer.
385  * Returns :
386  *	the length of linear data available at @offset.
387  *	or
388  *	<= 0 if no data is available.
389  */
390 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
391 			      u64 offset, size_t len, char **bufpp)
392 {
393 	size_t size;
394 	int pg_idx = offset >> PAGE_SHIFT;
395 	int pg_offset = offset & (PAGE_SIZE - 1);
396 	struct tmc_pages *data_pages = &sg_table->data_pages;
397 
398 	size = tmc_sg_table_buf_size(sg_table);
399 	if (offset >= size)
400 		return -EINVAL;
401 
402 	/* Make sure we don't go beyond the end */
403 	len = (len < (size - offset)) ? len : size - offset;
404 	/* Respect the page boundaries */
405 	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
406 	if (len > 0)
407 		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
408 	return len;
409 }
410 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
411 
412 #ifdef ETR_SG_DEBUG
413 /* Map a dma address to virtual address */
414 static unsigned long
415 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
416 		      dma_addr_t addr, bool table)
417 {
418 	long offset;
419 	unsigned long base;
420 	struct tmc_pages *tmc_pages;
421 
422 	if (table) {
423 		tmc_pages = &sg_table->table_pages;
424 		base = (unsigned long)sg_table->table_vaddr;
425 	} else {
426 		tmc_pages = &sg_table->data_pages;
427 		base = (unsigned long)sg_table->data_vaddr;
428 	}
429 
430 	offset = tmc_pages_get_offset(tmc_pages, addr);
431 	if (offset < 0)
432 		return 0;
433 	return base + offset;
434 }
435 
436 /* Dump the given sg_table */
437 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
438 {
439 	sgte_t *ptr;
440 	int i = 0;
441 	dma_addr_t addr;
442 	struct tmc_sg_table *sg_table = etr_table->sg_table;
443 
444 	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
445 					      etr_table->hwaddr, true);
446 	while (ptr) {
447 		addr = ETR_SG_ADDR(*ptr);
448 		switch (ETR_SG_ET(*ptr)) {
449 		case ETR_SG_ET_NORMAL:
450 			dev_dbg(sg_table->dev,
451 				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
452 			ptr++;
453 			break;
454 		case ETR_SG_ET_LINK:
455 			dev_dbg(sg_table->dev,
456 				"%05d: *** %p\t:{L} 0x%llx ***\n",
457 				 i, ptr, addr);
458 			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
459 							      addr, true);
460 			break;
461 		case ETR_SG_ET_LAST:
462 			dev_dbg(sg_table->dev,
463 				"%05d: ### %p\t:[L] 0x%llx ###\n",
464 				 i, ptr, addr);
465 			return;
466 		default:
467 			dev_dbg(sg_table->dev,
468 				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
469 				 i, ptr, addr);
470 			return;
471 		}
472 		i++;
473 	}
474 	dev_dbg(sg_table->dev, "******* End of Table *****\n");
475 }
476 #else
477 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
478 #endif
479 
480 /*
481  * Populate the SG Table page table entries from table/data
482  * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
483  * So does a Table page. So we keep track of indices of the tables
484  * in each system page and move the pointers accordingly.
485  */
486 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
487 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
488 {
489 	dma_addr_t paddr;
490 	int i, type, nr_entries;
491 	int tpidx = 0; /* index to the current system table_page */
492 	int sgtidx = 0;	/* index to the sg_table within the current syspage */
493 	int sgtentry = 0; /* the entry within the sg_table */
494 	int dpidx = 0; /* index to the current system data_page */
495 	int spidx = 0; /* index to the SG page within the current data page */
496 	sgte_t *ptr; /* pointer to the table entry to fill */
497 	struct tmc_sg_table *sg_table = etr_table->sg_table;
498 	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
499 	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
500 
501 	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
502 	/*
503 	 * Use the contiguous virtual address of the table to update entries.
504 	 */
505 	ptr = sg_table->table_vaddr;
506 	/*
507 	 * Fill all the entries, except the last entry to avoid special
508 	 * checks within the loop.
509 	 */
510 	for (i = 0; i < nr_entries - 1; i++) {
511 		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
512 			/*
513 			 * Last entry in a sg_table page is a link address to
514 			 * the next table page. If this sg_table is the last
515 			 * one in the system page, it links to the first
516 			 * sg_table in the next system page. Otherwise, it
517 			 * links to the next sg_table page within the system
518 			 * page.
519 			 */
520 			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
521 				paddr = table_daddrs[tpidx + 1];
522 			} else {
523 				paddr = table_daddrs[tpidx] +
524 					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
525 			}
526 			type = ETR_SG_ET_LINK;
527 		} else {
528 			/*
529 			 * Update the indices to the data_pages to point to the
530 			 * next sg_page in the data buffer.
531 			 */
532 			type = ETR_SG_ET_NORMAL;
533 			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
534 			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
535 				dpidx++;
536 		}
537 		*ptr++ = ETR_SG_ENTRY(paddr, type);
538 		/*
539 		 * Move to the next table pointer, moving the table page index
540 		 * if necessary
541 		 */
542 		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
543 			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
544 				tpidx++;
545 		}
546 	}
547 
548 	/* Set up the last entry, which is always a data pointer */
549 	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
550 	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
551 }
552 
553 /*
554  * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
555  * populate the table.
556  *
557  * @dev		- Device pointer for the TMC
558  * @node	- NUMA node where the memory should be allocated
559  * @size	- Total size of the data buffer
560  * @pages	- Optional list of page virtual address
561  */
562 static struct etr_sg_table *
563 tmc_init_etr_sg_table(struct device *dev, int node,
564 		      unsigned long size, void **pages)
565 {
566 	int nr_entries, nr_tpages;
567 	int nr_dpages = size >> PAGE_SHIFT;
568 	struct tmc_sg_table *sg_table;
569 	struct etr_sg_table *etr_table;
570 
571 	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
572 	if (!etr_table)
573 		return ERR_PTR(-ENOMEM);
574 	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
575 	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
576 
577 	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
578 	if (IS_ERR(sg_table)) {
579 		kfree(etr_table);
580 		return ERR_CAST(sg_table);
581 	}
582 
583 	etr_table->sg_table = sg_table;
584 	/* TMC should use table base address for DBA */
585 	etr_table->hwaddr = sg_table->table_daddr;
586 	tmc_etr_sg_table_populate(etr_table);
587 	/* Sync the table pages for the HW */
588 	tmc_sg_table_sync_table(sg_table);
589 	tmc_etr_sg_table_dump(etr_table);
590 
591 	return etr_table;
592 }
593 
594 /*
595  * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
596  */
597 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
598 				  struct etr_buf *etr_buf, int node,
599 				  void **pages)
600 {
601 	struct etr_flat_buf *flat_buf;
602 	struct device *real_dev = drvdata->csdev->dev.parent;
603 
604 	/* We cannot reuse existing pages for flat buf */
605 	if (pages)
606 		return -EINVAL;
607 
608 	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
609 	if (!flat_buf)
610 		return -ENOMEM;
611 
612 	flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
613 					     &flat_buf->daddr, GFP_KERNEL);
614 	if (!flat_buf->vaddr) {
615 		kfree(flat_buf);
616 		return -ENOMEM;
617 	}
618 
619 	flat_buf->size = etr_buf->size;
620 	flat_buf->dev = &drvdata->csdev->dev;
621 	etr_buf->hwaddr = flat_buf->daddr;
622 	etr_buf->mode = ETR_MODE_FLAT;
623 	etr_buf->private = flat_buf;
624 	return 0;
625 }
626 
627 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
628 {
629 	struct etr_flat_buf *flat_buf = etr_buf->private;
630 
631 	if (flat_buf && flat_buf->daddr) {
632 		struct device *real_dev = flat_buf->dev->parent;
633 
634 		dma_free_coherent(real_dev, flat_buf->size,
635 				  flat_buf->vaddr, flat_buf->daddr);
636 	}
637 	kfree(flat_buf);
638 }
639 
640 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
641 {
642 	/*
643 	 * Adjust the buffer to point to the beginning of the trace data
644 	 * and update the available trace data.
645 	 */
646 	etr_buf->offset = rrp - etr_buf->hwaddr;
647 	if (etr_buf->full)
648 		etr_buf->len = etr_buf->size;
649 	else
650 		etr_buf->len = rwp - rrp;
651 }
652 
653 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
654 					 u64 offset, size_t len, char **bufpp)
655 {
656 	struct etr_flat_buf *flat_buf = etr_buf->private;
657 
658 	*bufpp = (char *)flat_buf->vaddr + offset;
659 	/*
660 	 * tmc_etr_buf_get_data already adjusts the length to handle
661 	 * buffer wrapping around.
662 	 */
663 	return len;
664 }
665 
666 static const struct etr_buf_operations etr_flat_buf_ops = {
667 	.alloc = tmc_etr_alloc_flat_buf,
668 	.free = tmc_etr_free_flat_buf,
669 	.sync = tmc_etr_sync_flat_buf,
670 	.get_data = tmc_etr_get_data_flat_buf,
671 };
672 
673 /*
674  * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
675  * appropriately.
676  */
677 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
678 				struct etr_buf *etr_buf, int node,
679 				void **pages)
680 {
681 	struct etr_sg_table *etr_table;
682 	struct device *dev = &drvdata->csdev->dev;
683 
684 	etr_table = tmc_init_etr_sg_table(dev, node,
685 					  etr_buf->size, pages);
686 	if (IS_ERR(etr_table))
687 		return -ENOMEM;
688 	etr_buf->hwaddr = etr_table->hwaddr;
689 	etr_buf->mode = ETR_MODE_ETR_SG;
690 	etr_buf->private = etr_table;
691 	return 0;
692 }
693 
694 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
695 {
696 	struct etr_sg_table *etr_table = etr_buf->private;
697 
698 	if (etr_table) {
699 		tmc_free_sg_table(etr_table->sg_table);
700 		kfree(etr_table);
701 	}
702 }
703 
704 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
705 				       size_t len, char **bufpp)
706 {
707 	struct etr_sg_table *etr_table = etr_buf->private;
708 
709 	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
710 }
711 
712 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
713 {
714 	long r_offset, w_offset;
715 	struct etr_sg_table *etr_table = etr_buf->private;
716 	struct tmc_sg_table *table = etr_table->sg_table;
717 
718 	/* Convert hw address to offset in the buffer */
719 	r_offset = tmc_sg_get_data_page_offset(table, rrp);
720 	if (r_offset < 0) {
721 		dev_warn(table->dev,
722 			 "Unable to map RRP %llx to offset\n", rrp);
723 		etr_buf->len = 0;
724 		return;
725 	}
726 
727 	w_offset = tmc_sg_get_data_page_offset(table, rwp);
728 	if (w_offset < 0) {
729 		dev_warn(table->dev,
730 			 "Unable to map RWP %llx to offset\n", rwp);
731 		etr_buf->len = 0;
732 		return;
733 	}
734 
735 	etr_buf->offset = r_offset;
736 	if (etr_buf->full)
737 		etr_buf->len = etr_buf->size;
738 	else
739 		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
740 				w_offset - r_offset;
741 	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
742 }
743 
744 static const struct etr_buf_operations etr_sg_buf_ops = {
745 	.alloc = tmc_etr_alloc_sg_buf,
746 	.free = tmc_etr_free_sg_buf,
747 	.sync = tmc_etr_sync_sg_buf,
748 	.get_data = tmc_etr_get_data_sg_buf,
749 };
750 
751 /*
752  * TMC ETR could be connected to a CATU device, which can provide address
753  * translation service. This is represented by the Output port of the TMC
754  * (ETR) connected to the input port of the CATU.
755  *
756  * Returns	: coresight_device ptr for the CATU device if a CATU is found.
757  *		: NULL otherwise.
758  */
759 struct coresight_device *
760 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
761 {
762 	int i;
763 	struct coresight_device *tmp, *etr = drvdata->csdev;
764 
765 	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
766 		return NULL;
767 
768 	for (i = 0; i < etr->pdata->nr_outport; i++) {
769 		tmp = etr->pdata->conns[i].child_dev;
770 		if (tmp && coresight_is_catu_device(tmp))
771 			return tmp;
772 	}
773 
774 	return NULL;
775 }
776 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
777 
778 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
779 				      struct etr_buf *etr_buf)
780 {
781 	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
782 
783 	if (catu && helper_ops(catu)->enable)
784 		return helper_ops(catu)->enable(catu, etr_buf);
785 	return 0;
786 }
787 
788 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
789 {
790 	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
791 
792 	if (catu && helper_ops(catu)->disable)
793 		helper_ops(catu)->disable(catu, drvdata->etr_buf);
794 }
795 
796 static const struct etr_buf_operations *etr_buf_ops[] = {
797 	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
798 	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
799 	[ETR_MODE_CATU] = NULL,
800 };
801 
802 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
803 {
804 	etr_buf_ops[ETR_MODE_CATU] = catu;
805 }
806 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
807 
808 void tmc_etr_remove_catu_ops(void)
809 {
810 	etr_buf_ops[ETR_MODE_CATU] = NULL;
811 }
812 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
813 
814 static inline int tmc_etr_mode_alloc_buf(int mode,
815 					 struct tmc_drvdata *drvdata,
816 					 struct etr_buf *etr_buf, int node,
817 					 void **pages)
818 {
819 	int rc = -EINVAL;
820 
821 	switch (mode) {
822 	case ETR_MODE_FLAT:
823 	case ETR_MODE_ETR_SG:
824 	case ETR_MODE_CATU:
825 		if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
826 			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
827 						      node, pages);
828 		if (!rc)
829 			etr_buf->ops = etr_buf_ops[mode];
830 		return rc;
831 	default:
832 		return -EINVAL;
833 	}
834 }
835 
836 /*
837  * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
838  * @drvdata	: ETR device details.
839  * @size	: size of the requested buffer.
840  * @flags	: Required properties for the buffer.
841  * @node	: Node for memory allocations.
842  * @pages	: An optional list of pages.
843  */
844 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
845 					 ssize_t size, int flags,
846 					 int node, void **pages)
847 {
848 	int rc = -ENOMEM;
849 	bool has_etr_sg, has_iommu;
850 	bool has_sg, has_catu;
851 	struct etr_buf *etr_buf;
852 	struct device *dev = &drvdata->csdev->dev;
853 
854 	has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
855 	has_iommu = iommu_get_domain_for_dev(dev->parent);
856 	has_catu = !!tmc_etr_get_catu_device(drvdata);
857 
858 	has_sg = has_catu || has_etr_sg;
859 
860 	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
861 	if (!etr_buf)
862 		return ERR_PTR(-ENOMEM);
863 
864 	etr_buf->size = size;
865 
866 	/*
867 	 * If we have to use an existing list of pages, we cannot reliably
868 	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
869 	 * we use the contiguous DMA memory if at least one of the following
870 	 * conditions is true:
871 	 *  a) The ETR cannot use Scatter-Gather.
872 	 *  b) we have a backing IOMMU
873 	 *  c) The requested memory size is smaller (< 1M).
874 	 *
875 	 * Fallback to available mechanisms.
876 	 *
877 	 */
878 	if (!pages &&
879 	    (!has_sg || has_iommu || size < SZ_1M))
880 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
881 					    etr_buf, node, pages);
882 	if (rc && has_etr_sg)
883 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
884 					    etr_buf, node, pages);
885 	if (rc && has_catu)
886 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
887 					    etr_buf, node, pages);
888 	if (rc) {
889 		kfree(etr_buf);
890 		return ERR_PTR(rc);
891 	}
892 
893 	refcount_set(&etr_buf->refcount, 1);
894 	dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
895 		(unsigned long)size >> 10, etr_buf->mode);
896 	return etr_buf;
897 }
898 
899 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
900 {
901 	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
902 	etr_buf->ops->free(etr_buf);
903 	kfree(etr_buf);
904 }
905 
906 /*
907  * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
908  * with a maximum of @len bytes.
909  * Returns: The size of the linear data available @pos, with *bufpp
910  * updated to point to the buffer.
911  */
912 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
913 				    u64 offset, size_t len, char **bufpp)
914 {
915 	/* Adjust the length to limit this transaction to end of buffer */
916 	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
917 
918 	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
919 }
920 
921 static inline s64
922 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
923 {
924 	ssize_t len;
925 	char *bufp;
926 
927 	len = tmc_etr_buf_get_data(etr_buf, offset,
928 				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
929 	if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
930 		return -EINVAL;
931 	coresight_insert_barrier_packet(bufp);
932 	return offset + CORESIGHT_BARRIER_PKT_SIZE;
933 }
934 
935 /*
936  * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
937  * Makes sure the trace data is synced to the memory for consumption.
938  * @etr_buf->offset will hold the offset to the beginning of the trace data
939  * within the buffer, with @etr_buf->len bytes to consume.
940  */
941 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
942 {
943 	struct etr_buf *etr_buf = drvdata->etr_buf;
944 	u64 rrp, rwp;
945 	u32 status;
946 
947 	rrp = tmc_read_rrp(drvdata);
948 	rwp = tmc_read_rwp(drvdata);
949 	status = readl_relaxed(drvdata->base + TMC_STS);
950 
951 	/*
952 	 * If there were memory errors in the session, truncate the
953 	 * buffer.
954 	 */
955 	if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
956 		dev_dbg(&drvdata->csdev->dev,
957 			"tmc memory error detected, truncating buffer\n");
958 		etr_buf->len = 0;
959 		etr_buf->full = false;
960 		return;
961 	}
962 
963 	etr_buf->full = !!(status & TMC_STS_FULL);
964 
965 	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
966 
967 	etr_buf->ops->sync(etr_buf, rrp, rwp);
968 }
969 
970 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
971 {
972 	u32 axictl, sts;
973 	struct etr_buf *etr_buf = drvdata->etr_buf;
974 
975 	CS_UNLOCK(drvdata->base);
976 
977 	/* Wait for TMCSReady bit to be set */
978 	tmc_wait_for_tmcready(drvdata);
979 
980 	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
981 	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
982 
983 	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
984 	axictl &= ~TMC_AXICTL_CLEAR_MASK;
985 	axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
986 	axictl |= TMC_AXICTL_AXCACHE_OS;
987 
988 	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
989 		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
990 		axictl |= TMC_AXICTL_ARCACHE_OS;
991 	}
992 
993 	if (etr_buf->mode == ETR_MODE_ETR_SG)
994 		axictl |= TMC_AXICTL_SCT_GAT_MODE;
995 
996 	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
997 	tmc_write_dba(drvdata, etr_buf->hwaddr);
998 	/*
999 	 * If the TMC pointers must be programmed before the session,
1000 	 * we have to set it properly (i.e, RRP/RWP to base address and
1001 	 * STS to "not full").
1002 	 */
1003 	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1004 		tmc_write_rrp(drvdata, etr_buf->hwaddr);
1005 		tmc_write_rwp(drvdata, etr_buf->hwaddr);
1006 		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1007 		writel_relaxed(sts, drvdata->base + TMC_STS);
1008 	}
1009 
1010 	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1011 		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1012 		       TMC_FFCR_TRIGON_TRIGIN,
1013 		       drvdata->base + TMC_FFCR);
1014 	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1015 	tmc_enable_hw(drvdata);
1016 
1017 	CS_LOCK(drvdata->base);
1018 }
1019 
1020 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1021 			     struct etr_buf *etr_buf)
1022 {
1023 	int rc;
1024 
1025 	/* Callers should provide an appropriate buffer for use */
1026 	if (WARN_ON(!etr_buf))
1027 		return -EINVAL;
1028 
1029 	if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1030 	    WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1031 		return -EINVAL;
1032 
1033 	if (WARN_ON(drvdata->etr_buf))
1034 		return -EBUSY;
1035 
1036 	/*
1037 	 * If this ETR is connected to a CATU, enable it before we turn
1038 	 * this on.
1039 	 */
1040 	rc = tmc_etr_enable_catu(drvdata, etr_buf);
1041 	if (rc)
1042 		return rc;
1043 	rc = coresight_claim_device(drvdata->base);
1044 	if (!rc) {
1045 		drvdata->etr_buf = etr_buf;
1046 		__tmc_etr_enable_hw(drvdata);
1047 	}
1048 
1049 	return rc;
1050 }
1051 
1052 /*
1053  * Return the available trace data in the buffer (starts at etr_buf->offset,
1054  * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1055  * also updating the @bufpp on where to find it. Since the trace data
1056  * starts at anywhere in the buffer, depending on the RRP, we adjust the
1057  * @len returned to handle buffer wrapping around.
1058  *
1059  * We are protected here by drvdata->reading != 0, which ensures the
1060  * sysfs_buf stays alive.
1061  */
1062 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1063 				loff_t pos, size_t len, char **bufpp)
1064 {
1065 	s64 offset;
1066 	ssize_t actual = len;
1067 	struct etr_buf *etr_buf = drvdata->sysfs_buf;
1068 
1069 	if (pos + actual > etr_buf->len)
1070 		actual = etr_buf->len - pos;
1071 	if (actual <= 0)
1072 		return actual;
1073 
1074 	/* Compute the offset from which we read the data */
1075 	offset = etr_buf->offset + pos;
1076 	if (offset >= etr_buf->size)
1077 		offset -= etr_buf->size;
1078 	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1079 }
1080 
1081 static struct etr_buf *
1082 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1083 {
1084 	return tmc_alloc_etr_buf(drvdata, drvdata->size,
1085 				 0, cpu_to_node(0), NULL);
1086 }
1087 
1088 static void
1089 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1090 {
1091 	if (buf)
1092 		tmc_free_etr_buf(buf);
1093 }
1094 
1095 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1096 {
1097 	struct etr_buf *etr_buf = drvdata->etr_buf;
1098 
1099 	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1100 		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1101 		drvdata->sysfs_buf = NULL;
1102 	} else {
1103 		tmc_sync_etr_buf(drvdata);
1104 		/*
1105 		 * Insert barrier packets at the beginning, if there was
1106 		 * an overflow.
1107 		 */
1108 		if (etr_buf->full)
1109 			tmc_etr_buf_insert_barrier_packet(etr_buf,
1110 							  etr_buf->offset);
1111 	}
1112 }
1113 
1114 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1115 {
1116 	CS_UNLOCK(drvdata->base);
1117 
1118 	tmc_flush_and_stop(drvdata);
1119 	/*
1120 	 * When operating in sysFS mode the content of the buffer needs to be
1121 	 * read before the TMC is disabled.
1122 	 */
1123 	if (drvdata->mode == CS_MODE_SYSFS)
1124 		tmc_etr_sync_sysfs_buf(drvdata);
1125 
1126 	tmc_disable_hw(drvdata);
1127 
1128 	CS_LOCK(drvdata->base);
1129 
1130 }
1131 
1132 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1133 {
1134 	__tmc_etr_disable_hw(drvdata);
1135 	/* Disable CATU device if this ETR is connected to one */
1136 	tmc_etr_disable_catu(drvdata);
1137 	coresight_disclaim_device(drvdata->base);
1138 	/* Reset the ETR buf used by hardware */
1139 	drvdata->etr_buf = NULL;
1140 }
1141 
1142 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1143 {
1144 	int ret = 0;
1145 	unsigned long flags;
1146 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1147 	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1148 
1149 	/*
1150 	 * If we are enabling the ETR from disabled state, we need to make
1151 	 * sure we have a buffer with the right size. The etr_buf is not reset
1152 	 * immediately after we stop the tracing in SYSFS mode as we wait for
1153 	 * the user to collect the data. We may be able to reuse the existing
1154 	 * buffer, provided the size matches. Any allocation has to be done
1155 	 * with the lock released.
1156 	 */
1157 	spin_lock_irqsave(&drvdata->spinlock, flags);
1158 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1159 	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1160 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1161 
1162 		/* Allocate memory with the locks released */
1163 		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1164 		if (IS_ERR(new_buf))
1165 			return PTR_ERR(new_buf);
1166 
1167 		/* Let's try again */
1168 		spin_lock_irqsave(&drvdata->spinlock, flags);
1169 	}
1170 
1171 	if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1172 		ret = -EBUSY;
1173 		goto out;
1174 	}
1175 
1176 	/*
1177 	 * In sysFS mode we can have multiple writers per sink.  Since this
1178 	 * sink is already enabled no memory is needed and the HW need not be
1179 	 * touched, even if the buffer size has changed.
1180 	 */
1181 	if (drvdata->mode == CS_MODE_SYSFS) {
1182 		atomic_inc(csdev->refcnt);
1183 		goto out;
1184 	}
1185 
1186 	/*
1187 	 * If we don't have a buffer or it doesn't match the requested size,
1188 	 * use the buffer allocated above. Otherwise reuse the existing buffer.
1189 	 */
1190 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1191 	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1192 		free_buf = sysfs_buf;
1193 		drvdata->sysfs_buf = new_buf;
1194 	}
1195 
1196 	ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1197 	if (!ret) {
1198 		drvdata->mode = CS_MODE_SYSFS;
1199 		atomic_inc(csdev->refcnt);
1200 	}
1201 out:
1202 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1203 
1204 	/* Free memory outside the spinlock if need be */
1205 	if (free_buf)
1206 		tmc_etr_free_sysfs_buf(free_buf);
1207 
1208 	if (!ret)
1209 		dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1210 
1211 	return ret;
1212 }
1213 
1214 /*
1215  * alloc_etr_buf: Allocate ETR buffer for use by perf.
1216  * The size of the hardware buffer is dependent on the size configured
1217  * via sysfs and the perf ring buffer size. We prefer to allocate the
1218  * largest possible size, scaling down the size by half until it
1219  * reaches a minimum limit (1M), beyond which we give up.
1220  */
1221 static struct etr_buf *
1222 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1223 	      int nr_pages, void **pages, bool snapshot)
1224 {
1225 	int node;
1226 	struct etr_buf *etr_buf;
1227 	unsigned long size;
1228 
1229 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1230 	/*
1231 	 * Try to match the perf ring buffer size if it is larger
1232 	 * than the size requested via sysfs.
1233 	 */
1234 	if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1235 		etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1236 					    0, node, NULL);
1237 		if (!IS_ERR(etr_buf))
1238 			goto done;
1239 	}
1240 
1241 	/*
1242 	 * Else switch to configured size for this ETR
1243 	 * and scale down until we hit the minimum limit.
1244 	 */
1245 	size = drvdata->size;
1246 	do {
1247 		etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1248 		if (!IS_ERR(etr_buf))
1249 			goto done;
1250 		size /= 2;
1251 	} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1252 
1253 	return ERR_PTR(-ENOMEM);
1254 
1255 done:
1256 	return etr_buf;
1257 }
1258 
1259 static struct etr_buf *
1260 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1261 			  struct perf_event *event, int nr_pages,
1262 			  void **pages, bool snapshot)
1263 {
1264 	int ret;
1265 	pid_t pid = task_pid_nr(event->owner);
1266 	struct etr_buf *etr_buf;
1267 
1268 retry:
1269 	/*
1270 	 * An etr_perf_buffer is associated with an event and holds a reference
1271 	 * to the AUX ring buffer that was created for that event.  In CPU-wide
1272 	 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1273 	 * buffer, share a sink.  As such an etr_perf_buffer is created for each
1274 	 * event but a single etr_buf associated with the ETR is shared between
1275 	 * them.  The last event in a trace session will copy the content of the
1276 	 * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1277 	 * events are simply not used an freed as events are destoyed.  We still
1278 	 * need to allocate a ring buffer for each event since we don't know
1279 	 * which event will be last.
1280 	 */
1281 
1282 	/*
1283 	 * The first thing to do here is check if an etr_buf has already been
1284 	 * allocated for this session.  If so it is shared with this event,
1285 	 * otherwise it is created.
1286 	 */
1287 	mutex_lock(&drvdata->idr_mutex);
1288 	etr_buf = idr_find(&drvdata->idr, pid);
1289 	if (etr_buf) {
1290 		refcount_inc(&etr_buf->refcount);
1291 		mutex_unlock(&drvdata->idr_mutex);
1292 		return etr_buf;
1293 	}
1294 
1295 	/* If we made it here no buffer has been allocated, do so now. */
1296 	mutex_unlock(&drvdata->idr_mutex);
1297 
1298 	etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1299 	if (IS_ERR(etr_buf))
1300 		return etr_buf;
1301 
1302 	/* Now that we have a buffer, add it to the IDR. */
1303 	mutex_lock(&drvdata->idr_mutex);
1304 	ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1305 	mutex_unlock(&drvdata->idr_mutex);
1306 
1307 	/* Another event with this session ID has allocated this buffer. */
1308 	if (ret == -ENOSPC) {
1309 		tmc_free_etr_buf(etr_buf);
1310 		goto retry;
1311 	}
1312 
1313 	/* The IDR can't allocate room for a new session, abandon ship. */
1314 	if (ret == -ENOMEM) {
1315 		tmc_free_etr_buf(etr_buf);
1316 		return ERR_PTR(ret);
1317 	}
1318 
1319 
1320 	return etr_buf;
1321 }
1322 
1323 static struct etr_buf *
1324 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1325 			    struct perf_event *event, int nr_pages,
1326 			    void **pages, bool snapshot)
1327 {
1328 	/*
1329 	 * In per-thread mode the etr_buf isn't shared, so just go ahead
1330 	 * with memory allocation.
1331 	 */
1332 	return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1333 }
1334 
1335 static struct etr_buf *
1336 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1337 		 int nr_pages, void **pages, bool snapshot)
1338 {
1339 	if (event->cpu == -1)
1340 		return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1341 						   pages, snapshot);
1342 
1343 	return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1344 					 pages, snapshot);
1345 }
1346 
1347 static struct etr_perf_buffer *
1348 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1349 		       int nr_pages, void **pages, bool snapshot)
1350 {
1351 	int node;
1352 	struct etr_buf *etr_buf;
1353 	struct etr_perf_buffer *etr_perf;
1354 
1355 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1356 
1357 	etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1358 	if (!etr_perf)
1359 		return ERR_PTR(-ENOMEM);
1360 
1361 	etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1362 	if (!IS_ERR(etr_buf))
1363 		goto done;
1364 
1365 	kfree(etr_perf);
1366 	return ERR_PTR(-ENOMEM);
1367 
1368 done:
1369 	/*
1370 	 * Keep a reference to the ETR this buffer has been allocated for
1371 	 * in order to have access to the IDR in tmc_free_etr_buffer().
1372 	 */
1373 	etr_perf->drvdata = drvdata;
1374 	etr_perf->etr_buf = etr_buf;
1375 
1376 	return etr_perf;
1377 }
1378 
1379 
1380 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1381 				  struct perf_event *event, void **pages,
1382 				  int nr_pages, bool snapshot)
1383 {
1384 	struct etr_perf_buffer *etr_perf;
1385 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1386 
1387 	etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1388 					  nr_pages, pages, snapshot);
1389 	if (IS_ERR(etr_perf)) {
1390 		dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1391 		return NULL;
1392 	}
1393 
1394 	etr_perf->pid = task_pid_nr(event->owner);
1395 	etr_perf->snapshot = snapshot;
1396 	etr_perf->nr_pages = nr_pages;
1397 	etr_perf->pages = pages;
1398 
1399 	return etr_perf;
1400 }
1401 
1402 static void tmc_free_etr_buffer(void *config)
1403 {
1404 	struct etr_perf_buffer *etr_perf = config;
1405 	struct tmc_drvdata *drvdata = etr_perf->drvdata;
1406 	struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1407 
1408 	if (!etr_buf)
1409 		goto free_etr_perf_buffer;
1410 
1411 	mutex_lock(&drvdata->idr_mutex);
1412 	/* If we are not the last one to use the buffer, don't touch it. */
1413 	if (!refcount_dec_and_test(&etr_buf->refcount)) {
1414 		mutex_unlock(&drvdata->idr_mutex);
1415 		goto free_etr_perf_buffer;
1416 	}
1417 
1418 	/* We are the last one, remove from the IDR and free the buffer. */
1419 	buf = idr_remove(&drvdata->idr, etr_perf->pid);
1420 	mutex_unlock(&drvdata->idr_mutex);
1421 
1422 	/*
1423 	 * Something went very wrong if the buffer associated with this ID
1424 	 * is not the same in the IDR.  Leak to avoid use after free.
1425 	 */
1426 	if (buf && WARN_ON(buf != etr_buf))
1427 		goto free_etr_perf_buffer;
1428 
1429 	tmc_free_etr_buf(etr_perf->etr_buf);
1430 
1431 free_etr_perf_buffer:
1432 	kfree(etr_perf);
1433 }
1434 
1435 /*
1436  * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1437  * buffer to the perf ring buffer.
1438  */
1439 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1440 				     unsigned long src_offset,
1441 				     unsigned long to_copy)
1442 {
1443 	long bytes;
1444 	long pg_idx, pg_offset;
1445 	unsigned long head = etr_perf->head;
1446 	char **dst_pages, *src_buf;
1447 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1448 
1449 	head = etr_perf->head;
1450 	pg_idx = head >> PAGE_SHIFT;
1451 	pg_offset = head & (PAGE_SIZE - 1);
1452 	dst_pages = (char **)etr_perf->pages;
1453 
1454 	while (to_copy > 0) {
1455 		/*
1456 		 * In one iteration, we can copy minimum of :
1457 		 *  1) what is available in the source buffer,
1458 		 *  2) what is available in the source buffer, before it
1459 		 *     wraps around.
1460 		 *  3) what is available in the destination page.
1461 		 * in one iteration.
1462 		 */
1463 		if (src_offset >= etr_buf->size)
1464 			src_offset -= etr_buf->size;
1465 		bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1466 					     &src_buf);
1467 		if (WARN_ON_ONCE(bytes <= 0))
1468 			break;
1469 		bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1470 
1471 		memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1472 
1473 		to_copy -= bytes;
1474 
1475 		/* Move destination pointers */
1476 		pg_offset += bytes;
1477 		if (pg_offset == PAGE_SIZE) {
1478 			pg_offset = 0;
1479 			if (++pg_idx == etr_perf->nr_pages)
1480 				pg_idx = 0;
1481 		}
1482 
1483 		/* Move source pointers */
1484 		src_offset += bytes;
1485 	}
1486 }
1487 
1488 /*
1489  * tmc_update_etr_buffer : Update the perf ring buffer with the
1490  * available trace data. We use software double buffering at the moment.
1491  *
1492  * TODO: Add support for reusing the perf ring buffer.
1493  */
1494 static unsigned long
1495 tmc_update_etr_buffer(struct coresight_device *csdev,
1496 		      struct perf_output_handle *handle,
1497 		      void *config)
1498 {
1499 	bool lost = false;
1500 	unsigned long flags, offset, size = 0;
1501 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1502 	struct etr_perf_buffer *etr_perf = config;
1503 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1504 
1505 	spin_lock_irqsave(&drvdata->spinlock, flags);
1506 
1507 	/* Don't do anything if another tracer is using this sink */
1508 	if (atomic_read(csdev->refcnt) != 1) {
1509 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1510 		goto out;
1511 	}
1512 
1513 	if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1514 		lost = true;
1515 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1516 		goto out;
1517 	}
1518 
1519 	CS_UNLOCK(drvdata->base);
1520 
1521 	tmc_flush_and_stop(drvdata);
1522 	tmc_sync_etr_buf(drvdata);
1523 
1524 	CS_LOCK(drvdata->base);
1525 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1526 
1527 	lost = etr_buf->full;
1528 	offset = etr_buf->offset;
1529 	size = etr_buf->len;
1530 
1531 	/*
1532 	 * The ETR buffer may be bigger than the space available in the
1533 	 * perf ring buffer (handle->size).  If so advance the offset so that we
1534 	 * get the latest trace data.  In snapshot mode none of that matters
1535 	 * since we are expected to clobber stale data in favour of the latest
1536 	 * traces.
1537 	 */
1538 	if (!etr_perf->snapshot && size > handle->size) {
1539 		u32 mask = tmc_get_memwidth_mask(drvdata);
1540 
1541 		/*
1542 		 * Make sure the new size is aligned in accordance with the
1543 		 * requirement explained in function tmc_get_memwidth_mask().
1544 		 */
1545 		size = handle->size & mask;
1546 		offset = etr_buf->offset + etr_buf->len - size;
1547 
1548 		if (offset >= etr_buf->size)
1549 			offset -= etr_buf->size;
1550 		lost = true;
1551 	}
1552 
1553 	/* Insert barrier packets at the beginning, if there was an overflow */
1554 	if (lost)
1555 		tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1556 	tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1557 
1558 	/*
1559 	 * In snapshot mode we simply increment the head by the number of byte
1560 	 * that were written.  User space function  cs_etm_find_snapshot() will
1561 	 * figure out how many bytes to get from the AUX buffer based on the
1562 	 * position of the head.
1563 	 */
1564 	if (etr_perf->snapshot)
1565 		handle->head += size;
1566 out:
1567 	/*
1568 	 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1569 	 * captured buffer is expected to be truncated and 2) a full buffer
1570 	 * prevents the event from being re-enabled by the perf core,
1571 	 * resulting in stale data being send to user space.
1572 	 */
1573 	if (!etr_perf->snapshot && lost)
1574 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1575 	return size;
1576 }
1577 
1578 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1579 {
1580 	int rc = 0;
1581 	pid_t pid;
1582 	unsigned long flags;
1583 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1584 	struct perf_output_handle *handle = data;
1585 	struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1586 
1587 	spin_lock_irqsave(&drvdata->spinlock, flags);
1588 	 /* Don't use this sink if it is already claimed by sysFS */
1589 	if (drvdata->mode == CS_MODE_SYSFS) {
1590 		rc = -EBUSY;
1591 		goto unlock_out;
1592 	}
1593 
1594 	if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1595 		rc = -EINVAL;
1596 		goto unlock_out;
1597 	}
1598 
1599 	/* Get a handle on the pid of the process to monitor */
1600 	pid = etr_perf->pid;
1601 
1602 	/* Do not proceed if this device is associated with another session */
1603 	if (drvdata->pid != -1 && drvdata->pid != pid) {
1604 		rc = -EBUSY;
1605 		goto unlock_out;
1606 	}
1607 
1608 	etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1609 
1610 	/*
1611 	 * No HW configuration is needed if the sink is already in
1612 	 * use for this session.
1613 	 */
1614 	if (drvdata->pid == pid) {
1615 		atomic_inc(csdev->refcnt);
1616 		goto unlock_out;
1617 	}
1618 
1619 	rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1620 	if (!rc) {
1621 		/* Associate with monitored process. */
1622 		drvdata->pid = pid;
1623 		drvdata->mode = CS_MODE_PERF;
1624 		drvdata->perf_buf = etr_perf->etr_buf;
1625 		atomic_inc(csdev->refcnt);
1626 	}
1627 
1628 unlock_out:
1629 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1630 	return rc;
1631 }
1632 
1633 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1634 			       u32 mode, void *data)
1635 {
1636 	switch (mode) {
1637 	case CS_MODE_SYSFS:
1638 		return tmc_enable_etr_sink_sysfs(csdev);
1639 	case CS_MODE_PERF:
1640 		return tmc_enable_etr_sink_perf(csdev, data);
1641 	}
1642 
1643 	/* We shouldn't be here */
1644 	return -EINVAL;
1645 }
1646 
1647 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1648 {
1649 	unsigned long flags;
1650 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1651 
1652 	spin_lock_irqsave(&drvdata->spinlock, flags);
1653 
1654 	if (drvdata->reading) {
1655 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1656 		return -EBUSY;
1657 	}
1658 
1659 	if (atomic_dec_return(csdev->refcnt)) {
1660 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1661 		return -EBUSY;
1662 	}
1663 
1664 	/* Complain if we (somehow) got out of sync */
1665 	WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1666 	tmc_etr_disable_hw(drvdata);
1667 	/* Dissociate from monitored process. */
1668 	drvdata->pid = -1;
1669 	drvdata->mode = CS_MODE_DISABLED;
1670 	/* Reset perf specific data */
1671 	drvdata->perf_buf = NULL;
1672 
1673 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1674 
1675 	dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1676 	return 0;
1677 }
1678 
1679 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1680 	.enable		= tmc_enable_etr_sink,
1681 	.disable	= tmc_disable_etr_sink,
1682 	.alloc_buffer	= tmc_alloc_etr_buffer,
1683 	.update_buffer	= tmc_update_etr_buffer,
1684 	.free_buffer	= tmc_free_etr_buffer,
1685 };
1686 
1687 const struct coresight_ops tmc_etr_cs_ops = {
1688 	.sink_ops	= &tmc_etr_sink_ops,
1689 };
1690 
1691 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1692 {
1693 	int ret = 0;
1694 	unsigned long flags;
1695 
1696 	/* config types are set a boot time and never change */
1697 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1698 		return -EINVAL;
1699 
1700 	spin_lock_irqsave(&drvdata->spinlock, flags);
1701 	if (drvdata->reading) {
1702 		ret = -EBUSY;
1703 		goto out;
1704 	}
1705 
1706 	/*
1707 	 * We can safely allow reads even if the ETR is operating in PERF mode,
1708 	 * since the sysfs session is captured in mode specific data.
1709 	 * If drvdata::sysfs_data is NULL the trace data has been read already.
1710 	 */
1711 	if (!drvdata->sysfs_buf) {
1712 		ret = -EINVAL;
1713 		goto out;
1714 	}
1715 
1716 	/* Disable the TMC if we are trying to read from a running session. */
1717 	if (drvdata->mode == CS_MODE_SYSFS)
1718 		__tmc_etr_disable_hw(drvdata);
1719 
1720 	drvdata->reading = true;
1721 out:
1722 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1723 
1724 	return ret;
1725 }
1726 
1727 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1728 {
1729 	unsigned long flags;
1730 	struct etr_buf *sysfs_buf = NULL;
1731 
1732 	/* config types are set a boot time and never change */
1733 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1734 		return -EINVAL;
1735 
1736 	spin_lock_irqsave(&drvdata->spinlock, flags);
1737 
1738 	/* RE-enable the TMC if need be */
1739 	if (drvdata->mode == CS_MODE_SYSFS) {
1740 		/*
1741 		 * The trace run will continue with the same allocated trace
1742 		 * buffer. Since the tracer is still enabled drvdata::buf can't
1743 		 * be NULL.
1744 		 */
1745 		__tmc_etr_enable_hw(drvdata);
1746 	} else {
1747 		/*
1748 		 * The ETR is not tracing and the buffer was just read.
1749 		 * As such prepare to free the trace buffer.
1750 		 */
1751 		sysfs_buf = drvdata->sysfs_buf;
1752 		drvdata->sysfs_buf = NULL;
1753 	}
1754 
1755 	drvdata->reading = false;
1756 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1757 
1758 	/* Free allocated memory out side of the spinlock */
1759 	if (sysfs_buf)
1760 		tmc_etr_free_sysfs_buf(sysfs_buf);
1761 
1762 	return 0;
1763 }
1764