1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 /* 30 * etr_perf_buffer - Perf buffer used for ETR 31 * @drvdata - The ETR drvdaga this buffer has been allocated for. 32 * @etr_buf - Actual buffer used by the ETR 33 * @pid - The PID this etr_perf_buffer belongs to. 34 * @snaphost - Perf session mode 35 * @nr_pages - Number of pages in the ring buffer. 36 * @pages - Array of Pages in the ring buffer. 37 */ 38 struct etr_perf_buffer { 39 struct tmc_drvdata *drvdata; 40 struct etr_buf *etr_buf; 41 pid_t pid; 42 bool snapshot; 43 int nr_pages; 44 void **pages; 45 }; 46 47 /* Convert the perf index to an offset within the ETR buffer */ 48 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 49 50 /* Lower limit for ETR hardware buffer */ 51 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 52 53 /* 54 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 55 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 56 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 57 * contain more than one SG buffer and tables. 58 * 59 * A table entry has the following format: 60 * 61 * ---Bit31------------Bit4-------Bit1-----Bit0-- 62 * | Address[39:12] | SBZ | Entry Type | 63 * ---------------------------------------------- 64 * 65 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 66 * always zero. 67 * 68 * Entry type: 69 * b00 - Reserved. 70 * b01 - Last entry in the tables, points to 4K page buffer. 71 * b10 - Normal entry, points to 4K page buffer. 72 * b11 - Link. The address points to the base of next table. 73 */ 74 75 typedef u32 sgte_t; 76 77 #define ETR_SG_PAGE_SHIFT 12 78 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 79 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 80 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 81 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 82 83 #define ETR_SG_ET_MASK 0x3 84 #define ETR_SG_ET_LAST 0x1 85 #define ETR_SG_ET_NORMAL 0x2 86 #define ETR_SG_ET_LINK 0x3 87 88 #define ETR_SG_ADDR_SHIFT 4 89 90 #define ETR_SG_ENTRY(addr, type) \ 91 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 92 (type & ETR_SG_ET_MASK)) 93 94 #define ETR_SG_ADDR(entry) \ 95 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 96 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 97 98 /* 99 * struct etr_sg_table : ETR SG Table 100 * @sg_table: Generic SG Table holding the data/table pages. 101 * @hwaddr: hwaddress used by the TMC, which is the base 102 * address of the table. 103 */ 104 struct etr_sg_table { 105 struct tmc_sg_table *sg_table; 106 dma_addr_t hwaddr; 107 }; 108 109 /* 110 * tmc_etr_sg_table_entries: Total number of table entries required to map 111 * @nr_pages system pages. 112 * 113 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 114 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 115 * with the last entry pointing to another page of table entries. 116 * If we spill over to a new page for mapping 1 entry, we could as 117 * well replace the link entry of the previous page with the last entry. 118 */ 119 static inline unsigned long __attribute_const__ 120 tmc_etr_sg_table_entries(int nr_pages) 121 { 122 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 123 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 124 /* 125 * If we spill over to a new page for 1 entry, we could as well 126 * make it the LAST entry in the previous page, skipping the Link 127 * address. 128 */ 129 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 130 nr_sglinks--; 131 return nr_sgpages + nr_sglinks; 132 } 133 134 /* 135 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 136 * and map the device address @addr to an offset within the virtual 137 * contiguous buffer. 138 */ 139 static long 140 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 141 { 142 int i; 143 dma_addr_t page_start; 144 145 for (i = 0; i < tmc_pages->nr_pages; i++) { 146 page_start = tmc_pages->daddrs[i]; 147 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 148 return i * PAGE_SIZE + (addr - page_start); 149 } 150 151 return -EINVAL; 152 } 153 154 /* 155 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 156 * If the pages were not allocated in tmc_pages_alloc(), we would 157 * simply drop the refcount. 158 */ 159 static void tmc_pages_free(struct tmc_pages *tmc_pages, 160 struct device *dev, enum dma_data_direction dir) 161 { 162 int i; 163 struct device *real_dev = dev->parent; 164 165 for (i = 0; i < tmc_pages->nr_pages; i++) { 166 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 167 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 168 PAGE_SIZE, dir); 169 if (tmc_pages->pages && tmc_pages->pages[i]) 170 __free_page(tmc_pages->pages[i]); 171 } 172 173 kfree(tmc_pages->pages); 174 kfree(tmc_pages->daddrs); 175 tmc_pages->pages = NULL; 176 tmc_pages->daddrs = NULL; 177 tmc_pages->nr_pages = 0; 178 } 179 180 /* 181 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 182 * If @pages is not NULL, the list of page virtual addresses are 183 * used as the data pages. The pages are then dma_map'ed for @dev 184 * with dma_direction @dir. 185 * 186 * Returns 0 upon success, else the error number. 187 */ 188 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 189 struct device *dev, int node, 190 enum dma_data_direction dir, void **pages) 191 { 192 int i, nr_pages; 193 dma_addr_t paddr; 194 struct page *page; 195 struct device *real_dev = dev->parent; 196 197 nr_pages = tmc_pages->nr_pages; 198 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 199 GFP_KERNEL); 200 if (!tmc_pages->daddrs) 201 return -ENOMEM; 202 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 203 GFP_KERNEL); 204 if (!tmc_pages->pages) { 205 kfree(tmc_pages->daddrs); 206 tmc_pages->daddrs = NULL; 207 return -ENOMEM; 208 } 209 210 for (i = 0; i < nr_pages; i++) { 211 if (pages && pages[i]) { 212 page = virt_to_page(pages[i]); 213 /* Hold a refcount on the page */ 214 get_page(page); 215 } else { 216 page = alloc_pages_node(node, 217 GFP_KERNEL | __GFP_ZERO, 0); 218 if (!page) 219 goto err; 220 } 221 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 222 if (dma_mapping_error(real_dev, paddr)) 223 goto err; 224 tmc_pages->daddrs[i] = paddr; 225 tmc_pages->pages[i] = page; 226 } 227 return 0; 228 err: 229 tmc_pages_free(tmc_pages, dev, dir); 230 return -ENOMEM; 231 } 232 233 static inline long 234 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 235 { 236 return tmc_pages_get_offset(&sg_table->data_pages, addr); 237 } 238 239 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 240 { 241 if (sg_table->table_vaddr) 242 vunmap(sg_table->table_vaddr); 243 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 244 } 245 246 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 247 { 248 if (sg_table->data_vaddr) 249 vunmap(sg_table->data_vaddr); 250 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 251 } 252 253 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 254 { 255 tmc_free_table_pages(sg_table); 256 tmc_free_data_pages(sg_table); 257 } 258 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 259 260 /* 261 * Alloc pages for the table. Since this will be used by the device, 262 * allocate the pages closer to the device (i.e, dev_to_node(dev) 263 * rather than the CPU node). 264 */ 265 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 266 { 267 int rc; 268 struct tmc_pages *table_pages = &sg_table->table_pages; 269 270 rc = tmc_pages_alloc(table_pages, sg_table->dev, 271 dev_to_node(sg_table->dev), 272 DMA_TO_DEVICE, NULL); 273 if (rc) 274 return rc; 275 sg_table->table_vaddr = vmap(table_pages->pages, 276 table_pages->nr_pages, 277 VM_MAP, 278 PAGE_KERNEL); 279 if (!sg_table->table_vaddr) 280 rc = -ENOMEM; 281 else 282 sg_table->table_daddr = table_pages->daddrs[0]; 283 return rc; 284 } 285 286 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 287 { 288 int rc; 289 290 /* Allocate data pages on the node requested by the caller */ 291 rc = tmc_pages_alloc(&sg_table->data_pages, 292 sg_table->dev, sg_table->node, 293 DMA_FROM_DEVICE, pages); 294 if (!rc) { 295 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 296 sg_table->data_pages.nr_pages, 297 VM_MAP, 298 PAGE_KERNEL); 299 if (!sg_table->data_vaddr) 300 rc = -ENOMEM; 301 } 302 return rc; 303 } 304 305 /* 306 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 307 * and data buffers. TMC writes to the data buffers and reads from the SG 308 * Table pages. 309 * 310 * @dev - Coresight device to which page should be DMA mapped. 311 * @node - Numa node for mem allocations 312 * @nr_tpages - Number of pages for the table entries. 313 * @nr_dpages - Number of pages for Data buffer. 314 * @pages - Optional list of virtual address of pages. 315 */ 316 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 317 int node, 318 int nr_tpages, 319 int nr_dpages, 320 void **pages) 321 { 322 long rc; 323 struct tmc_sg_table *sg_table; 324 325 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 326 if (!sg_table) 327 return ERR_PTR(-ENOMEM); 328 sg_table->data_pages.nr_pages = nr_dpages; 329 sg_table->table_pages.nr_pages = nr_tpages; 330 sg_table->node = node; 331 sg_table->dev = dev; 332 333 rc = tmc_alloc_data_pages(sg_table, pages); 334 if (!rc) 335 rc = tmc_alloc_table_pages(sg_table); 336 if (rc) { 337 tmc_free_sg_table(sg_table); 338 kfree(sg_table); 339 return ERR_PTR(rc); 340 } 341 342 return sg_table; 343 } 344 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 345 346 /* 347 * tmc_sg_table_sync_data_range: Sync the data buffer written 348 * by the device from @offset upto a @size bytes. 349 */ 350 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 351 u64 offset, u64 size) 352 { 353 int i, index, start; 354 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 355 struct device *real_dev = table->dev->parent; 356 struct tmc_pages *data = &table->data_pages; 357 358 start = offset >> PAGE_SHIFT; 359 for (i = start; i < (start + npages); i++) { 360 index = i % data->nr_pages; 361 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 362 PAGE_SIZE, DMA_FROM_DEVICE); 363 } 364 } 365 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 366 367 /* tmc_sg_sync_table: Sync the page table */ 368 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 369 { 370 int i; 371 struct device *real_dev = sg_table->dev->parent; 372 struct tmc_pages *table_pages = &sg_table->table_pages; 373 374 for (i = 0; i < table_pages->nr_pages; i++) 375 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 376 PAGE_SIZE, DMA_TO_DEVICE); 377 } 378 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 379 380 /* 381 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 382 * in the SG buffer. The @bufpp is updated to point to the buffer. 383 * Returns : 384 * the length of linear data available at @offset. 385 * or 386 * <= 0 if no data is available. 387 */ 388 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 389 u64 offset, size_t len, char **bufpp) 390 { 391 size_t size; 392 int pg_idx = offset >> PAGE_SHIFT; 393 int pg_offset = offset & (PAGE_SIZE - 1); 394 struct tmc_pages *data_pages = &sg_table->data_pages; 395 396 size = tmc_sg_table_buf_size(sg_table); 397 if (offset >= size) 398 return -EINVAL; 399 400 /* Make sure we don't go beyond the end */ 401 len = (len < (size - offset)) ? len : size - offset; 402 /* Respect the page boundaries */ 403 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 404 if (len > 0) 405 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 406 return len; 407 } 408 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 409 410 #ifdef ETR_SG_DEBUG 411 /* Map a dma address to virtual address */ 412 static unsigned long 413 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 414 dma_addr_t addr, bool table) 415 { 416 long offset; 417 unsigned long base; 418 struct tmc_pages *tmc_pages; 419 420 if (table) { 421 tmc_pages = &sg_table->table_pages; 422 base = (unsigned long)sg_table->table_vaddr; 423 } else { 424 tmc_pages = &sg_table->data_pages; 425 base = (unsigned long)sg_table->data_vaddr; 426 } 427 428 offset = tmc_pages_get_offset(tmc_pages, addr); 429 if (offset < 0) 430 return 0; 431 return base + offset; 432 } 433 434 /* Dump the given sg_table */ 435 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 436 { 437 sgte_t *ptr; 438 int i = 0; 439 dma_addr_t addr; 440 struct tmc_sg_table *sg_table = etr_table->sg_table; 441 442 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 443 etr_table->hwaddr, true); 444 while (ptr) { 445 addr = ETR_SG_ADDR(*ptr); 446 switch (ETR_SG_ET(*ptr)) { 447 case ETR_SG_ET_NORMAL: 448 dev_dbg(sg_table->dev, 449 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 450 ptr++; 451 break; 452 case ETR_SG_ET_LINK: 453 dev_dbg(sg_table->dev, 454 "%05d: *** %p\t:{L} 0x%llx ***\n", 455 i, ptr, addr); 456 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 457 addr, true); 458 break; 459 case ETR_SG_ET_LAST: 460 dev_dbg(sg_table->dev, 461 "%05d: ### %p\t:[L] 0x%llx ###\n", 462 i, ptr, addr); 463 return; 464 default: 465 dev_dbg(sg_table->dev, 466 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 467 i, ptr, addr); 468 return; 469 } 470 i++; 471 } 472 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 473 } 474 #else 475 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 476 #endif 477 478 /* 479 * Populate the SG Table page table entries from table/data 480 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 481 * So does a Table page. So we keep track of indices of the tables 482 * in each system page and move the pointers accordingly. 483 */ 484 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 485 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 486 { 487 dma_addr_t paddr; 488 int i, type, nr_entries; 489 int tpidx = 0; /* index to the current system table_page */ 490 int sgtidx = 0; /* index to the sg_table within the current syspage */ 491 int sgtentry = 0; /* the entry within the sg_table */ 492 int dpidx = 0; /* index to the current system data_page */ 493 int spidx = 0; /* index to the SG page within the current data page */ 494 sgte_t *ptr; /* pointer to the table entry to fill */ 495 struct tmc_sg_table *sg_table = etr_table->sg_table; 496 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 497 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 498 499 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 500 /* 501 * Use the contiguous virtual address of the table to update entries. 502 */ 503 ptr = sg_table->table_vaddr; 504 /* 505 * Fill all the entries, except the last entry to avoid special 506 * checks within the loop. 507 */ 508 for (i = 0; i < nr_entries - 1; i++) { 509 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 510 /* 511 * Last entry in a sg_table page is a link address to 512 * the next table page. If this sg_table is the last 513 * one in the system page, it links to the first 514 * sg_table in the next system page. Otherwise, it 515 * links to the next sg_table page within the system 516 * page. 517 */ 518 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 519 paddr = table_daddrs[tpidx + 1]; 520 } else { 521 paddr = table_daddrs[tpidx] + 522 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 523 } 524 type = ETR_SG_ET_LINK; 525 } else { 526 /* 527 * Update the indices to the data_pages to point to the 528 * next sg_page in the data buffer. 529 */ 530 type = ETR_SG_ET_NORMAL; 531 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 532 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 533 dpidx++; 534 } 535 *ptr++ = ETR_SG_ENTRY(paddr, type); 536 /* 537 * Move to the next table pointer, moving the table page index 538 * if necessary 539 */ 540 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 541 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 542 tpidx++; 543 } 544 } 545 546 /* Set up the last entry, which is always a data pointer */ 547 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 548 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 549 } 550 551 /* 552 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 553 * populate the table. 554 * 555 * @dev - Device pointer for the TMC 556 * @node - NUMA node where the memory should be allocated 557 * @size - Total size of the data buffer 558 * @pages - Optional list of page virtual address 559 */ 560 static struct etr_sg_table * 561 tmc_init_etr_sg_table(struct device *dev, int node, 562 unsigned long size, void **pages) 563 { 564 int nr_entries, nr_tpages; 565 int nr_dpages = size >> PAGE_SHIFT; 566 struct tmc_sg_table *sg_table; 567 struct etr_sg_table *etr_table; 568 569 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 570 if (!etr_table) 571 return ERR_PTR(-ENOMEM); 572 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 573 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 574 575 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 576 if (IS_ERR(sg_table)) { 577 kfree(etr_table); 578 return ERR_CAST(sg_table); 579 } 580 581 etr_table->sg_table = sg_table; 582 /* TMC should use table base address for DBA */ 583 etr_table->hwaddr = sg_table->table_daddr; 584 tmc_etr_sg_table_populate(etr_table); 585 /* Sync the table pages for the HW */ 586 tmc_sg_table_sync_table(sg_table); 587 tmc_etr_sg_table_dump(etr_table); 588 589 return etr_table; 590 } 591 592 /* 593 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 594 */ 595 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 596 struct etr_buf *etr_buf, int node, 597 void **pages) 598 { 599 struct etr_flat_buf *flat_buf; 600 struct device *real_dev = drvdata->csdev->dev.parent; 601 602 /* We cannot reuse existing pages for flat buf */ 603 if (pages) 604 return -EINVAL; 605 606 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 607 if (!flat_buf) 608 return -ENOMEM; 609 610 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 611 &flat_buf->daddr, 612 DMA_FROM_DEVICE, GFP_KERNEL); 613 if (!flat_buf->vaddr) { 614 kfree(flat_buf); 615 return -ENOMEM; 616 } 617 618 flat_buf->size = etr_buf->size; 619 flat_buf->dev = &drvdata->csdev->dev; 620 etr_buf->hwaddr = flat_buf->daddr; 621 etr_buf->mode = ETR_MODE_FLAT; 622 etr_buf->private = flat_buf; 623 return 0; 624 } 625 626 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 627 { 628 struct etr_flat_buf *flat_buf = etr_buf->private; 629 630 if (flat_buf && flat_buf->daddr) { 631 struct device *real_dev = flat_buf->dev->parent; 632 633 dma_free_noncoherent(real_dev, etr_buf->size, 634 flat_buf->vaddr, flat_buf->daddr, 635 DMA_FROM_DEVICE); 636 } 637 kfree(flat_buf); 638 } 639 640 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 641 { 642 struct etr_flat_buf *flat_buf = etr_buf->private; 643 struct device *real_dev = flat_buf->dev->parent; 644 645 /* 646 * Adjust the buffer to point to the beginning of the trace data 647 * and update the available trace data. 648 */ 649 etr_buf->offset = rrp - etr_buf->hwaddr; 650 if (etr_buf->full) 651 etr_buf->len = etr_buf->size; 652 else 653 etr_buf->len = rwp - rrp; 654 655 /* 656 * The driver always starts tracing at the beginning of the buffer, 657 * the only reason why we would get a wrap around is when the buffer 658 * is full. Sync the entire buffer in one go for this case. 659 */ 660 if (etr_buf->offset + etr_buf->len > etr_buf->size) 661 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 662 etr_buf->size, DMA_FROM_DEVICE); 663 else 664 dma_sync_single_for_cpu(real_dev, 665 flat_buf->daddr + etr_buf->offset, 666 etr_buf->len, DMA_FROM_DEVICE); 667 } 668 669 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 670 u64 offset, size_t len, char **bufpp) 671 { 672 struct etr_flat_buf *flat_buf = etr_buf->private; 673 674 *bufpp = (char *)flat_buf->vaddr + offset; 675 /* 676 * tmc_etr_buf_get_data already adjusts the length to handle 677 * buffer wrapping around. 678 */ 679 return len; 680 } 681 682 static const struct etr_buf_operations etr_flat_buf_ops = { 683 .alloc = tmc_etr_alloc_flat_buf, 684 .free = tmc_etr_free_flat_buf, 685 .sync = tmc_etr_sync_flat_buf, 686 .get_data = tmc_etr_get_data_flat_buf, 687 }; 688 689 /* 690 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 691 * appropriately. 692 */ 693 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 694 struct etr_buf *etr_buf, int node, 695 void **pages) 696 { 697 struct etr_sg_table *etr_table; 698 struct device *dev = &drvdata->csdev->dev; 699 700 etr_table = tmc_init_etr_sg_table(dev, node, 701 etr_buf->size, pages); 702 if (IS_ERR(etr_table)) 703 return -ENOMEM; 704 etr_buf->hwaddr = etr_table->hwaddr; 705 etr_buf->mode = ETR_MODE_ETR_SG; 706 etr_buf->private = etr_table; 707 return 0; 708 } 709 710 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 711 { 712 struct etr_sg_table *etr_table = etr_buf->private; 713 714 if (etr_table) { 715 tmc_free_sg_table(etr_table->sg_table); 716 kfree(etr_table); 717 } 718 } 719 720 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 721 size_t len, char **bufpp) 722 { 723 struct etr_sg_table *etr_table = etr_buf->private; 724 725 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 726 } 727 728 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 729 { 730 long r_offset, w_offset; 731 struct etr_sg_table *etr_table = etr_buf->private; 732 struct tmc_sg_table *table = etr_table->sg_table; 733 734 /* Convert hw address to offset in the buffer */ 735 r_offset = tmc_sg_get_data_page_offset(table, rrp); 736 if (r_offset < 0) { 737 dev_warn(table->dev, 738 "Unable to map RRP %llx to offset\n", rrp); 739 etr_buf->len = 0; 740 return; 741 } 742 743 w_offset = tmc_sg_get_data_page_offset(table, rwp); 744 if (w_offset < 0) { 745 dev_warn(table->dev, 746 "Unable to map RWP %llx to offset\n", rwp); 747 etr_buf->len = 0; 748 return; 749 } 750 751 etr_buf->offset = r_offset; 752 if (etr_buf->full) 753 etr_buf->len = etr_buf->size; 754 else 755 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 756 w_offset - r_offset; 757 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 758 } 759 760 static const struct etr_buf_operations etr_sg_buf_ops = { 761 .alloc = tmc_etr_alloc_sg_buf, 762 .free = tmc_etr_free_sg_buf, 763 .sync = tmc_etr_sync_sg_buf, 764 .get_data = tmc_etr_get_data_sg_buf, 765 }; 766 767 /* 768 * TMC ETR could be connected to a CATU device, which can provide address 769 * translation service. This is represented by the Output port of the TMC 770 * (ETR) connected to the input port of the CATU. 771 * 772 * Returns : coresight_device ptr for the CATU device if a CATU is found. 773 * : NULL otherwise. 774 */ 775 struct coresight_device * 776 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 777 { 778 struct coresight_device *etr = drvdata->csdev; 779 union coresight_dev_subtype catu_subtype = { 780 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU 781 }; 782 783 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 784 return NULL; 785 786 return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER, 787 catu_subtype); 788 } 789 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 790 791 static const struct etr_buf_operations *etr_buf_ops[] = { 792 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 793 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 794 [ETR_MODE_CATU] = NULL, 795 }; 796 797 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 798 { 799 etr_buf_ops[ETR_MODE_CATU] = catu; 800 } 801 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 802 803 void tmc_etr_remove_catu_ops(void) 804 { 805 etr_buf_ops[ETR_MODE_CATU] = NULL; 806 } 807 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 808 809 static inline int tmc_etr_mode_alloc_buf(int mode, 810 struct tmc_drvdata *drvdata, 811 struct etr_buf *etr_buf, int node, 812 void **pages) 813 { 814 int rc = -EINVAL; 815 816 switch (mode) { 817 case ETR_MODE_FLAT: 818 case ETR_MODE_ETR_SG: 819 case ETR_MODE_CATU: 820 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 821 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 822 node, pages); 823 if (!rc) 824 etr_buf->ops = etr_buf_ops[mode]; 825 return rc; 826 default: 827 return -EINVAL; 828 } 829 } 830 831 /* 832 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 833 * @drvdata : ETR device details. 834 * @size : size of the requested buffer. 835 * @flags : Required properties for the buffer. 836 * @node : Node for memory allocations. 837 * @pages : An optional list of pages. 838 */ 839 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 840 ssize_t size, int flags, 841 int node, void **pages) 842 { 843 int rc = -ENOMEM; 844 bool has_etr_sg, has_iommu; 845 bool has_sg, has_catu; 846 struct etr_buf *etr_buf; 847 struct device *dev = &drvdata->csdev->dev; 848 849 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 850 has_iommu = iommu_get_domain_for_dev(dev->parent); 851 has_catu = !!tmc_etr_get_catu_device(drvdata); 852 853 has_sg = has_catu || has_etr_sg; 854 855 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 856 if (!etr_buf) 857 return ERR_PTR(-ENOMEM); 858 859 etr_buf->size = size; 860 861 /* 862 * If we have to use an existing list of pages, we cannot reliably 863 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 864 * we use the contiguous DMA memory if at least one of the following 865 * conditions is true: 866 * a) The ETR cannot use Scatter-Gather. 867 * b) we have a backing IOMMU 868 * c) The requested memory size is smaller (< 1M). 869 * 870 * Fallback to available mechanisms. 871 * 872 */ 873 if (!pages && 874 (!has_sg || has_iommu || size < SZ_1M)) 875 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 876 etr_buf, node, pages); 877 if (rc && has_etr_sg) 878 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 879 etr_buf, node, pages); 880 if (rc && has_catu) 881 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 882 etr_buf, node, pages); 883 if (rc) { 884 kfree(etr_buf); 885 return ERR_PTR(rc); 886 } 887 888 refcount_set(&etr_buf->refcount, 1); 889 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 890 (unsigned long)size >> 10, etr_buf->mode); 891 return etr_buf; 892 } 893 894 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 895 { 896 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 897 etr_buf->ops->free(etr_buf); 898 kfree(etr_buf); 899 } 900 901 /* 902 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 903 * with a maximum of @len bytes. 904 * Returns: The size of the linear data available @pos, with *bufpp 905 * updated to point to the buffer. 906 */ 907 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 908 u64 offset, size_t len, char **bufpp) 909 { 910 /* Adjust the length to limit this transaction to end of buffer */ 911 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 912 913 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 914 } 915 916 static inline s64 917 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 918 { 919 ssize_t len; 920 char *bufp; 921 922 len = tmc_etr_buf_get_data(etr_buf, offset, 923 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 924 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) 925 return -EINVAL; 926 coresight_insert_barrier_packet(bufp); 927 return offset + CORESIGHT_BARRIER_PKT_SIZE; 928 } 929 930 /* 931 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 932 * Makes sure the trace data is synced to the memory for consumption. 933 * @etr_buf->offset will hold the offset to the beginning of the trace data 934 * within the buffer, with @etr_buf->len bytes to consume. 935 */ 936 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 937 { 938 struct etr_buf *etr_buf = drvdata->etr_buf; 939 u64 rrp, rwp; 940 u32 status; 941 942 rrp = tmc_read_rrp(drvdata); 943 rwp = tmc_read_rwp(drvdata); 944 status = readl_relaxed(drvdata->base + TMC_STS); 945 946 /* 947 * If there were memory errors in the session, truncate the 948 * buffer. 949 */ 950 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 951 dev_dbg(&drvdata->csdev->dev, 952 "tmc memory error detected, truncating buffer\n"); 953 etr_buf->len = 0; 954 etr_buf->full = false; 955 return; 956 } 957 958 etr_buf->full = !!(status & TMC_STS_FULL); 959 960 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 961 962 etr_buf->ops->sync(etr_buf, rrp, rwp); 963 } 964 965 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 966 { 967 u32 axictl, sts; 968 struct etr_buf *etr_buf = drvdata->etr_buf; 969 int rc = 0; 970 971 CS_UNLOCK(drvdata->base); 972 973 /* Wait for TMCSReady bit to be set */ 974 rc = tmc_wait_for_tmcready(drvdata); 975 if (rc) { 976 dev_err(&drvdata->csdev->dev, 977 "Failed to enable : TMC not ready\n"); 978 CS_LOCK(drvdata->base); 979 return rc; 980 } 981 982 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 983 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 984 985 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 986 axictl &= ~TMC_AXICTL_CLEAR_MASK; 987 axictl |= TMC_AXICTL_PROT_CTL_B1; 988 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 989 axictl |= TMC_AXICTL_AXCACHE_OS; 990 991 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 992 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 993 axictl |= TMC_AXICTL_ARCACHE_OS; 994 } 995 996 if (etr_buf->mode == ETR_MODE_ETR_SG) 997 axictl |= TMC_AXICTL_SCT_GAT_MODE; 998 999 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1000 tmc_write_dba(drvdata, etr_buf->hwaddr); 1001 /* 1002 * If the TMC pointers must be programmed before the session, 1003 * we have to set it properly (i.e, RRP/RWP to base address and 1004 * STS to "not full"). 1005 */ 1006 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1007 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1008 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1009 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1010 writel_relaxed(sts, drvdata->base + TMC_STS); 1011 } 1012 1013 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1014 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1015 TMC_FFCR_TRIGON_TRIGIN, 1016 drvdata->base + TMC_FFCR); 1017 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1018 tmc_enable_hw(drvdata); 1019 1020 CS_LOCK(drvdata->base); 1021 return rc; 1022 } 1023 1024 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1025 struct etr_buf *etr_buf) 1026 { 1027 int rc; 1028 1029 /* Callers should provide an appropriate buffer for use */ 1030 if (WARN_ON(!etr_buf)) 1031 return -EINVAL; 1032 1033 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1034 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1035 return -EINVAL; 1036 1037 if (WARN_ON(drvdata->etr_buf)) 1038 return -EBUSY; 1039 1040 rc = coresight_claim_device(drvdata->csdev); 1041 if (!rc) { 1042 drvdata->etr_buf = etr_buf; 1043 rc = __tmc_etr_enable_hw(drvdata); 1044 if (rc) { 1045 drvdata->etr_buf = NULL; 1046 coresight_disclaim_device(drvdata->csdev); 1047 } 1048 } 1049 1050 return rc; 1051 } 1052 1053 /* 1054 * Return the available trace data in the buffer (starts at etr_buf->offset, 1055 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1056 * also updating the @bufpp on where to find it. Since the trace data 1057 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1058 * @len returned to handle buffer wrapping around. 1059 * 1060 * We are protected here by drvdata->reading != 0, which ensures the 1061 * sysfs_buf stays alive. 1062 */ 1063 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1064 loff_t pos, size_t len, char **bufpp) 1065 { 1066 s64 offset; 1067 ssize_t actual = len; 1068 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1069 1070 if (pos + actual > etr_buf->len) 1071 actual = etr_buf->len - pos; 1072 if (actual <= 0) 1073 return actual; 1074 1075 /* Compute the offset from which we read the data */ 1076 offset = etr_buf->offset + pos; 1077 if (offset >= etr_buf->size) 1078 offset -= etr_buf->size; 1079 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1080 } 1081 1082 static struct etr_buf * 1083 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1084 { 1085 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1086 0, cpu_to_node(0), NULL); 1087 } 1088 1089 static void 1090 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1091 { 1092 if (buf) 1093 tmc_free_etr_buf(buf); 1094 } 1095 1096 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1097 { 1098 struct etr_buf *etr_buf = drvdata->etr_buf; 1099 1100 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1101 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1102 drvdata->sysfs_buf = NULL; 1103 } else { 1104 tmc_sync_etr_buf(drvdata); 1105 /* 1106 * Insert barrier packets at the beginning, if there was 1107 * an overflow. 1108 */ 1109 if (etr_buf->full) 1110 tmc_etr_buf_insert_barrier_packet(etr_buf, 1111 etr_buf->offset); 1112 } 1113 } 1114 1115 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1116 { 1117 CS_UNLOCK(drvdata->base); 1118 1119 tmc_flush_and_stop(drvdata); 1120 /* 1121 * When operating in sysFS mode the content of the buffer needs to be 1122 * read before the TMC is disabled. 1123 */ 1124 if (drvdata->mode == CS_MODE_SYSFS) 1125 tmc_etr_sync_sysfs_buf(drvdata); 1126 1127 tmc_disable_hw(drvdata); 1128 1129 CS_LOCK(drvdata->base); 1130 1131 } 1132 1133 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1134 { 1135 __tmc_etr_disable_hw(drvdata); 1136 coresight_disclaim_device(drvdata->csdev); 1137 /* Reset the ETR buf used by hardware */ 1138 drvdata->etr_buf = NULL; 1139 } 1140 1141 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev) 1142 { 1143 int ret = 0; 1144 unsigned long flags; 1145 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1146 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1147 1148 /* 1149 * If we are enabling the ETR from disabled state, we need to make 1150 * sure we have a buffer with the right size. The etr_buf is not reset 1151 * immediately after we stop the tracing in SYSFS mode as we wait for 1152 * the user to collect the data. We may be able to reuse the existing 1153 * buffer, provided the size matches. Any allocation has to be done 1154 * with the lock released. 1155 */ 1156 spin_lock_irqsave(&drvdata->spinlock, flags); 1157 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1158 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1159 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1160 1161 /* Allocate memory with the locks released */ 1162 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1163 if (IS_ERR(new_buf)) 1164 return new_buf; 1165 1166 /* Let's try again */ 1167 spin_lock_irqsave(&drvdata->spinlock, flags); 1168 } 1169 1170 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1171 ret = -EBUSY; 1172 goto out; 1173 } 1174 1175 /* 1176 * In sysFS mode we can have multiple writers per sink. Since this 1177 * sink is already enabled no memory is needed and the HW need not be 1178 * touched, even if the buffer size has changed. 1179 */ 1180 if (drvdata->mode == CS_MODE_SYSFS) { 1181 atomic_inc(&csdev->refcnt); 1182 goto out; 1183 } 1184 1185 /* 1186 * If we don't have a buffer or it doesn't match the requested size, 1187 * use the buffer allocated above. Otherwise reuse the existing buffer. 1188 */ 1189 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1190 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1191 free_buf = sysfs_buf; 1192 drvdata->sysfs_buf = new_buf; 1193 } 1194 1195 out: 1196 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1197 1198 /* Free memory outside the spinlock if need be */ 1199 if (free_buf) 1200 tmc_etr_free_sysfs_buf(free_buf); 1201 return ret ? ERR_PTR(ret) : drvdata->sysfs_buf; 1202 } 1203 1204 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1205 { 1206 int ret; 1207 unsigned long flags; 1208 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1209 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev); 1210 1211 if (IS_ERR(sysfs_buf)) 1212 return PTR_ERR(sysfs_buf); 1213 1214 spin_lock_irqsave(&drvdata->spinlock, flags); 1215 ret = tmc_etr_enable_hw(drvdata, sysfs_buf); 1216 if (!ret) { 1217 drvdata->mode = CS_MODE_SYSFS; 1218 atomic_inc(&csdev->refcnt); 1219 } 1220 1221 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1222 1223 if (!ret) 1224 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1225 1226 return ret; 1227 } 1228 1229 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev, 1230 enum cs_mode mode, void *data) 1231 { 1232 struct perf_output_handle *handle = data; 1233 struct etr_perf_buffer *etr_perf; 1234 1235 switch (mode) { 1236 case CS_MODE_SYSFS: 1237 return tmc_etr_get_sysfs_buffer(csdev); 1238 case CS_MODE_PERF: 1239 etr_perf = etm_perf_sink_config(handle); 1240 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) 1241 return ERR_PTR(-EINVAL); 1242 return etr_perf->etr_buf; 1243 default: 1244 return ERR_PTR(-EINVAL); 1245 } 1246 } 1247 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer); 1248 1249 /* 1250 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1251 * The size of the hardware buffer is dependent on the size configured 1252 * via sysfs and the perf ring buffer size. We prefer to allocate the 1253 * largest possible size, scaling down the size by half until it 1254 * reaches a minimum limit (1M), beyond which we give up. 1255 */ 1256 static struct etr_buf * 1257 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1258 int nr_pages, void **pages, bool snapshot) 1259 { 1260 int node; 1261 struct etr_buf *etr_buf; 1262 unsigned long size; 1263 1264 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1265 /* 1266 * Try to match the perf ring buffer size if it is larger 1267 * than the size requested via sysfs. 1268 */ 1269 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1270 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT), 1271 0, node, NULL); 1272 if (!IS_ERR(etr_buf)) 1273 goto done; 1274 } 1275 1276 /* 1277 * Else switch to configured size for this ETR 1278 * and scale down until we hit the minimum limit. 1279 */ 1280 size = drvdata->size; 1281 do { 1282 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1283 if (!IS_ERR(etr_buf)) 1284 goto done; 1285 size /= 2; 1286 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1287 1288 return ERR_PTR(-ENOMEM); 1289 1290 done: 1291 return etr_buf; 1292 } 1293 1294 static struct etr_buf * 1295 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1296 struct perf_event *event, int nr_pages, 1297 void **pages, bool snapshot) 1298 { 1299 int ret; 1300 pid_t pid = task_pid_nr(event->owner); 1301 struct etr_buf *etr_buf; 1302 1303 retry: 1304 /* 1305 * An etr_perf_buffer is associated with an event and holds a reference 1306 * to the AUX ring buffer that was created for that event. In CPU-wide 1307 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1308 * buffer, share a sink. As such an etr_perf_buffer is created for each 1309 * event but a single etr_buf associated with the ETR is shared between 1310 * them. The last event in a trace session will copy the content of the 1311 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1312 * events are simply not used an freed as events are destoyed. We still 1313 * need to allocate a ring buffer for each event since we don't know 1314 * which event will be last. 1315 */ 1316 1317 /* 1318 * The first thing to do here is check if an etr_buf has already been 1319 * allocated for this session. If so it is shared with this event, 1320 * otherwise it is created. 1321 */ 1322 mutex_lock(&drvdata->idr_mutex); 1323 etr_buf = idr_find(&drvdata->idr, pid); 1324 if (etr_buf) { 1325 refcount_inc(&etr_buf->refcount); 1326 mutex_unlock(&drvdata->idr_mutex); 1327 return etr_buf; 1328 } 1329 1330 /* If we made it here no buffer has been allocated, do so now. */ 1331 mutex_unlock(&drvdata->idr_mutex); 1332 1333 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1334 if (IS_ERR(etr_buf)) 1335 return etr_buf; 1336 1337 /* Now that we have a buffer, add it to the IDR. */ 1338 mutex_lock(&drvdata->idr_mutex); 1339 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1340 mutex_unlock(&drvdata->idr_mutex); 1341 1342 /* Another event with this session ID has allocated this buffer. */ 1343 if (ret == -ENOSPC) { 1344 tmc_free_etr_buf(etr_buf); 1345 goto retry; 1346 } 1347 1348 /* The IDR can't allocate room for a new session, abandon ship. */ 1349 if (ret == -ENOMEM) { 1350 tmc_free_etr_buf(etr_buf); 1351 return ERR_PTR(ret); 1352 } 1353 1354 1355 return etr_buf; 1356 } 1357 1358 static struct etr_buf * 1359 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1360 struct perf_event *event, int nr_pages, 1361 void **pages, bool snapshot) 1362 { 1363 /* 1364 * In per-thread mode the etr_buf isn't shared, so just go ahead 1365 * with memory allocation. 1366 */ 1367 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1368 } 1369 1370 static struct etr_buf * 1371 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1372 int nr_pages, void **pages, bool snapshot) 1373 { 1374 if (event->cpu == -1) 1375 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1376 pages, snapshot); 1377 1378 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1379 pages, snapshot); 1380 } 1381 1382 static struct etr_perf_buffer * 1383 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1384 int nr_pages, void **pages, bool snapshot) 1385 { 1386 int node; 1387 struct etr_buf *etr_buf; 1388 struct etr_perf_buffer *etr_perf; 1389 1390 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1391 1392 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1393 if (!etr_perf) 1394 return ERR_PTR(-ENOMEM); 1395 1396 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1397 if (!IS_ERR(etr_buf)) 1398 goto done; 1399 1400 kfree(etr_perf); 1401 return ERR_PTR(-ENOMEM); 1402 1403 done: 1404 /* 1405 * Keep a reference to the ETR this buffer has been allocated for 1406 * in order to have access to the IDR in tmc_free_etr_buffer(). 1407 */ 1408 etr_perf->drvdata = drvdata; 1409 etr_perf->etr_buf = etr_buf; 1410 1411 return etr_perf; 1412 } 1413 1414 1415 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1416 struct perf_event *event, void **pages, 1417 int nr_pages, bool snapshot) 1418 { 1419 struct etr_perf_buffer *etr_perf; 1420 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1421 1422 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1423 nr_pages, pages, snapshot); 1424 if (IS_ERR(etr_perf)) { 1425 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1426 return NULL; 1427 } 1428 1429 etr_perf->pid = task_pid_nr(event->owner); 1430 etr_perf->snapshot = snapshot; 1431 etr_perf->nr_pages = nr_pages; 1432 etr_perf->pages = pages; 1433 1434 return etr_perf; 1435 } 1436 1437 static void tmc_free_etr_buffer(void *config) 1438 { 1439 struct etr_perf_buffer *etr_perf = config; 1440 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1441 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1442 1443 if (!etr_buf) 1444 goto free_etr_perf_buffer; 1445 1446 mutex_lock(&drvdata->idr_mutex); 1447 /* If we are not the last one to use the buffer, don't touch it. */ 1448 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1449 mutex_unlock(&drvdata->idr_mutex); 1450 goto free_etr_perf_buffer; 1451 } 1452 1453 /* We are the last one, remove from the IDR and free the buffer. */ 1454 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1455 mutex_unlock(&drvdata->idr_mutex); 1456 1457 /* 1458 * Something went very wrong if the buffer associated with this ID 1459 * is not the same in the IDR. Leak to avoid use after free. 1460 */ 1461 if (buf && WARN_ON(buf != etr_buf)) 1462 goto free_etr_perf_buffer; 1463 1464 tmc_free_etr_buf(etr_perf->etr_buf); 1465 1466 free_etr_perf_buffer: 1467 kfree(etr_perf); 1468 } 1469 1470 /* 1471 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1472 * buffer to the perf ring buffer. 1473 */ 1474 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1475 unsigned long head, 1476 unsigned long src_offset, 1477 unsigned long to_copy) 1478 { 1479 long bytes; 1480 long pg_idx, pg_offset; 1481 char **dst_pages, *src_buf; 1482 struct etr_buf *etr_buf = etr_perf->etr_buf; 1483 1484 head = PERF_IDX2OFF(head, etr_perf); 1485 pg_idx = head >> PAGE_SHIFT; 1486 pg_offset = head & (PAGE_SIZE - 1); 1487 dst_pages = (char **)etr_perf->pages; 1488 1489 while (to_copy > 0) { 1490 /* 1491 * In one iteration, we can copy minimum of : 1492 * 1) what is available in the source buffer, 1493 * 2) what is available in the source buffer, before it 1494 * wraps around. 1495 * 3) what is available in the destination page. 1496 * in one iteration. 1497 */ 1498 if (src_offset >= etr_buf->size) 1499 src_offset -= etr_buf->size; 1500 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1501 &src_buf); 1502 if (WARN_ON_ONCE(bytes <= 0)) 1503 break; 1504 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1505 1506 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1507 1508 to_copy -= bytes; 1509 1510 /* Move destination pointers */ 1511 pg_offset += bytes; 1512 if (pg_offset == PAGE_SIZE) { 1513 pg_offset = 0; 1514 if (++pg_idx == etr_perf->nr_pages) 1515 pg_idx = 0; 1516 } 1517 1518 /* Move source pointers */ 1519 src_offset += bytes; 1520 } 1521 } 1522 1523 /* 1524 * tmc_update_etr_buffer : Update the perf ring buffer with the 1525 * available trace data. We use software double buffering at the moment. 1526 * 1527 * TODO: Add support for reusing the perf ring buffer. 1528 */ 1529 static unsigned long 1530 tmc_update_etr_buffer(struct coresight_device *csdev, 1531 struct perf_output_handle *handle, 1532 void *config) 1533 { 1534 bool lost = false; 1535 unsigned long flags, offset, size = 0; 1536 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1537 struct etr_perf_buffer *etr_perf = config; 1538 struct etr_buf *etr_buf = etr_perf->etr_buf; 1539 1540 spin_lock_irqsave(&drvdata->spinlock, flags); 1541 1542 /* Don't do anything if another tracer is using this sink */ 1543 if (atomic_read(&csdev->refcnt) != 1) { 1544 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1545 goto out; 1546 } 1547 1548 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1549 lost = true; 1550 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1551 goto out; 1552 } 1553 1554 CS_UNLOCK(drvdata->base); 1555 1556 tmc_flush_and_stop(drvdata); 1557 tmc_sync_etr_buf(drvdata); 1558 1559 CS_LOCK(drvdata->base); 1560 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1561 1562 lost = etr_buf->full; 1563 offset = etr_buf->offset; 1564 size = etr_buf->len; 1565 1566 /* 1567 * The ETR buffer may be bigger than the space available in the 1568 * perf ring buffer (handle->size). If so advance the offset so that we 1569 * get the latest trace data. In snapshot mode none of that matters 1570 * since we are expected to clobber stale data in favour of the latest 1571 * traces. 1572 */ 1573 if (!etr_perf->snapshot && size > handle->size) { 1574 u32 mask = tmc_get_memwidth_mask(drvdata); 1575 1576 /* 1577 * Make sure the new size is aligned in accordance with the 1578 * requirement explained in function tmc_get_memwidth_mask(). 1579 */ 1580 size = handle->size & mask; 1581 offset = etr_buf->offset + etr_buf->len - size; 1582 1583 if (offset >= etr_buf->size) 1584 offset -= etr_buf->size; 1585 lost = true; 1586 } 1587 1588 /* Insert barrier packets at the beginning, if there was an overflow */ 1589 if (lost) 1590 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1591 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1592 1593 /* 1594 * In snapshot mode we simply increment the head by the number of byte 1595 * that were written. User space will figure out how many bytes to get 1596 * from the AUX buffer based on the position of the head. 1597 */ 1598 if (etr_perf->snapshot) 1599 handle->head += size; 1600 1601 /* 1602 * Ensure that the AUX trace data is visible before the aux_head 1603 * is updated via perf_aux_output_end(), as expected by the 1604 * perf ring buffer. 1605 */ 1606 smp_wmb(); 1607 1608 out: 1609 /* 1610 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1611 * captured buffer is expected to be truncated and 2) a full buffer 1612 * prevents the event from being re-enabled by the perf core, 1613 * resulting in stale data being send to user space. 1614 */ 1615 if (!etr_perf->snapshot && lost) 1616 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1617 return size; 1618 } 1619 1620 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1621 { 1622 int rc = 0; 1623 pid_t pid; 1624 unsigned long flags; 1625 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1626 struct perf_output_handle *handle = data; 1627 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1628 1629 spin_lock_irqsave(&drvdata->spinlock, flags); 1630 /* Don't use this sink if it is already claimed by sysFS */ 1631 if (drvdata->mode == CS_MODE_SYSFS) { 1632 rc = -EBUSY; 1633 goto unlock_out; 1634 } 1635 1636 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1637 rc = -EINVAL; 1638 goto unlock_out; 1639 } 1640 1641 /* Get a handle on the pid of the process to monitor */ 1642 pid = etr_perf->pid; 1643 1644 /* Do not proceed if this device is associated with another session */ 1645 if (drvdata->pid != -1 && drvdata->pid != pid) { 1646 rc = -EBUSY; 1647 goto unlock_out; 1648 } 1649 1650 /* 1651 * No HW configuration is needed if the sink is already in 1652 * use for this session. 1653 */ 1654 if (drvdata->pid == pid) { 1655 atomic_inc(&csdev->refcnt); 1656 goto unlock_out; 1657 } 1658 1659 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1660 if (!rc) { 1661 /* Associate with monitored process. */ 1662 drvdata->pid = pid; 1663 drvdata->mode = CS_MODE_PERF; 1664 drvdata->perf_buf = etr_perf->etr_buf; 1665 atomic_inc(&csdev->refcnt); 1666 } 1667 1668 unlock_out: 1669 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1670 return rc; 1671 } 1672 1673 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1674 enum cs_mode mode, void *data) 1675 { 1676 switch (mode) { 1677 case CS_MODE_SYSFS: 1678 return tmc_enable_etr_sink_sysfs(csdev); 1679 case CS_MODE_PERF: 1680 return tmc_enable_etr_sink_perf(csdev, data); 1681 default: 1682 return -EINVAL; 1683 } 1684 } 1685 1686 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1687 { 1688 unsigned long flags; 1689 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1690 1691 spin_lock_irqsave(&drvdata->spinlock, flags); 1692 1693 if (drvdata->reading) { 1694 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1695 return -EBUSY; 1696 } 1697 1698 if (atomic_dec_return(&csdev->refcnt)) { 1699 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1700 return -EBUSY; 1701 } 1702 1703 /* Complain if we (somehow) got out of sync */ 1704 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1705 tmc_etr_disable_hw(drvdata); 1706 /* Dissociate from monitored process. */ 1707 drvdata->pid = -1; 1708 drvdata->mode = CS_MODE_DISABLED; 1709 /* Reset perf specific data */ 1710 drvdata->perf_buf = NULL; 1711 1712 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1713 1714 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1715 return 0; 1716 } 1717 1718 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1719 .enable = tmc_enable_etr_sink, 1720 .disable = tmc_disable_etr_sink, 1721 .alloc_buffer = tmc_alloc_etr_buffer, 1722 .update_buffer = tmc_update_etr_buffer, 1723 .free_buffer = tmc_free_etr_buffer, 1724 }; 1725 1726 const struct coresight_ops tmc_etr_cs_ops = { 1727 .sink_ops = &tmc_etr_sink_ops, 1728 }; 1729 1730 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1731 { 1732 int ret = 0; 1733 unsigned long flags; 1734 1735 /* config types are set a boot time and never change */ 1736 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1737 return -EINVAL; 1738 1739 spin_lock_irqsave(&drvdata->spinlock, flags); 1740 if (drvdata->reading) { 1741 ret = -EBUSY; 1742 goto out; 1743 } 1744 1745 /* 1746 * We can safely allow reads even if the ETR is operating in PERF mode, 1747 * since the sysfs session is captured in mode specific data. 1748 * If drvdata::sysfs_data is NULL the trace data has been read already. 1749 */ 1750 if (!drvdata->sysfs_buf) { 1751 ret = -EINVAL; 1752 goto out; 1753 } 1754 1755 /* Disable the TMC if we are trying to read from a running session. */ 1756 if (drvdata->mode == CS_MODE_SYSFS) 1757 __tmc_etr_disable_hw(drvdata); 1758 1759 drvdata->reading = true; 1760 out: 1761 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1762 1763 return ret; 1764 } 1765 1766 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1767 { 1768 unsigned long flags; 1769 struct etr_buf *sysfs_buf = NULL; 1770 1771 /* config types are set a boot time and never change */ 1772 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1773 return -EINVAL; 1774 1775 spin_lock_irqsave(&drvdata->spinlock, flags); 1776 1777 /* RE-enable the TMC if need be */ 1778 if (drvdata->mode == CS_MODE_SYSFS) { 1779 /* 1780 * The trace run will continue with the same allocated trace 1781 * buffer. Since the tracer is still enabled drvdata::buf can't 1782 * be NULL. 1783 */ 1784 __tmc_etr_enable_hw(drvdata); 1785 } else { 1786 /* 1787 * The ETR is not tracing and the buffer was just read. 1788 * As such prepare to free the trace buffer. 1789 */ 1790 sysfs_buf = drvdata->sysfs_buf; 1791 drvdata->sysfs_buf = NULL; 1792 } 1793 1794 drvdata->reading = false; 1795 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1796 1797 /* Free allocated memory out side of the spinlock */ 1798 if (sysfs_buf) 1799 tmc_etr_free_sysfs_buf(sysfs_buf); 1800 1801 return 0; 1802 } 1803