1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 /* 30 * etr_perf_buffer - Perf buffer used for ETR 31 * @drvdata - The ETR drvdaga this buffer has been allocated for. 32 * @etr_buf - Actual buffer used by the ETR 33 * @pid - The PID this etr_perf_buffer belongs to. 34 * @snaphost - Perf session mode 35 * @head - handle->head at the beginning of the session. 36 * @nr_pages - Number of pages in the ring buffer. 37 * @pages - Array of Pages in the ring buffer. 38 */ 39 struct etr_perf_buffer { 40 struct tmc_drvdata *drvdata; 41 struct etr_buf *etr_buf; 42 pid_t pid; 43 bool snapshot; 44 unsigned long head; 45 int nr_pages; 46 void **pages; 47 }; 48 49 /* Convert the perf index to an offset within the ETR buffer */ 50 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 51 52 /* Lower limit for ETR hardware buffer */ 53 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 54 55 /* 56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 59 * contain more than one SG buffer and tables. 60 * 61 * A table entry has the following format: 62 * 63 * ---Bit31------------Bit4-------Bit1-----Bit0-- 64 * | Address[39:12] | SBZ | Entry Type | 65 * ---------------------------------------------- 66 * 67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 68 * always zero. 69 * 70 * Entry type: 71 * b00 - Reserved. 72 * b01 - Last entry in the tables, points to 4K page buffer. 73 * b10 - Normal entry, points to 4K page buffer. 74 * b11 - Link. The address points to the base of next table. 75 */ 76 77 typedef u32 sgte_t; 78 79 #define ETR_SG_PAGE_SHIFT 12 80 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 81 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 82 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 83 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 84 85 #define ETR_SG_ET_MASK 0x3 86 #define ETR_SG_ET_LAST 0x1 87 #define ETR_SG_ET_NORMAL 0x2 88 #define ETR_SG_ET_LINK 0x3 89 90 #define ETR_SG_ADDR_SHIFT 4 91 92 #define ETR_SG_ENTRY(addr, type) \ 93 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 94 (type & ETR_SG_ET_MASK)) 95 96 #define ETR_SG_ADDR(entry) \ 97 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 98 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 99 100 /* 101 * struct etr_sg_table : ETR SG Table 102 * @sg_table: Generic SG Table holding the data/table pages. 103 * @hwaddr: hwaddress used by the TMC, which is the base 104 * address of the table. 105 */ 106 struct etr_sg_table { 107 struct tmc_sg_table *sg_table; 108 dma_addr_t hwaddr; 109 }; 110 111 /* 112 * tmc_etr_sg_table_entries: Total number of table entries required to map 113 * @nr_pages system pages. 114 * 115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 117 * with the last entry pointing to another page of table entries. 118 * If we spill over to a new page for mapping 1 entry, we could as 119 * well replace the link entry of the previous page with the last entry. 120 */ 121 static inline unsigned long __attribute_const__ 122 tmc_etr_sg_table_entries(int nr_pages) 123 { 124 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 125 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 126 /* 127 * If we spill over to a new page for 1 entry, we could as well 128 * make it the LAST entry in the previous page, skipping the Link 129 * address. 130 */ 131 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 132 nr_sglinks--; 133 return nr_sgpages + nr_sglinks; 134 } 135 136 /* 137 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 138 * and map the device address @addr to an offset within the virtual 139 * contiguous buffer. 140 */ 141 static long 142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 143 { 144 int i; 145 dma_addr_t page_start; 146 147 for (i = 0; i < tmc_pages->nr_pages; i++) { 148 page_start = tmc_pages->daddrs[i]; 149 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 150 return i * PAGE_SIZE + (addr - page_start); 151 } 152 153 return -EINVAL; 154 } 155 156 /* 157 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 158 * If the pages were not allocated in tmc_pages_alloc(), we would 159 * simply drop the refcount. 160 */ 161 static void tmc_pages_free(struct tmc_pages *tmc_pages, 162 struct device *dev, enum dma_data_direction dir) 163 { 164 int i; 165 struct device *real_dev = dev->parent; 166 167 for (i = 0; i < tmc_pages->nr_pages; i++) { 168 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 169 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 170 PAGE_SIZE, dir); 171 if (tmc_pages->pages && tmc_pages->pages[i]) 172 __free_page(tmc_pages->pages[i]); 173 } 174 175 kfree(tmc_pages->pages); 176 kfree(tmc_pages->daddrs); 177 tmc_pages->pages = NULL; 178 tmc_pages->daddrs = NULL; 179 tmc_pages->nr_pages = 0; 180 } 181 182 /* 183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 184 * If @pages is not NULL, the list of page virtual addresses are 185 * used as the data pages. The pages are then dma_map'ed for @dev 186 * with dma_direction @dir. 187 * 188 * Returns 0 upon success, else the error number. 189 */ 190 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 191 struct device *dev, int node, 192 enum dma_data_direction dir, void **pages) 193 { 194 int i, nr_pages; 195 dma_addr_t paddr; 196 struct page *page; 197 struct device *real_dev = dev->parent; 198 199 nr_pages = tmc_pages->nr_pages; 200 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 201 GFP_KERNEL); 202 if (!tmc_pages->daddrs) 203 return -ENOMEM; 204 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 205 GFP_KERNEL); 206 if (!tmc_pages->pages) { 207 kfree(tmc_pages->daddrs); 208 tmc_pages->daddrs = NULL; 209 return -ENOMEM; 210 } 211 212 for (i = 0; i < nr_pages; i++) { 213 if (pages && pages[i]) { 214 page = virt_to_page(pages[i]); 215 /* Hold a refcount on the page */ 216 get_page(page); 217 } else { 218 page = alloc_pages_node(node, 219 GFP_KERNEL | __GFP_ZERO, 0); 220 if (!page) 221 goto err; 222 } 223 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 224 if (dma_mapping_error(real_dev, paddr)) 225 goto err; 226 tmc_pages->daddrs[i] = paddr; 227 tmc_pages->pages[i] = page; 228 } 229 return 0; 230 err: 231 tmc_pages_free(tmc_pages, dev, dir); 232 return -ENOMEM; 233 } 234 235 static inline long 236 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 237 { 238 return tmc_pages_get_offset(&sg_table->data_pages, addr); 239 } 240 241 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 242 { 243 if (sg_table->table_vaddr) 244 vunmap(sg_table->table_vaddr); 245 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 246 } 247 248 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 249 { 250 if (sg_table->data_vaddr) 251 vunmap(sg_table->data_vaddr); 252 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 253 } 254 255 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 256 { 257 tmc_free_table_pages(sg_table); 258 tmc_free_data_pages(sg_table); 259 } 260 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 261 262 /* 263 * Alloc pages for the table. Since this will be used by the device, 264 * allocate the pages closer to the device (i.e, dev_to_node(dev) 265 * rather than the CPU node). 266 */ 267 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 268 { 269 int rc; 270 struct tmc_pages *table_pages = &sg_table->table_pages; 271 272 rc = tmc_pages_alloc(table_pages, sg_table->dev, 273 dev_to_node(sg_table->dev), 274 DMA_TO_DEVICE, NULL); 275 if (rc) 276 return rc; 277 sg_table->table_vaddr = vmap(table_pages->pages, 278 table_pages->nr_pages, 279 VM_MAP, 280 PAGE_KERNEL); 281 if (!sg_table->table_vaddr) 282 rc = -ENOMEM; 283 else 284 sg_table->table_daddr = table_pages->daddrs[0]; 285 return rc; 286 } 287 288 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 289 { 290 int rc; 291 292 /* Allocate data pages on the node requested by the caller */ 293 rc = tmc_pages_alloc(&sg_table->data_pages, 294 sg_table->dev, sg_table->node, 295 DMA_FROM_DEVICE, pages); 296 if (!rc) { 297 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 298 sg_table->data_pages.nr_pages, 299 VM_MAP, 300 PAGE_KERNEL); 301 if (!sg_table->data_vaddr) 302 rc = -ENOMEM; 303 } 304 return rc; 305 } 306 307 /* 308 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 309 * and data buffers. TMC writes to the data buffers and reads from the SG 310 * Table pages. 311 * 312 * @dev - Coresight device to which page should be DMA mapped. 313 * @node - Numa node for mem allocations 314 * @nr_tpages - Number of pages for the table entries. 315 * @nr_dpages - Number of pages for Data buffer. 316 * @pages - Optional list of virtual address of pages. 317 */ 318 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 319 int node, 320 int nr_tpages, 321 int nr_dpages, 322 void **pages) 323 { 324 long rc; 325 struct tmc_sg_table *sg_table; 326 327 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 328 if (!sg_table) 329 return ERR_PTR(-ENOMEM); 330 sg_table->data_pages.nr_pages = nr_dpages; 331 sg_table->table_pages.nr_pages = nr_tpages; 332 sg_table->node = node; 333 sg_table->dev = dev; 334 335 rc = tmc_alloc_data_pages(sg_table, pages); 336 if (!rc) 337 rc = tmc_alloc_table_pages(sg_table); 338 if (rc) { 339 tmc_free_sg_table(sg_table); 340 kfree(sg_table); 341 return ERR_PTR(rc); 342 } 343 344 return sg_table; 345 } 346 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 347 348 /* 349 * tmc_sg_table_sync_data_range: Sync the data buffer written 350 * by the device from @offset upto a @size bytes. 351 */ 352 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 353 u64 offset, u64 size) 354 { 355 int i, index, start; 356 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 357 struct device *real_dev = table->dev->parent; 358 struct tmc_pages *data = &table->data_pages; 359 360 start = offset >> PAGE_SHIFT; 361 for (i = start; i < (start + npages); i++) { 362 index = i % data->nr_pages; 363 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 364 PAGE_SIZE, DMA_FROM_DEVICE); 365 } 366 } 367 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 368 369 /* tmc_sg_sync_table: Sync the page table */ 370 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 371 { 372 int i; 373 struct device *real_dev = sg_table->dev->parent; 374 struct tmc_pages *table_pages = &sg_table->table_pages; 375 376 for (i = 0; i < table_pages->nr_pages; i++) 377 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 378 PAGE_SIZE, DMA_TO_DEVICE); 379 } 380 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 381 382 /* 383 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 384 * in the SG buffer. The @bufpp is updated to point to the buffer. 385 * Returns : 386 * the length of linear data available at @offset. 387 * or 388 * <= 0 if no data is available. 389 */ 390 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 391 u64 offset, size_t len, char **bufpp) 392 { 393 size_t size; 394 int pg_idx = offset >> PAGE_SHIFT; 395 int pg_offset = offset & (PAGE_SIZE - 1); 396 struct tmc_pages *data_pages = &sg_table->data_pages; 397 398 size = tmc_sg_table_buf_size(sg_table); 399 if (offset >= size) 400 return -EINVAL; 401 402 /* Make sure we don't go beyond the end */ 403 len = (len < (size - offset)) ? len : size - offset; 404 /* Respect the page boundaries */ 405 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 406 if (len > 0) 407 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 408 return len; 409 } 410 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 411 412 #ifdef ETR_SG_DEBUG 413 /* Map a dma address to virtual address */ 414 static unsigned long 415 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 416 dma_addr_t addr, bool table) 417 { 418 long offset; 419 unsigned long base; 420 struct tmc_pages *tmc_pages; 421 422 if (table) { 423 tmc_pages = &sg_table->table_pages; 424 base = (unsigned long)sg_table->table_vaddr; 425 } else { 426 tmc_pages = &sg_table->data_pages; 427 base = (unsigned long)sg_table->data_vaddr; 428 } 429 430 offset = tmc_pages_get_offset(tmc_pages, addr); 431 if (offset < 0) 432 return 0; 433 return base + offset; 434 } 435 436 /* Dump the given sg_table */ 437 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 438 { 439 sgte_t *ptr; 440 int i = 0; 441 dma_addr_t addr; 442 struct tmc_sg_table *sg_table = etr_table->sg_table; 443 444 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 445 etr_table->hwaddr, true); 446 while (ptr) { 447 addr = ETR_SG_ADDR(*ptr); 448 switch (ETR_SG_ET(*ptr)) { 449 case ETR_SG_ET_NORMAL: 450 dev_dbg(sg_table->dev, 451 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 452 ptr++; 453 break; 454 case ETR_SG_ET_LINK: 455 dev_dbg(sg_table->dev, 456 "%05d: *** %p\t:{L} 0x%llx ***\n", 457 i, ptr, addr); 458 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 459 addr, true); 460 break; 461 case ETR_SG_ET_LAST: 462 dev_dbg(sg_table->dev, 463 "%05d: ### %p\t:[L] 0x%llx ###\n", 464 i, ptr, addr); 465 return; 466 default: 467 dev_dbg(sg_table->dev, 468 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 469 i, ptr, addr); 470 return; 471 } 472 i++; 473 } 474 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 475 } 476 #else 477 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 478 #endif 479 480 /* 481 * Populate the SG Table page table entries from table/data 482 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 483 * So does a Table page. So we keep track of indices of the tables 484 * in each system page and move the pointers accordingly. 485 */ 486 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 487 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 488 { 489 dma_addr_t paddr; 490 int i, type, nr_entries; 491 int tpidx = 0; /* index to the current system table_page */ 492 int sgtidx = 0; /* index to the sg_table within the current syspage */ 493 int sgtentry = 0; /* the entry within the sg_table */ 494 int dpidx = 0; /* index to the current system data_page */ 495 int spidx = 0; /* index to the SG page within the current data page */ 496 sgte_t *ptr; /* pointer to the table entry to fill */ 497 struct tmc_sg_table *sg_table = etr_table->sg_table; 498 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 499 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 500 501 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 502 /* 503 * Use the contiguous virtual address of the table to update entries. 504 */ 505 ptr = sg_table->table_vaddr; 506 /* 507 * Fill all the entries, except the last entry to avoid special 508 * checks within the loop. 509 */ 510 for (i = 0; i < nr_entries - 1; i++) { 511 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 512 /* 513 * Last entry in a sg_table page is a link address to 514 * the next table page. If this sg_table is the last 515 * one in the system page, it links to the first 516 * sg_table in the next system page. Otherwise, it 517 * links to the next sg_table page within the system 518 * page. 519 */ 520 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 521 paddr = table_daddrs[tpidx + 1]; 522 } else { 523 paddr = table_daddrs[tpidx] + 524 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 525 } 526 type = ETR_SG_ET_LINK; 527 } else { 528 /* 529 * Update the indices to the data_pages to point to the 530 * next sg_page in the data buffer. 531 */ 532 type = ETR_SG_ET_NORMAL; 533 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 534 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 535 dpidx++; 536 } 537 *ptr++ = ETR_SG_ENTRY(paddr, type); 538 /* 539 * Move to the next table pointer, moving the table page index 540 * if necessary 541 */ 542 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 543 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 544 tpidx++; 545 } 546 } 547 548 /* Set up the last entry, which is always a data pointer */ 549 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 550 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 551 } 552 553 /* 554 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 555 * populate the table. 556 * 557 * @dev - Device pointer for the TMC 558 * @node - NUMA node where the memory should be allocated 559 * @size - Total size of the data buffer 560 * @pages - Optional list of page virtual address 561 */ 562 static struct etr_sg_table * 563 tmc_init_etr_sg_table(struct device *dev, int node, 564 unsigned long size, void **pages) 565 { 566 int nr_entries, nr_tpages; 567 int nr_dpages = size >> PAGE_SHIFT; 568 struct tmc_sg_table *sg_table; 569 struct etr_sg_table *etr_table; 570 571 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 572 if (!etr_table) 573 return ERR_PTR(-ENOMEM); 574 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 575 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 576 577 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 578 if (IS_ERR(sg_table)) { 579 kfree(etr_table); 580 return ERR_CAST(sg_table); 581 } 582 583 etr_table->sg_table = sg_table; 584 /* TMC should use table base address for DBA */ 585 etr_table->hwaddr = sg_table->table_daddr; 586 tmc_etr_sg_table_populate(etr_table); 587 /* Sync the table pages for the HW */ 588 tmc_sg_table_sync_table(sg_table); 589 tmc_etr_sg_table_dump(etr_table); 590 591 return etr_table; 592 } 593 594 /* 595 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 596 */ 597 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 598 struct etr_buf *etr_buf, int node, 599 void **pages) 600 { 601 struct etr_flat_buf *flat_buf; 602 struct device *real_dev = drvdata->csdev->dev.parent; 603 604 /* We cannot reuse existing pages for flat buf */ 605 if (pages) 606 return -EINVAL; 607 608 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 609 if (!flat_buf) 610 return -ENOMEM; 611 612 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size, 613 &flat_buf->daddr, GFP_KERNEL); 614 if (!flat_buf->vaddr) { 615 kfree(flat_buf); 616 return -ENOMEM; 617 } 618 619 flat_buf->size = etr_buf->size; 620 flat_buf->dev = &drvdata->csdev->dev; 621 etr_buf->hwaddr = flat_buf->daddr; 622 etr_buf->mode = ETR_MODE_FLAT; 623 etr_buf->private = flat_buf; 624 return 0; 625 } 626 627 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 628 { 629 struct etr_flat_buf *flat_buf = etr_buf->private; 630 631 if (flat_buf && flat_buf->daddr) { 632 struct device *real_dev = flat_buf->dev->parent; 633 634 dma_free_coherent(real_dev, flat_buf->size, 635 flat_buf->vaddr, flat_buf->daddr); 636 } 637 kfree(flat_buf); 638 } 639 640 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 641 { 642 /* 643 * Adjust the buffer to point to the beginning of the trace data 644 * and update the available trace data. 645 */ 646 etr_buf->offset = rrp - etr_buf->hwaddr; 647 if (etr_buf->full) 648 etr_buf->len = etr_buf->size; 649 else 650 etr_buf->len = rwp - rrp; 651 } 652 653 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 654 u64 offset, size_t len, char **bufpp) 655 { 656 struct etr_flat_buf *flat_buf = etr_buf->private; 657 658 *bufpp = (char *)flat_buf->vaddr + offset; 659 /* 660 * tmc_etr_buf_get_data already adjusts the length to handle 661 * buffer wrapping around. 662 */ 663 return len; 664 } 665 666 static const struct etr_buf_operations etr_flat_buf_ops = { 667 .alloc = tmc_etr_alloc_flat_buf, 668 .free = tmc_etr_free_flat_buf, 669 .sync = tmc_etr_sync_flat_buf, 670 .get_data = tmc_etr_get_data_flat_buf, 671 }; 672 673 /* 674 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 675 * appropriately. 676 */ 677 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 678 struct etr_buf *etr_buf, int node, 679 void **pages) 680 { 681 struct etr_sg_table *etr_table; 682 struct device *dev = &drvdata->csdev->dev; 683 684 etr_table = tmc_init_etr_sg_table(dev, node, 685 etr_buf->size, pages); 686 if (IS_ERR(etr_table)) 687 return -ENOMEM; 688 etr_buf->hwaddr = etr_table->hwaddr; 689 etr_buf->mode = ETR_MODE_ETR_SG; 690 etr_buf->private = etr_table; 691 return 0; 692 } 693 694 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 695 { 696 struct etr_sg_table *etr_table = etr_buf->private; 697 698 if (etr_table) { 699 tmc_free_sg_table(etr_table->sg_table); 700 kfree(etr_table); 701 } 702 } 703 704 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 705 size_t len, char **bufpp) 706 { 707 struct etr_sg_table *etr_table = etr_buf->private; 708 709 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 710 } 711 712 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 713 { 714 long r_offset, w_offset; 715 struct etr_sg_table *etr_table = etr_buf->private; 716 struct tmc_sg_table *table = etr_table->sg_table; 717 718 /* Convert hw address to offset in the buffer */ 719 r_offset = tmc_sg_get_data_page_offset(table, rrp); 720 if (r_offset < 0) { 721 dev_warn(table->dev, 722 "Unable to map RRP %llx to offset\n", rrp); 723 etr_buf->len = 0; 724 return; 725 } 726 727 w_offset = tmc_sg_get_data_page_offset(table, rwp); 728 if (w_offset < 0) { 729 dev_warn(table->dev, 730 "Unable to map RWP %llx to offset\n", rwp); 731 etr_buf->len = 0; 732 return; 733 } 734 735 etr_buf->offset = r_offset; 736 if (etr_buf->full) 737 etr_buf->len = etr_buf->size; 738 else 739 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 740 w_offset - r_offset; 741 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 742 } 743 744 static const struct etr_buf_operations etr_sg_buf_ops = { 745 .alloc = tmc_etr_alloc_sg_buf, 746 .free = tmc_etr_free_sg_buf, 747 .sync = tmc_etr_sync_sg_buf, 748 .get_data = tmc_etr_get_data_sg_buf, 749 }; 750 751 /* 752 * TMC ETR could be connected to a CATU device, which can provide address 753 * translation service. This is represented by the Output port of the TMC 754 * (ETR) connected to the input port of the CATU. 755 * 756 * Returns : coresight_device ptr for the CATU device if a CATU is found. 757 * : NULL otherwise. 758 */ 759 struct coresight_device * 760 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 761 { 762 int i; 763 struct coresight_device *tmp, *etr = drvdata->csdev; 764 765 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 766 return NULL; 767 768 for (i = 0; i < etr->pdata->nr_outport; i++) { 769 tmp = etr->pdata->conns[i].child_dev; 770 if (tmp && coresight_is_catu_device(tmp)) 771 return tmp; 772 } 773 774 return NULL; 775 } 776 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 777 778 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata, 779 struct etr_buf *etr_buf) 780 { 781 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 782 783 if (catu && helper_ops(catu)->enable) 784 return helper_ops(catu)->enable(catu, etr_buf); 785 return 0; 786 } 787 788 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata) 789 { 790 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 791 792 if (catu && helper_ops(catu)->disable) 793 helper_ops(catu)->disable(catu, drvdata->etr_buf); 794 } 795 796 static const struct etr_buf_operations *etr_buf_ops[] = { 797 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 798 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 799 [ETR_MODE_CATU] = NULL, 800 }; 801 802 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 803 { 804 etr_buf_ops[ETR_MODE_CATU] = catu; 805 } 806 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 807 808 void tmc_etr_remove_catu_ops(void) 809 { 810 etr_buf_ops[ETR_MODE_CATU] = NULL; 811 } 812 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 813 814 static inline int tmc_etr_mode_alloc_buf(int mode, 815 struct tmc_drvdata *drvdata, 816 struct etr_buf *etr_buf, int node, 817 void **pages) 818 { 819 int rc = -EINVAL; 820 821 switch (mode) { 822 case ETR_MODE_FLAT: 823 case ETR_MODE_ETR_SG: 824 case ETR_MODE_CATU: 825 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 826 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 827 node, pages); 828 if (!rc) 829 etr_buf->ops = etr_buf_ops[mode]; 830 return rc; 831 default: 832 return -EINVAL; 833 } 834 } 835 836 /* 837 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 838 * @drvdata : ETR device details. 839 * @size : size of the requested buffer. 840 * @flags : Required properties for the buffer. 841 * @node : Node for memory allocations. 842 * @pages : An optional list of pages. 843 */ 844 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 845 ssize_t size, int flags, 846 int node, void **pages) 847 { 848 int rc = -ENOMEM; 849 bool has_etr_sg, has_iommu; 850 bool has_sg, has_catu; 851 struct etr_buf *etr_buf; 852 struct device *dev = &drvdata->csdev->dev; 853 854 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 855 has_iommu = iommu_get_domain_for_dev(dev->parent); 856 has_catu = !!tmc_etr_get_catu_device(drvdata); 857 858 has_sg = has_catu || has_etr_sg; 859 860 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 861 if (!etr_buf) 862 return ERR_PTR(-ENOMEM); 863 864 etr_buf->size = size; 865 866 /* 867 * If we have to use an existing list of pages, we cannot reliably 868 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 869 * we use the contiguous DMA memory if at least one of the following 870 * conditions is true: 871 * a) The ETR cannot use Scatter-Gather. 872 * b) we have a backing IOMMU 873 * c) The requested memory size is smaller (< 1M). 874 * 875 * Fallback to available mechanisms. 876 * 877 */ 878 if (!pages && 879 (!has_sg || has_iommu || size < SZ_1M)) 880 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 881 etr_buf, node, pages); 882 if (rc && has_etr_sg) 883 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 884 etr_buf, node, pages); 885 if (rc && has_catu) 886 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 887 etr_buf, node, pages); 888 if (rc) { 889 kfree(etr_buf); 890 return ERR_PTR(rc); 891 } 892 893 refcount_set(&etr_buf->refcount, 1); 894 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 895 (unsigned long)size >> 10, etr_buf->mode); 896 return etr_buf; 897 } 898 899 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 900 { 901 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 902 etr_buf->ops->free(etr_buf); 903 kfree(etr_buf); 904 } 905 906 /* 907 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 908 * with a maximum of @len bytes. 909 * Returns: The size of the linear data available @pos, with *bufpp 910 * updated to point to the buffer. 911 */ 912 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 913 u64 offset, size_t len, char **bufpp) 914 { 915 /* Adjust the length to limit this transaction to end of buffer */ 916 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 917 918 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 919 } 920 921 static inline s64 922 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 923 { 924 ssize_t len; 925 char *bufp; 926 927 len = tmc_etr_buf_get_data(etr_buf, offset, 928 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 929 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE)) 930 return -EINVAL; 931 coresight_insert_barrier_packet(bufp); 932 return offset + CORESIGHT_BARRIER_PKT_SIZE; 933 } 934 935 /* 936 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 937 * Makes sure the trace data is synced to the memory for consumption. 938 * @etr_buf->offset will hold the offset to the beginning of the trace data 939 * within the buffer, with @etr_buf->len bytes to consume. 940 */ 941 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 942 { 943 struct etr_buf *etr_buf = drvdata->etr_buf; 944 u64 rrp, rwp; 945 u32 status; 946 947 rrp = tmc_read_rrp(drvdata); 948 rwp = tmc_read_rwp(drvdata); 949 status = readl_relaxed(drvdata->base + TMC_STS); 950 951 /* 952 * If there were memory errors in the session, truncate the 953 * buffer. 954 */ 955 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 956 dev_dbg(&drvdata->csdev->dev, 957 "tmc memory error detected, truncating buffer\n"); 958 etr_buf->len = 0; 959 etr_buf->full = false; 960 return; 961 } 962 963 etr_buf->full = !!(status & TMC_STS_FULL); 964 965 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 966 967 etr_buf->ops->sync(etr_buf, rrp, rwp); 968 } 969 970 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 971 { 972 u32 axictl, sts; 973 struct etr_buf *etr_buf = drvdata->etr_buf; 974 975 CS_UNLOCK(drvdata->base); 976 977 /* Wait for TMCSReady bit to be set */ 978 tmc_wait_for_tmcready(drvdata); 979 980 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 981 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 982 983 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 984 axictl &= ~TMC_AXICTL_CLEAR_MASK; 985 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16); 986 axictl |= TMC_AXICTL_AXCACHE_OS; 987 988 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 989 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 990 axictl |= TMC_AXICTL_ARCACHE_OS; 991 } 992 993 if (etr_buf->mode == ETR_MODE_ETR_SG) 994 axictl |= TMC_AXICTL_SCT_GAT_MODE; 995 996 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 997 tmc_write_dba(drvdata, etr_buf->hwaddr); 998 /* 999 * If the TMC pointers must be programmed before the session, 1000 * we have to set it properly (i.e, RRP/RWP to base address and 1001 * STS to "not full"). 1002 */ 1003 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1004 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1005 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1006 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1007 writel_relaxed(sts, drvdata->base + TMC_STS); 1008 } 1009 1010 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1011 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1012 TMC_FFCR_TRIGON_TRIGIN, 1013 drvdata->base + TMC_FFCR); 1014 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1015 tmc_enable_hw(drvdata); 1016 1017 CS_LOCK(drvdata->base); 1018 } 1019 1020 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1021 struct etr_buf *etr_buf) 1022 { 1023 int rc; 1024 1025 /* Callers should provide an appropriate buffer for use */ 1026 if (WARN_ON(!etr_buf)) 1027 return -EINVAL; 1028 1029 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1030 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1031 return -EINVAL; 1032 1033 if (WARN_ON(drvdata->etr_buf)) 1034 return -EBUSY; 1035 1036 /* 1037 * If this ETR is connected to a CATU, enable it before we turn 1038 * this on. 1039 */ 1040 rc = tmc_etr_enable_catu(drvdata, etr_buf); 1041 if (rc) 1042 return rc; 1043 rc = coresight_claim_device(drvdata->base); 1044 if (!rc) { 1045 drvdata->etr_buf = etr_buf; 1046 __tmc_etr_enable_hw(drvdata); 1047 } 1048 1049 return rc; 1050 } 1051 1052 /* 1053 * Return the available trace data in the buffer (starts at etr_buf->offset, 1054 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1055 * also updating the @bufpp on where to find it. Since the trace data 1056 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1057 * @len returned to handle buffer wrapping around. 1058 * 1059 * We are protected here by drvdata->reading != 0, which ensures the 1060 * sysfs_buf stays alive. 1061 */ 1062 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1063 loff_t pos, size_t len, char **bufpp) 1064 { 1065 s64 offset; 1066 ssize_t actual = len; 1067 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1068 1069 if (pos + actual > etr_buf->len) 1070 actual = etr_buf->len - pos; 1071 if (actual <= 0) 1072 return actual; 1073 1074 /* Compute the offset from which we read the data */ 1075 offset = etr_buf->offset + pos; 1076 if (offset >= etr_buf->size) 1077 offset -= etr_buf->size; 1078 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1079 } 1080 1081 static struct etr_buf * 1082 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1083 { 1084 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1085 0, cpu_to_node(0), NULL); 1086 } 1087 1088 static void 1089 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1090 { 1091 if (buf) 1092 tmc_free_etr_buf(buf); 1093 } 1094 1095 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1096 { 1097 struct etr_buf *etr_buf = drvdata->etr_buf; 1098 1099 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1100 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1101 drvdata->sysfs_buf = NULL; 1102 } else { 1103 tmc_sync_etr_buf(drvdata); 1104 /* 1105 * Insert barrier packets at the beginning, if there was 1106 * an overflow. 1107 */ 1108 if (etr_buf->full) 1109 tmc_etr_buf_insert_barrier_packet(etr_buf, 1110 etr_buf->offset); 1111 } 1112 } 1113 1114 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1115 { 1116 CS_UNLOCK(drvdata->base); 1117 1118 tmc_flush_and_stop(drvdata); 1119 /* 1120 * When operating in sysFS mode the content of the buffer needs to be 1121 * read before the TMC is disabled. 1122 */ 1123 if (drvdata->mode == CS_MODE_SYSFS) 1124 tmc_etr_sync_sysfs_buf(drvdata); 1125 1126 tmc_disable_hw(drvdata); 1127 1128 CS_LOCK(drvdata->base); 1129 1130 } 1131 1132 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1133 { 1134 __tmc_etr_disable_hw(drvdata); 1135 /* Disable CATU device if this ETR is connected to one */ 1136 tmc_etr_disable_catu(drvdata); 1137 coresight_disclaim_device(drvdata->base); 1138 /* Reset the ETR buf used by hardware */ 1139 drvdata->etr_buf = NULL; 1140 } 1141 1142 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1143 { 1144 int ret = 0; 1145 unsigned long flags; 1146 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1147 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1148 1149 /* 1150 * If we are enabling the ETR from disabled state, we need to make 1151 * sure we have a buffer with the right size. The etr_buf is not reset 1152 * immediately after we stop the tracing in SYSFS mode as we wait for 1153 * the user to collect the data. We may be able to reuse the existing 1154 * buffer, provided the size matches. Any allocation has to be done 1155 * with the lock released. 1156 */ 1157 spin_lock_irqsave(&drvdata->spinlock, flags); 1158 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1159 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1160 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1161 1162 /* Allocate memory with the locks released */ 1163 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1164 if (IS_ERR(new_buf)) 1165 return PTR_ERR(new_buf); 1166 1167 /* Let's try again */ 1168 spin_lock_irqsave(&drvdata->spinlock, flags); 1169 } 1170 1171 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1172 ret = -EBUSY; 1173 goto out; 1174 } 1175 1176 /* 1177 * In sysFS mode we can have multiple writers per sink. Since this 1178 * sink is already enabled no memory is needed and the HW need not be 1179 * touched, even if the buffer size has changed. 1180 */ 1181 if (drvdata->mode == CS_MODE_SYSFS) { 1182 atomic_inc(csdev->refcnt); 1183 goto out; 1184 } 1185 1186 /* 1187 * If we don't have a buffer or it doesn't match the requested size, 1188 * use the buffer allocated above. Otherwise reuse the existing buffer. 1189 */ 1190 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1191 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1192 free_buf = sysfs_buf; 1193 drvdata->sysfs_buf = new_buf; 1194 } 1195 1196 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf); 1197 if (!ret) { 1198 drvdata->mode = CS_MODE_SYSFS; 1199 atomic_inc(csdev->refcnt); 1200 } 1201 out: 1202 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1203 1204 /* Free memory outside the spinlock if need be */ 1205 if (free_buf) 1206 tmc_etr_free_sysfs_buf(free_buf); 1207 1208 if (!ret) 1209 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1210 1211 return ret; 1212 } 1213 1214 /* 1215 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1216 * The size of the hardware buffer is dependent on the size configured 1217 * via sysfs and the perf ring buffer size. We prefer to allocate the 1218 * largest possible size, scaling down the size by half until it 1219 * reaches a minimum limit (1M), beyond which we give up. 1220 */ 1221 static struct etr_buf * 1222 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1223 int nr_pages, void **pages, bool snapshot) 1224 { 1225 int node; 1226 struct etr_buf *etr_buf; 1227 unsigned long size; 1228 1229 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1230 /* 1231 * Try to match the perf ring buffer size if it is larger 1232 * than the size requested via sysfs. 1233 */ 1234 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1235 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT), 1236 0, node, NULL); 1237 if (!IS_ERR(etr_buf)) 1238 goto done; 1239 } 1240 1241 /* 1242 * Else switch to configured size for this ETR 1243 * and scale down until we hit the minimum limit. 1244 */ 1245 size = drvdata->size; 1246 do { 1247 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1248 if (!IS_ERR(etr_buf)) 1249 goto done; 1250 size /= 2; 1251 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1252 1253 return ERR_PTR(-ENOMEM); 1254 1255 done: 1256 return etr_buf; 1257 } 1258 1259 static struct etr_buf * 1260 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1261 struct perf_event *event, int nr_pages, 1262 void **pages, bool snapshot) 1263 { 1264 int ret; 1265 pid_t pid = task_pid_nr(event->owner); 1266 struct etr_buf *etr_buf; 1267 1268 retry: 1269 /* 1270 * An etr_perf_buffer is associated with an event and holds a reference 1271 * to the AUX ring buffer that was created for that event. In CPU-wide 1272 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1273 * buffer, share a sink. As such an etr_perf_buffer is created for each 1274 * event but a single etr_buf associated with the ETR is shared between 1275 * them. The last event in a trace session will copy the content of the 1276 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1277 * events are simply not used an freed as events are destoyed. We still 1278 * need to allocate a ring buffer for each event since we don't know 1279 * which event will be last. 1280 */ 1281 1282 /* 1283 * The first thing to do here is check if an etr_buf has already been 1284 * allocated for this session. If so it is shared with this event, 1285 * otherwise it is created. 1286 */ 1287 mutex_lock(&drvdata->idr_mutex); 1288 etr_buf = idr_find(&drvdata->idr, pid); 1289 if (etr_buf) { 1290 refcount_inc(&etr_buf->refcount); 1291 mutex_unlock(&drvdata->idr_mutex); 1292 return etr_buf; 1293 } 1294 1295 /* If we made it here no buffer has been allocated, do so now. */ 1296 mutex_unlock(&drvdata->idr_mutex); 1297 1298 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1299 if (IS_ERR(etr_buf)) 1300 return etr_buf; 1301 1302 /* Now that we have a buffer, add it to the IDR. */ 1303 mutex_lock(&drvdata->idr_mutex); 1304 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1305 mutex_unlock(&drvdata->idr_mutex); 1306 1307 /* Another event with this session ID has allocated this buffer. */ 1308 if (ret == -ENOSPC) { 1309 tmc_free_etr_buf(etr_buf); 1310 goto retry; 1311 } 1312 1313 /* The IDR can't allocate room for a new session, abandon ship. */ 1314 if (ret == -ENOMEM) { 1315 tmc_free_etr_buf(etr_buf); 1316 return ERR_PTR(ret); 1317 } 1318 1319 1320 return etr_buf; 1321 } 1322 1323 static struct etr_buf * 1324 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1325 struct perf_event *event, int nr_pages, 1326 void **pages, bool snapshot) 1327 { 1328 /* 1329 * In per-thread mode the etr_buf isn't shared, so just go ahead 1330 * with memory allocation. 1331 */ 1332 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1333 } 1334 1335 static struct etr_buf * 1336 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1337 int nr_pages, void **pages, bool snapshot) 1338 { 1339 if (event->cpu == -1) 1340 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1341 pages, snapshot); 1342 1343 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1344 pages, snapshot); 1345 } 1346 1347 static struct etr_perf_buffer * 1348 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1349 int nr_pages, void **pages, bool snapshot) 1350 { 1351 int node; 1352 struct etr_buf *etr_buf; 1353 struct etr_perf_buffer *etr_perf; 1354 1355 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1356 1357 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1358 if (!etr_perf) 1359 return ERR_PTR(-ENOMEM); 1360 1361 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1362 if (!IS_ERR(etr_buf)) 1363 goto done; 1364 1365 kfree(etr_perf); 1366 return ERR_PTR(-ENOMEM); 1367 1368 done: 1369 /* 1370 * Keep a reference to the ETR this buffer has been allocated for 1371 * in order to have access to the IDR in tmc_free_etr_buffer(). 1372 */ 1373 etr_perf->drvdata = drvdata; 1374 etr_perf->etr_buf = etr_buf; 1375 1376 return etr_perf; 1377 } 1378 1379 1380 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1381 struct perf_event *event, void **pages, 1382 int nr_pages, bool snapshot) 1383 { 1384 struct etr_perf_buffer *etr_perf; 1385 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1386 1387 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1388 nr_pages, pages, snapshot); 1389 if (IS_ERR(etr_perf)) { 1390 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1391 return NULL; 1392 } 1393 1394 etr_perf->pid = task_pid_nr(event->owner); 1395 etr_perf->snapshot = snapshot; 1396 etr_perf->nr_pages = nr_pages; 1397 etr_perf->pages = pages; 1398 1399 return etr_perf; 1400 } 1401 1402 static void tmc_free_etr_buffer(void *config) 1403 { 1404 struct etr_perf_buffer *etr_perf = config; 1405 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1406 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1407 1408 if (!etr_buf) 1409 goto free_etr_perf_buffer; 1410 1411 mutex_lock(&drvdata->idr_mutex); 1412 /* If we are not the last one to use the buffer, don't touch it. */ 1413 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1414 mutex_unlock(&drvdata->idr_mutex); 1415 goto free_etr_perf_buffer; 1416 } 1417 1418 /* We are the last one, remove from the IDR and free the buffer. */ 1419 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1420 mutex_unlock(&drvdata->idr_mutex); 1421 1422 /* 1423 * Something went very wrong if the buffer associated with this ID 1424 * is not the same in the IDR. Leak to avoid use after free. 1425 */ 1426 if (buf && WARN_ON(buf != etr_buf)) 1427 goto free_etr_perf_buffer; 1428 1429 tmc_free_etr_buf(etr_perf->etr_buf); 1430 1431 free_etr_perf_buffer: 1432 kfree(etr_perf); 1433 } 1434 1435 /* 1436 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1437 * buffer to the perf ring buffer. 1438 */ 1439 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1440 unsigned long src_offset, 1441 unsigned long to_copy) 1442 { 1443 long bytes; 1444 long pg_idx, pg_offset; 1445 unsigned long head = etr_perf->head; 1446 char **dst_pages, *src_buf; 1447 struct etr_buf *etr_buf = etr_perf->etr_buf; 1448 1449 head = etr_perf->head; 1450 pg_idx = head >> PAGE_SHIFT; 1451 pg_offset = head & (PAGE_SIZE - 1); 1452 dst_pages = (char **)etr_perf->pages; 1453 1454 while (to_copy > 0) { 1455 /* 1456 * In one iteration, we can copy minimum of : 1457 * 1) what is available in the source buffer, 1458 * 2) what is available in the source buffer, before it 1459 * wraps around. 1460 * 3) what is available in the destination page. 1461 * in one iteration. 1462 */ 1463 if (src_offset >= etr_buf->size) 1464 src_offset -= etr_buf->size; 1465 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1466 &src_buf); 1467 if (WARN_ON_ONCE(bytes <= 0)) 1468 break; 1469 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1470 1471 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1472 1473 to_copy -= bytes; 1474 1475 /* Move destination pointers */ 1476 pg_offset += bytes; 1477 if (pg_offset == PAGE_SIZE) { 1478 pg_offset = 0; 1479 if (++pg_idx == etr_perf->nr_pages) 1480 pg_idx = 0; 1481 } 1482 1483 /* Move source pointers */ 1484 src_offset += bytes; 1485 } 1486 } 1487 1488 /* 1489 * tmc_update_etr_buffer : Update the perf ring buffer with the 1490 * available trace data. We use software double buffering at the moment. 1491 * 1492 * TODO: Add support for reusing the perf ring buffer. 1493 */ 1494 static unsigned long 1495 tmc_update_etr_buffer(struct coresight_device *csdev, 1496 struct perf_output_handle *handle, 1497 void *config) 1498 { 1499 bool lost = false; 1500 unsigned long flags, offset, size = 0; 1501 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1502 struct etr_perf_buffer *etr_perf = config; 1503 struct etr_buf *etr_buf = etr_perf->etr_buf; 1504 1505 spin_lock_irqsave(&drvdata->spinlock, flags); 1506 1507 /* Don't do anything if another tracer is using this sink */ 1508 if (atomic_read(csdev->refcnt) != 1) { 1509 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1510 goto out; 1511 } 1512 1513 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1514 lost = true; 1515 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1516 goto out; 1517 } 1518 1519 CS_UNLOCK(drvdata->base); 1520 1521 tmc_flush_and_stop(drvdata); 1522 tmc_sync_etr_buf(drvdata); 1523 1524 CS_LOCK(drvdata->base); 1525 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1526 1527 lost = etr_buf->full; 1528 offset = etr_buf->offset; 1529 size = etr_buf->len; 1530 1531 /* 1532 * The ETR buffer may be bigger than the space available in the 1533 * perf ring buffer (handle->size). If so advance the offset so that we 1534 * get the latest trace data. In snapshot mode none of that matters 1535 * since we are expected to clobber stale data in favour of the latest 1536 * traces. 1537 */ 1538 if (!etr_perf->snapshot && size > handle->size) { 1539 u32 mask = tmc_get_memwidth_mask(drvdata); 1540 1541 /* 1542 * Make sure the new size is aligned in accordance with the 1543 * requirement explained in function tmc_get_memwidth_mask(). 1544 */ 1545 size = handle->size & mask; 1546 offset = etr_buf->offset + etr_buf->len - size; 1547 1548 if (offset >= etr_buf->size) 1549 offset -= etr_buf->size; 1550 lost = true; 1551 } 1552 1553 /* Insert barrier packets at the beginning, if there was an overflow */ 1554 if (lost) 1555 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1556 tmc_etr_sync_perf_buffer(etr_perf, offset, size); 1557 1558 /* 1559 * In snapshot mode we simply increment the head by the number of byte 1560 * that were written. User space function cs_etm_find_snapshot() will 1561 * figure out how many bytes to get from the AUX buffer based on the 1562 * position of the head. 1563 */ 1564 if (etr_perf->snapshot) 1565 handle->head += size; 1566 out: 1567 /* 1568 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1569 * captured buffer is expected to be truncated and 2) a full buffer 1570 * prevents the event from being re-enabled by the perf core, 1571 * resulting in stale data being send to user space. 1572 */ 1573 if (!etr_perf->snapshot && lost) 1574 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1575 return size; 1576 } 1577 1578 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1579 { 1580 int rc = 0; 1581 pid_t pid; 1582 unsigned long flags; 1583 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1584 struct perf_output_handle *handle = data; 1585 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1586 1587 spin_lock_irqsave(&drvdata->spinlock, flags); 1588 /* Don't use this sink if it is already claimed by sysFS */ 1589 if (drvdata->mode == CS_MODE_SYSFS) { 1590 rc = -EBUSY; 1591 goto unlock_out; 1592 } 1593 1594 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1595 rc = -EINVAL; 1596 goto unlock_out; 1597 } 1598 1599 /* Get a handle on the pid of the process to monitor */ 1600 pid = etr_perf->pid; 1601 1602 /* Do not proceed if this device is associated with another session */ 1603 if (drvdata->pid != -1 && drvdata->pid != pid) { 1604 rc = -EBUSY; 1605 goto unlock_out; 1606 } 1607 1608 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf); 1609 1610 /* 1611 * No HW configuration is needed if the sink is already in 1612 * use for this session. 1613 */ 1614 if (drvdata->pid == pid) { 1615 atomic_inc(csdev->refcnt); 1616 goto unlock_out; 1617 } 1618 1619 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1620 if (!rc) { 1621 /* Associate with monitored process. */ 1622 drvdata->pid = pid; 1623 drvdata->mode = CS_MODE_PERF; 1624 drvdata->perf_buf = etr_perf->etr_buf; 1625 atomic_inc(csdev->refcnt); 1626 } 1627 1628 unlock_out: 1629 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1630 return rc; 1631 } 1632 1633 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1634 u32 mode, void *data) 1635 { 1636 switch (mode) { 1637 case CS_MODE_SYSFS: 1638 return tmc_enable_etr_sink_sysfs(csdev); 1639 case CS_MODE_PERF: 1640 return tmc_enable_etr_sink_perf(csdev, data); 1641 } 1642 1643 /* We shouldn't be here */ 1644 return -EINVAL; 1645 } 1646 1647 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1648 { 1649 unsigned long flags; 1650 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1651 1652 spin_lock_irqsave(&drvdata->spinlock, flags); 1653 1654 if (drvdata->reading) { 1655 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1656 return -EBUSY; 1657 } 1658 1659 if (atomic_dec_return(csdev->refcnt)) { 1660 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1661 return -EBUSY; 1662 } 1663 1664 /* Complain if we (somehow) got out of sync */ 1665 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1666 tmc_etr_disable_hw(drvdata); 1667 /* Dissociate from monitored process. */ 1668 drvdata->pid = -1; 1669 drvdata->mode = CS_MODE_DISABLED; 1670 /* Reset perf specific data */ 1671 drvdata->perf_buf = NULL; 1672 1673 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1674 1675 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1676 return 0; 1677 } 1678 1679 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1680 .enable = tmc_enable_etr_sink, 1681 .disable = tmc_disable_etr_sink, 1682 .alloc_buffer = tmc_alloc_etr_buffer, 1683 .update_buffer = tmc_update_etr_buffer, 1684 .free_buffer = tmc_free_etr_buffer, 1685 }; 1686 1687 const struct coresight_ops tmc_etr_cs_ops = { 1688 .sink_ops = &tmc_etr_sink_ops, 1689 }; 1690 1691 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1692 { 1693 int ret = 0; 1694 unsigned long flags; 1695 1696 /* config types are set a boot time and never change */ 1697 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1698 return -EINVAL; 1699 1700 spin_lock_irqsave(&drvdata->spinlock, flags); 1701 if (drvdata->reading) { 1702 ret = -EBUSY; 1703 goto out; 1704 } 1705 1706 /* 1707 * We can safely allow reads even if the ETR is operating in PERF mode, 1708 * since the sysfs session is captured in mode specific data. 1709 * If drvdata::sysfs_data is NULL the trace data has been read already. 1710 */ 1711 if (!drvdata->sysfs_buf) { 1712 ret = -EINVAL; 1713 goto out; 1714 } 1715 1716 /* Disable the TMC if we are trying to read from a running session. */ 1717 if (drvdata->mode == CS_MODE_SYSFS) 1718 __tmc_etr_disable_hw(drvdata); 1719 1720 drvdata->reading = true; 1721 out: 1722 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1723 1724 return ret; 1725 } 1726 1727 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1728 { 1729 unsigned long flags; 1730 struct etr_buf *sysfs_buf = NULL; 1731 1732 /* config types are set a boot time and never change */ 1733 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1734 return -EINVAL; 1735 1736 spin_lock_irqsave(&drvdata->spinlock, flags); 1737 1738 /* RE-enable the TMC if need be */ 1739 if (drvdata->mode == CS_MODE_SYSFS) { 1740 /* 1741 * The trace run will continue with the same allocated trace 1742 * buffer. Since the tracer is still enabled drvdata::buf can't 1743 * be NULL. 1744 */ 1745 __tmc_etr_enable_hw(drvdata); 1746 } else { 1747 /* 1748 * The ETR is not tracing and the buffer was just read. 1749 * As such prepare to free the trace buffer. 1750 */ 1751 sysfs_buf = drvdata->sysfs_buf; 1752 drvdata->sysfs_buf = NULL; 1753 } 1754 1755 drvdata->reading = false; 1756 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1757 1758 /* Free allocated memory out side of the spinlock */ 1759 if (sysfs_buf) 1760 tmc_etr_free_sysfs_buf(sysfs_buf); 1761 1762 return 0; 1763 } 1764