1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 /* 30 * etr_perf_buffer - Perf buffer used for ETR 31 * @drvdata - The ETR drvdaga this buffer has been allocated for. 32 * @etr_buf - Actual buffer used by the ETR 33 * @pid - The PID this etr_perf_buffer belongs to. 34 * @snaphost - Perf session mode 35 * @nr_pages - Number of pages in the ring buffer. 36 * @pages - Array of Pages in the ring buffer. 37 */ 38 struct etr_perf_buffer { 39 struct tmc_drvdata *drvdata; 40 struct etr_buf *etr_buf; 41 pid_t pid; 42 bool snapshot; 43 int nr_pages; 44 void **pages; 45 }; 46 47 /* Convert the perf index to an offset within the ETR buffer */ 48 #define PERF_IDX2OFF(idx, buf) \ 49 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT)) 50 51 /* Lower limit for ETR hardware buffer */ 52 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 53 54 /* 55 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 56 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 57 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 58 * contain more than one SG buffer and tables. 59 * 60 * A table entry has the following format: 61 * 62 * ---Bit31------------Bit4-------Bit1-----Bit0-- 63 * | Address[39:12] | SBZ | Entry Type | 64 * ---------------------------------------------- 65 * 66 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 67 * always zero. 68 * 69 * Entry type: 70 * b00 - Reserved. 71 * b01 - Last entry in the tables, points to 4K page buffer. 72 * b10 - Normal entry, points to 4K page buffer. 73 * b11 - Link. The address points to the base of next table. 74 */ 75 76 typedef u32 sgte_t; 77 78 #define ETR_SG_PAGE_SHIFT 12 79 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 80 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 81 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 82 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 83 84 #define ETR_SG_ET_MASK 0x3 85 #define ETR_SG_ET_LAST 0x1 86 #define ETR_SG_ET_NORMAL 0x2 87 #define ETR_SG_ET_LINK 0x3 88 89 #define ETR_SG_ADDR_SHIFT 4 90 91 #define ETR_SG_ENTRY(addr, type) \ 92 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 93 (type & ETR_SG_ET_MASK)) 94 95 #define ETR_SG_ADDR(entry) \ 96 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 97 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 98 99 /* 100 * struct etr_sg_table : ETR SG Table 101 * @sg_table: Generic SG Table holding the data/table pages. 102 * @hwaddr: hwaddress used by the TMC, which is the base 103 * address of the table. 104 */ 105 struct etr_sg_table { 106 struct tmc_sg_table *sg_table; 107 dma_addr_t hwaddr; 108 }; 109 110 /* 111 * tmc_etr_sg_table_entries: Total number of table entries required to map 112 * @nr_pages system pages. 113 * 114 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 115 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 116 * with the last entry pointing to another page of table entries. 117 * If we spill over to a new page for mapping 1 entry, we could as 118 * well replace the link entry of the previous page with the last entry. 119 */ 120 static inline unsigned long __attribute_const__ 121 tmc_etr_sg_table_entries(int nr_pages) 122 { 123 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 124 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 125 /* 126 * If we spill over to a new page for 1 entry, we could as well 127 * make it the LAST entry in the previous page, skipping the Link 128 * address. 129 */ 130 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 131 nr_sglinks--; 132 return nr_sgpages + nr_sglinks; 133 } 134 135 /* 136 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 137 * and map the device address @addr to an offset within the virtual 138 * contiguous buffer. 139 */ 140 static long 141 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 142 { 143 int i; 144 dma_addr_t page_start; 145 146 for (i = 0; i < tmc_pages->nr_pages; i++) { 147 page_start = tmc_pages->daddrs[i]; 148 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 149 return i * PAGE_SIZE + (addr - page_start); 150 } 151 152 return -EINVAL; 153 } 154 155 /* 156 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 157 * If the pages were not allocated in tmc_pages_alloc(), we would 158 * simply drop the refcount. 159 */ 160 static void tmc_pages_free(struct tmc_pages *tmc_pages, 161 struct device *dev, enum dma_data_direction dir) 162 { 163 int i; 164 struct device *real_dev = dev->parent; 165 166 for (i = 0; i < tmc_pages->nr_pages; i++) { 167 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 168 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 169 PAGE_SIZE, dir); 170 if (tmc_pages->pages && tmc_pages->pages[i]) 171 __free_page(tmc_pages->pages[i]); 172 } 173 174 kfree(tmc_pages->pages); 175 kfree(tmc_pages->daddrs); 176 tmc_pages->pages = NULL; 177 tmc_pages->daddrs = NULL; 178 tmc_pages->nr_pages = 0; 179 } 180 181 /* 182 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 183 * If @pages is not NULL, the list of page virtual addresses are 184 * used as the data pages. The pages are then dma_map'ed for @dev 185 * with dma_direction @dir. 186 * 187 * Returns 0 upon success, else the error number. 188 */ 189 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 190 struct device *dev, int node, 191 enum dma_data_direction dir, void **pages) 192 { 193 int i, nr_pages; 194 dma_addr_t paddr; 195 struct page *page; 196 struct device *real_dev = dev->parent; 197 198 nr_pages = tmc_pages->nr_pages; 199 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 200 GFP_KERNEL); 201 if (!tmc_pages->daddrs) 202 return -ENOMEM; 203 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 204 GFP_KERNEL); 205 if (!tmc_pages->pages) { 206 kfree(tmc_pages->daddrs); 207 tmc_pages->daddrs = NULL; 208 return -ENOMEM; 209 } 210 211 for (i = 0; i < nr_pages; i++) { 212 if (pages && pages[i]) { 213 page = virt_to_page(pages[i]); 214 /* Hold a refcount on the page */ 215 get_page(page); 216 } else { 217 page = alloc_pages_node(node, 218 GFP_KERNEL | __GFP_ZERO, 0); 219 if (!page) 220 goto err; 221 } 222 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 223 if (dma_mapping_error(real_dev, paddr)) 224 goto err; 225 tmc_pages->daddrs[i] = paddr; 226 tmc_pages->pages[i] = page; 227 } 228 return 0; 229 err: 230 tmc_pages_free(tmc_pages, dev, dir); 231 return -ENOMEM; 232 } 233 234 static inline long 235 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 236 { 237 return tmc_pages_get_offset(&sg_table->data_pages, addr); 238 } 239 240 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 241 { 242 if (sg_table->table_vaddr) 243 vunmap(sg_table->table_vaddr); 244 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 245 } 246 247 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 248 { 249 if (sg_table->data_vaddr) 250 vunmap(sg_table->data_vaddr); 251 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 252 } 253 254 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 255 { 256 tmc_free_table_pages(sg_table); 257 tmc_free_data_pages(sg_table); 258 } 259 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 260 261 /* 262 * Alloc pages for the table. Since this will be used by the device, 263 * allocate the pages closer to the device (i.e, dev_to_node(dev) 264 * rather than the CPU node). 265 */ 266 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 267 { 268 int rc; 269 struct tmc_pages *table_pages = &sg_table->table_pages; 270 271 rc = tmc_pages_alloc(table_pages, sg_table->dev, 272 dev_to_node(sg_table->dev), 273 DMA_TO_DEVICE, NULL); 274 if (rc) 275 return rc; 276 sg_table->table_vaddr = vmap(table_pages->pages, 277 table_pages->nr_pages, 278 VM_MAP, 279 PAGE_KERNEL); 280 if (!sg_table->table_vaddr) 281 rc = -ENOMEM; 282 else 283 sg_table->table_daddr = table_pages->daddrs[0]; 284 return rc; 285 } 286 287 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 288 { 289 int rc; 290 291 /* Allocate data pages on the node requested by the caller */ 292 rc = tmc_pages_alloc(&sg_table->data_pages, 293 sg_table->dev, sg_table->node, 294 DMA_FROM_DEVICE, pages); 295 if (!rc) { 296 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 297 sg_table->data_pages.nr_pages, 298 VM_MAP, 299 PAGE_KERNEL); 300 if (!sg_table->data_vaddr) 301 rc = -ENOMEM; 302 } 303 return rc; 304 } 305 306 /* 307 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 308 * and data buffers. TMC writes to the data buffers and reads from the SG 309 * Table pages. 310 * 311 * @dev - Coresight device to which page should be DMA mapped. 312 * @node - Numa node for mem allocations 313 * @nr_tpages - Number of pages for the table entries. 314 * @nr_dpages - Number of pages for Data buffer. 315 * @pages - Optional list of virtual address of pages. 316 */ 317 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 318 int node, 319 int nr_tpages, 320 int nr_dpages, 321 void **pages) 322 { 323 long rc; 324 struct tmc_sg_table *sg_table; 325 326 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 327 if (!sg_table) 328 return ERR_PTR(-ENOMEM); 329 sg_table->data_pages.nr_pages = nr_dpages; 330 sg_table->table_pages.nr_pages = nr_tpages; 331 sg_table->node = node; 332 sg_table->dev = dev; 333 334 rc = tmc_alloc_data_pages(sg_table, pages); 335 if (!rc) 336 rc = tmc_alloc_table_pages(sg_table); 337 if (rc) { 338 tmc_free_sg_table(sg_table); 339 kfree(sg_table); 340 return ERR_PTR(rc); 341 } 342 343 return sg_table; 344 } 345 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 346 347 /* 348 * tmc_sg_table_sync_data_range: Sync the data buffer written 349 * by the device from @offset upto a @size bytes. 350 */ 351 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 352 u64 offset, u64 size) 353 { 354 int i, index, start; 355 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 356 struct device *real_dev = table->dev->parent; 357 struct tmc_pages *data = &table->data_pages; 358 359 start = offset >> PAGE_SHIFT; 360 for (i = start; i < (start + npages); i++) { 361 index = i % data->nr_pages; 362 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 363 PAGE_SIZE, DMA_FROM_DEVICE); 364 } 365 } 366 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 367 368 /* tmc_sg_sync_table: Sync the page table */ 369 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 370 { 371 int i; 372 struct device *real_dev = sg_table->dev->parent; 373 struct tmc_pages *table_pages = &sg_table->table_pages; 374 375 for (i = 0; i < table_pages->nr_pages; i++) 376 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 377 PAGE_SIZE, DMA_TO_DEVICE); 378 } 379 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 380 381 /* 382 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 383 * in the SG buffer. The @bufpp is updated to point to the buffer. 384 * Returns : 385 * the length of linear data available at @offset. 386 * or 387 * <= 0 if no data is available. 388 */ 389 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 390 u64 offset, size_t len, char **bufpp) 391 { 392 size_t size; 393 int pg_idx = offset >> PAGE_SHIFT; 394 int pg_offset = offset & (PAGE_SIZE - 1); 395 struct tmc_pages *data_pages = &sg_table->data_pages; 396 397 size = tmc_sg_table_buf_size(sg_table); 398 if (offset >= size) 399 return -EINVAL; 400 401 /* Make sure we don't go beyond the end */ 402 len = (len < (size - offset)) ? len : size - offset; 403 /* Respect the page boundaries */ 404 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 405 if (len > 0) 406 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 407 return len; 408 } 409 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 410 411 #ifdef ETR_SG_DEBUG 412 /* Map a dma address to virtual address */ 413 static unsigned long 414 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 415 dma_addr_t addr, bool table) 416 { 417 long offset; 418 unsigned long base; 419 struct tmc_pages *tmc_pages; 420 421 if (table) { 422 tmc_pages = &sg_table->table_pages; 423 base = (unsigned long)sg_table->table_vaddr; 424 } else { 425 tmc_pages = &sg_table->data_pages; 426 base = (unsigned long)sg_table->data_vaddr; 427 } 428 429 offset = tmc_pages_get_offset(tmc_pages, addr); 430 if (offset < 0) 431 return 0; 432 return base + offset; 433 } 434 435 /* Dump the given sg_table */ 436 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 437 { 438 sgte_t *ptr; 439 int i = 0; 440 dma_addr_t addr; 441 struct tmc_sg_table *sg_table = etr_table->sg_table; 442 443 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 444 etr_table->hwaddr, true); 445 while (ptr) { 446 addr = ETR_SG_ADDR(*ptr); 447 switch (ETR_SG_ET(*ptr)) { 448 case ETR_SG_ET_NORMAL: 449 dev_dbg(sg_table->dev, 450 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 451 ptr++; 452 break; 453 case ETR_SG_ET_LINK: 454 dev_dbg(sg_table->dev, 455 "%05d: *** %p\t:{L} 0x%llx ***\n", 456 i, ptr, addr); 457 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 458 addr, true); 459 break; 460 case ETR_SG_ET_LAST: 461 dev_dbg(sg_table->dev, 462 "%05d: ### %p\t:[L] 0x%llx ###\n", 463 i, ptr, addr); 464 return; 465 default: 466 dev_dbg(sg_table->dev, 467 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 468 i, ptr, addr); 469 return; 470 } 471 i++; 472 } 473 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 474 } 475 #else 476 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 477 #endif 478 479 /* 480 * Populate the SG Table page table entries from table/data 481 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 482 * So does a Table page. So we keep track of indices of the tables 483 * in each system page and move the pointers accordingly. 484 */ 485 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 486 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 487 { 488 dma_addr_t paddr; 489 int i, type, nr_entries; 490 int tpidx = 0; /* index to the current system table_page */ 491 int sgtidx = 0; /* index to the sg_table within the current syspage */ 492 int sgtentry = 0; /* the entry within the sg_table */ 493 int dpidx = 0; /* index to the current system data_page */ 494 int spidx = 0; /* index to the SG page within the current data page */ 495 sgte_t *ptr; /* pointer to the table entry to fill */ 496 struct tmc_sg_table *sg_table = etr_table->sg_table; 497 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 498 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 499 500 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 501 /* 502 * Use the contiguous virtual address of the table to update entries. 503 */ 504 ptr = sg_table->table_vaddr; 505 /* 506 * Fill all the entries, except the last entry to avoid special 507 * checks within the loop. 508 */ 509 for (i = 0; i < nr_entries - 1; i++) { 510 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 511 /* 512 * Last entry in a sg_table page is a link address to 513 * the next table page. If this sg_table is the last 514 * one in the system page, it links to the first 515 * sg_table in the next system page. Otherwise, it 516 * links to the next sg_table page within the system 517 * page. 518 */ 519 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 520 paddr = table_daddrs[tpidx + 1]; 521 } else { 522 paddr = table_daddrs[tpidx] + 523 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 524 } 525 type = ETR_SG_ET_LINK; 526 } else { 527 /* 528 * Update the indices to the data_pages to point to the 529 * next sg_page in the data buffer. 530 */ 531 type = ETR_SG_ET_NORMAL; 532 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 533 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 534 dpidx++; 535 } 536 *ptr++ = ETR_SG_ENTRY(paddr, type); 537 /* 538 * Move to the next table pointer, moving the table page index 539 * if necessary 540 */ 541 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 542 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 543 tpidx++; 544 } 545 } 546 547 /* Set up the last entry, which is always a data pointer */ 548 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 549 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 550 } 551 552 /* 553 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 554 * populate the table. 555 * 556 * @dev - Device pointer for the TMC 557 * @node - NUMA node where the memory should be allocated 558 * @size - Total size of the data buffer 559 * @pages - Optional list of page virtual address 560 */ 561 static struct etr_sg_table * 562 tmc_init_etr_sg_table(struct device *dev, int node, 563 unsigned long size, void **pages) 564 { 565 int nr_entries, nr_tpages; 566 int nr_dpages = size >> PAGE_SHIFT; 567 struct tmc_sg_table *sg_table; 568 struct etr_sg_table *etr_table; 569 570 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 571 if (!etr_table) 572 return ERR_PTR(-ENOMEM); 573 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 574 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 575 576 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 577 if (IS_ERR(sg_table)) { 578 kfree(etr_table); 579 return ERR_CAST(sg_table); 580 } 581 582 etr_table->sg_table = sg_table; 583 /* TMC should use table base address for DBA */ 584 etr_table->hwaddr = sg_table->table_daddr; 585 tmc_etr_sg_table_populate(etr_table); 586 /* Sync the table pages for the HW */ 587 tmc_sg_table_sync_table(sg_table); 588 tmc_etr_sg_table_dump(etr_table); 589 590 return etr_table; 591 } 592 593 /* 594 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 595 */ 596 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 597 struct etr_buf *etr_buf, int node, 598 void **pages) 599 { 600 struct etr_flat_buf *flat_buf; 601 struct device *real_dev = drvdata->csdev->dev.parent; 602 603 /* We cannot reuse existing pages for flat buf */ 604 if (pages) 605 return -EINVAL; 606 607 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 608 if (!flat_buf) 609 return -ENOMEM; 610 611 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 612 &flat_buf->daddr, 613 DMA_FROM_DEVICE, GFP_KERNEL); 614 if (!flat_buf->vaddr) { 615 kfree(flat_buf); 616 return -ENOMEM; 617 } 618 619 flat_buf->size = etr_buf->size; 620 flat_buf->dev = &drvdata->csdev->dev; 621 etr_buf->hwaddr = flat_buf->daddr; 622 etr_buf->mode = ETR_MODE_FLAT; 623 etr_buf->private = flat_buf; 624 return 0; 625 } 626 627 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 628 { 629 struct etr_flat_buf *flat_buf = etr_buf->private; 630 631 if (flat_buf && flat_buf->daddr) { 632 struct device *real_dev = flat_buf->dev->parent; 633 634 dma_free_noncoherent(real_dev, etr_buf->size, 635 flat_buf->vaddr, flat_buf->daddr, 636 DMA_FROM_DEVICE); 637 } 638 kfree(flat_buf); 639 } 640 641 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 642 { 643 struct etr_flat_buf *flat_buf = etr_buf->private; 644 struct device *real_dev = flat_buf->dev->parent; 645 646 /* 647 * Adjust the buffer to point to the beginning of the trace data 648 * and update the available trace data. 649 */ 650 etr_buf->offset = rrp - etr_buf->hwaddr; 651 if (etr_buf->full) 652 etr_buf->len = etr_buf->size; 653 else 654 etr_buf->len = rwp - rrp; 655 656 /* 657 * The driver always starts tracing at the beginning of the buffer, 658 * the only reason why we would get a wrap around is when the buffer 659 * is full. Sync the entire buffer in one go for this case. 660 */ 661 if (etr_buf->offset + etr_buf->len > etr_buf->size) 662 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 663 etr_buf->size, DMA_FROM_DEVICE); 664 else 665 dma_sync_single_for_cpu(real_dev, 666 flat_buf->daddr + etr_buf->offset, 667 etr_buf->len, DMA_FROM_DEVICE); 668 } 669 670 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 671 u64 offset, size_t len, char **bufpp) 672 { 673 struct etr_flat_buf *flat_buf = etr_buf->private; 674 675 *bufpp = (char *)flat_buf->vaddr + offset; 676 /* 677 * tmc_etr_buf_get_data already adjusts the length to handle 678 * buffer wrapping around. 679 */ 680 return len; 681 } 682 683 static const struct etr_buf_operations etr_flat_buf_ops = { 684 .alloc = tmc_etr_alloc_flat_buf, 685 .free = tmc_etr_free_flat_buf, 686 .sync = tmc_etr_sync_flat_buf, 687 .get_data = tmc_etr_get_data_flat_buf, 688 }; 689 690 /* 691 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 692 * appropriately. 693 */ 694 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 695 struct etr_buf *etr_buf, int node, 696 void **pages) 697 { 698 struct etr_sg_table *etr_table; 699 struct device *dev = &drvdata->csdev->dev; 700 701 etr_table = tmc_init_etr_sg_table(dev, node, 702 etr_buf->size, pages); 703 if (IS_ERR(etr_table)) 704 return -ENOMEM; 705 etr_buf->hwaddr = etr_table->hwaddr; 706 etr_buf->mode = ETR_MODE_ETR_SG; 707 etr_buf->private = etr_table; 708 return 0; 709 } 710 711 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 712 { 713 struct etr_sg_table *etr_table = etr_buf->private; 714 715 if (etr_table) { 716 tmc_free_sg_table(etr_table->sg_table); 717 kfree(etr_table); 718 } 719 } 720 721 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 722 size_t len, char **bufpp) 723 { 724 struct etr_sg_table *etr_table = etr_buf->private; 725 726 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 727 } 728 729 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 730 { 731 long r_offset, w_offset; 732 struct etr_sg_table *etr_table = etr_buf->private; 733 struct tmc_sg_table *table = etr_table->sg_table; 734 735 /* Convert hw address to offset in the buffer */ 736 r_offset = tmc_sg_get_data_page_offset(table, rrp); 737 if (r_offset < 0) { 738 dev_warn(table->dev, 739 "Unable to map RRP %llx to offset\n", rrp); 740 etr_buf->len = 0; 741 return; 742 } 743 744 w_offset = tmc_sg_get_data_page_offset(table, rwp); 745 if (w_offset < 0) { 746 dev_warn(table->dev, 747 "Unable to map RWP %llx to offset\n", rwp); 748 etr_buf->len = 0; 749 return; 750 } 751 752 etr_buf->offset = r_offset; 753 if (etr_buf->full) 754 etr_buf->len = etr_buf->size; 755 else 756 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 757 w_offset - r_offset; 758 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 759 } 760 761 static const struct etr_buf_operations etr_sg_buf_ops = { 762 .alloc = tmc_etr_alloc_sg_buf, 763 .free = tmc_etr_free_sg_buf, 764 .sync = tmc_etr_sync_sg_buf, 765 .get_data = tmc_etr_get_data_sg_buf, 766 }; 767 768 /* 769 * TMC ETR could be connected to a CATU device, which can provide address 770 * translation service. This is represented by the Output port of the TMC 771 * (ETR) connected to the input port of the CATU. 772 * 773 * Returns : coresight_device ptr for the CATU device if a CATU is found. 774 * : NULL otherwise. 775 */ 776 struct coresight_device * 777 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 778 { 779 struct coresight_device *etr = drvdata->csdev; 780 union coresight_dev_subtype catu_subtype = { 781 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU 782 }; 783 784 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 785 return NULL; 786 787 return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER, 788 catu_subtype); 789 } 790 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 791 792 static const struct etr_buf_operations *etr_buf_ops[] = { 793 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 794 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 795 [ETR_MODE_CATU] = NULL, 796 }; 797 798 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 799 { 800 etr_buf_ops[ETR_MODE_CATU] = catu; 801 } 802 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 803 804 void tmc_etr_remove_catu_ops(void) 805 { 806 etr_buf_ops[ETR_MODE_CATU] = NULL; 807 } 808 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 809 810 static inline int tmc_etr_mode_alloc_buf(int mode, 811 struct tmc_drvdata *drvdata, 812 struct etr_buf *etr_buf, int node, 813 void **pages) 814 { 815 int rc = -EINVAL; 816 817 switch (mode) { 818 case ETR_MODE_FLAT: 819 case ETR_MODE_ETR_SG: 820 case ETR_MODE_CATU: 821 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 822 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 823 node, pages); 824 if (!rc) 825 etr_buf->ops = etr_buf_ops[mode]; 826 return rc; 827 default: 828 return -EINVAL; 829 } 830 } 831 832 /* 833 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 834 * @drvdata : ETR device details. 835 * @size : size of the requested buffer. 836 * @flags : Required properties for the buffer. 837 * @node : Node for memory allocations. 838 * @pages : An optional list of pages. 839 */ 840 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 841 ssize_t size, int flags, 842 int node, void **pages) 843 { 844 int rc = -ENOMEM; 845 bool has_etr_sg, has_iommu; 846 bool has_sg, has_catu; 847 struct etr_buf *etr_buf; 848 struct device *dev = &drvdata->csdev->dev; 849 850 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 851 has_iommu = iommu_get_domain_for_dev(dev->parent); 852 has_catu = !!tmc_etr_get_catu_device(drvdata); 853 854 has_sg = has_catu || has_etr_sg; 855 856 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 857 if (!etr_buf) 858 return ERR_PTR(-ENOMEM); 859 860 etr_buf->size = size; 861 862 /* 863 * If we have to use an existing list of pages, we cannot reliably 864 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 865 * we use the contiguous DMA memory if at least one of the following 866 * conditions is true: 867 * a) The ETR cannot use Scatter-Gather. 868 * b) we have a backing IOMMU 869 * c) The requested memory size is smaller (< 1M). 870 * 871 * Fallback to available mechanisms. 872 * 873 */ 874 if (!pages && 875 (!has_sg || has_iommu || size < SZ_1M)) 876 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 877 etr_buf, node, pages); 878 if (rc && has_etr_sg) 879 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 880 etr_buf, node, pages); 881 if (rc && has_catu) 882 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 883 etr_buf, node, pages); 884 if (rc) { 885 kfree(etr_buf); 886 return ERR_PTR(rc); 887 } 888 889 refcount_set(&etr_buf->refcount, 1); 890 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 891 (unsigned long)size >> 10, etr_buf->mode); 892 return etr_buf; 893 } 894 895 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 896 { 897 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 898 etr_buf->ops->free(etr_buf); 899 kfree(etr_buf); 900 } 901 902 /* 903 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 904 * with a maximum of @len bytes. 905 * Returns: The size of the linear data available @pos, with *bufpp 906 * updated to point to the buffer. 907 */ 908 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 909 u64 offset, size_t len, char **bufpp) 910 { 911 /* Adjust the length to limit this transaction to end of buffer */ 912 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 913 914 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 915 } 916 917 static inline s64 918 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 919 { 920 ssize_t len; 921 char *bufp; 922 923 len = tmc_etr_buf_get_data(etr_buf, offset, 924 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 925 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) 926 return -EINVAL; 927 coresight_insert_barrier_packet(bufp); 928 return offset + CORESIGHT_BARRIER_PKT_SIZE; 929 } 930 931 /* 932 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 933 * Makes sure the trace data is synced to the memory for consumption. 934 * @etr_buf->offset will hold the offset to the beginning of the trace data 935 * within the buffer, with @etr_buf->len bytes to consume. 936 */ 937 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 938 { 939 struct etr_buf *etr_buf = drvdata->etr_buf; 940 u64 rrp, rwp; 941 u32 status; 942 943 rrp = tmc_read_rrp(drvdata); 944 rwp = tmc_read_rwp(drvdata); 945 status = readl_relaxed(drvdata->base + TMC_STS); 946 947 /* 948 * If there were memory errors in the session, truncate the 949 * buffer. 950 */ 951 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 952 dev_dbg(&drvdata->csdev->dev, 953 "tmc memory error detected, truncating buffer\n"); 954 etr_buf->len = 0; 955 etr_buf->full = false; 956 return; 957 } 958 959 etr_buf->full = !!(status & TMC_STS_FULL); 960 961 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 962 963 etr_buf->ops->sync(etr_buf, rrp, rwp); 964 } 965 966 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 967 { 968 u32 axictl, sts; 969 struct etr_buf *etr_buf = drvdata->etr_buf; 970 int rc = 0; 971 972 CS_UNLOCK(drvdata->base); 973 974 /* Wait for TMCSReady bit to be set */ 975 rc = tmc_wait_for_tmcready(drvdata); 976 if (rc) { 977 dev_err(&drvdata->csdev->dev, 978 "Failed to enable : TMC not ready\n"); 979 CS_LOCK(drvdata->base); 980 return rc; 981 } 982 983 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 984 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 985 986 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 987 axictl &= ~TMC_AXICTL_CLEAR_MASK; 988 axictl |= TMC_AXICTL_PROT_CTL_B1; 989 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 990 axictl |= TMC_AXICTL_AXCACHE_OS; 991 992 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 993 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 994 axictl |= TMC_AXICTL_ARCACHE_OS; 995 } 996 997 if (etr_buf->mode == ETR_MODE_ETR_SG) 998 axictl |= TMC_AXICTL_SCT_GAT_MODE; 999 1000 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1001 tmc_write_dba(drvdata, etr_buf->hwaddr); 1002 /* 1003 * If the TMC pointers must be programmed before the session, 1004 * we have to set it properly (i.e, RRP/RWP to base address and 1005 * STS to "not full"). 1006 */ 1007 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1008 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1009 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1010 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1011 writel_relaxed(sts, drvdata->base + TMC_STS); 1012 } 1013 1014 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1015 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1016 TMC_FFCR_TRIGON_TRIGIN, 1017 drvdata->base + TMC_FFCR); 1018 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1019 tmc_enable_hw(drvdata); 1020 1021 CS_LOCK(drvdata->base); 1022 return rc; 1023 } 1024 1025 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1026 struct etr_buf *etr_buf) 1027 { 1028 int rc; 1029 1030 /* Callers should provide an appropriate buffer for use */ 1031 if (WARN_ON(!etr_buf)) 1032 return -EINVAL; 1033 1034 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1035 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1036 return -EINVAL; 1037 1038 if (WARN_ON(drvdata->etr_buf)) 1039 return -EBUSY; 1040 1041 rc = coresight_claim_device(drvdata->csdev); 1042 if (!rc) { 1043 drvdata->etr_buf = etr_buf; 1044 rc = __tmc_etr_enable_hw(drvdata); 1045 if (rc) { 1046 drvdata->etr_buf = NULL; 1047 coresight_disclaim_device(drvdata->csdev); 1048 } 1049 } 1050 1051 return rc; 1052 } 1053 1054 /* 1055 * Return the available trace data in the buffer (starts at etr_buf->offset, 1056 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1057 * also updating the @bufpp on where to find it. Since the trace data 1058 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1059 * @len returned to handle buffer wrapping around. 1060 * 1061 * We are protected here by drvdata->reading != 0, which ensures the 1062 * sysfs_buf stays alive. 1063 */ 1064 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1065 loff_t pos, size_t len, char **bufpp) 1066 { 1067 s64 offset; 1068 ssize_t actual = len; 1069 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1070 1071 if (pos + actual > etr_buf->len) 1072 actual = etr_buf->len - pos; 1073 if (actual <= 0) 1074 return actual; 1075 1076 /* Compute the offset from which we read the data */ 1077 offset = etr_buf->offset + pos; 1078 if (offset >= etr_buf->size) 1079 offset -= etr_buf->size; 1080 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1081 } 1082 1083 static struct etr_buf * 1084 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1085 { 1086 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1087 0, cpu_to_node(0), NULL); 1088 } 1089 1090 static void 1091 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1092 { 1093 if (buf) 1094 tmc_free_etr_buf(buf); 1095 } 1096 1097 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1098 { 1099 struct etr_buf *etr_buf = drvdata->etr_buf; 1100 1101 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1102 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1103 drvdata->sysfs_buf = NULL; 1104 } else { 1105 tmc_sync_etr_buf(drvdata); 1106 /* 1107 * Insert barrier packets at the beginning, if there was 1108 * an overflow. 1109 */ 1110 if (etr_buf->full) 1111 tmc_etr_buf_insert_barrier_packet(etr_buf, 1112 etr_buf->offset); 1113 } 1114 } 1115 1116 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1117 { 1118 CS_UNLOCK(drvdata->base); 1119 1120 tmc_flush_and_stop(drvdata); 1121 /* 1122 * When operating in sysFS mode the content of the buffer needs to be 1123 * read before the TMC is disabled. 1124 */ 1125 if (drvdata->mode == CS_MODE_SYSFS) 1126 tmc_etr_sync_sysfs_buf(drvdata); 1127 1128 tmc_disable_hw(drvdata); 1129 1130 CS_LOCK(drvdata->base); 1131 1132 } 1133 1134 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1135 { 1136 __tmc_etr_disable_hw(drvdata); 1137 coresight_disclaim_device(drvdata->csdev); 1138 /* Reset the ETR buf used by hardware */ 1139 drvdata->etr_buf = NULL; 1140 } 1141 1142 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev) 1143 { 1144 int ret = 0; 1145 unsigned long flags; 1146 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1147 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1148 1149 /* 1150 * If we are enabling the ETR from disabled state, we need to make 1151 * sure we have a buffer with the right size. The etr_buf is not reset 1152 * immediately after we stop the tracing in SYSFS mode as we wait for 1153 * the user to collect the data. We may be able to reuse the existing 1154 * buffer, provided the size matches. Any allocation has to be done 1155 * with the lock released. 1156 */ 1157 spin_lock_irqsave(&drvdata->spinlock, flags); 1158 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1159 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1160 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1161 1162 /* Allocate memory with the locks released */ 1163 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1164 if (IS_ERR(new_buf)) 1165 return new_buf; 1166 1167 /* Let's try again */ 1168 spin_lock_irqsave(&drvdata->spinlock, flags); 1169 } 1170 1171 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1172 ret = -EBUSY; 1173 goto out; 1174 } 1175 1176 /* 1177 * In sysFS mode we can have multiple writers per sink. Since this 1178 * sink is already enabled no memory is needed and the HW need not be 1179 * touched, even if the buffer size has changed. 1180 */ 1181 if (drvdata->mode == CS_MODE_SYSFS) { 1182 atomic_inc(&csdev->refcnt); 1183 goto out; 1184 } 1185 1186 /* 1187 * If we don't have a buffer or it doesn't match the requested size, 1188 * use the buffer allocated above. Otherwise reuse the existing buffer. 1189 */ 1190 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1191 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1192 free_buf = sysfs_buf; 1193 drvdata->sysfs_buf = new_buf; 1194 } 1195 1196 out: 1197 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1198 1199 /* Free memory outside the spinlock if need be */ 1200 if (free_buf) 1201 tmc_etr_free_sysfs_buf(free_buf); 1202 return ret ? ERR_PTR(ret) : drvdata->sysfs_buf; 1203 } 1204 1205 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1206 { 1207 int ret; 1208 unsigned long flags; 1209 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1210 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev); 1211 1212 if (IS_ERR(sysfs_buf)) 1213 return PTR_ERR(sysfs_buf); 1214 1215 spin_lock_irqsave(&drvdata->spinlock, flags); 1216 ret = tmc_etr_enable_hw(drvdata, sysfs_buf); 1217 if (!ret) { 1218 drvdata->mode = CS_MODE_SYSFS; 1219 atomic_inc(&csdev->refcnt); 1220 } 1221 1222 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1223 1224 if (!ret) 1225 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1226 1227 return ret; 1228 } 1229 1230 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev, 1231 enum cs_mode mode, void *data) 1232 { 1233 struct perf_output_handle *handle = data; 1234 struct etr_perf_buffer *etr_perf; 1235 1236 switch (mode) { 1237 case CS_MODE_SYSFS: 1238 return tmc_etr_get_sysfs_buffer(csdev); 1239 case CS_MODE_PERF: 1240 etr_perf = etm_perf_sink_config(handle); 1241 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) 1242 return ERR_PTR(-EINVAL); 1243 return etr_perf->etr_buf; 1244 default: 1245 return ERR_PTR(-EINVAL); 1246 } 1247 } 1248 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer); 1249 1250 /* 1251 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1252 * The size of the hardware buffer is dependent on the size configured 1253 * via sysfs and the perf ring buffer size. We prefer to allocate the 1254 * largest possible size, scaling down the size by half until it 1255 * reaches a minimum limit (1M), beyond which we give up. 1256 */ 1257 static struct etr_buf * 1258 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1259 int nr_pages, void **pages, bool snapshot) 1260 { 1261 int node; 1262 struct etr_buf *etr_buf; 1263 unsigned long size; 1264 1265 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1266 /* 1267 * Try to match the perf ring buffer size if it is larger 1268 * than the size requested via sysfs. 1269 */ 1270 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1271 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT), 1272 0, node, NULL); 1273 if (!IS_ERR(etr_buf)) 1274 goto done; 1275 } 1276 1277 /* 1278 * Else switch to configured size for this ETR 1279 * and scale down until we hit the minimum limit. 1280 */ 1281 size = drvdata->size; 1282 do { 1283 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1284 if (!IS_ERR(etr_buf)) 1285 goto done; 1286 size /= 2; 1287 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1288 1289 return ERR_PTR(-ENOMEM); 1290 1291 done: 1292 return etr_buf; 1293 } 1294 1295 static struct etr_buf * 1296 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1297 struct perf_event *event, int nr_pages, 1298 void **pages, bool snapshot) 1299 { 1300 int ret; 1301 pid_t pid = task_pid_nr(event->owner); 1302 struct etr_buf *etr_buf; 1303 1304 retry: 1305 /* 1306 * An etr_perf_buffer is associated with an event and holds a reference 1307 * to the AUX ring buffer that was created for that event. In CPU-wide 1308 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1309 * buffer, share a sink. As such an etr_perf_buffer is created for each 1310 * event but a single etr_buf associated with the ETR is shared between 1311 * them. The last event in a trace session will copy the content of the 1312 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1313 * events are simply not used an freed as events are destoyed. We still 1314 * need to allocate a ring buffer for each event since we don't know 1315 * which event will be last. 1316 */ 1317 1318 /* 1319 * The first thing to do here is check if an etr_buf has already been 1320 * allocated for this session. If so it is shared with this event, 1321 * otherwise it is created. 1322 */ 1323 mutex_lock(&drvdata->idr_mutex); 1324 etr_buf = idr_find(&drvdata->idr, pid); 1325 if (etr_buf) { 1326 refcount_inc(&etr_buf->refcount); 1327 mutex_unlock(&drvdata->idr_mutex); 1328 return etr_buf; 1329 } 1330 1331 /* If we made it here no buffer has been allocated, do so now. */ 1332 mutex_unlock(&drvdata->idr_mutex); 1333 1334 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1335 if (IS_ERR(etr_buf)) 1336 return etr_buf; 1337 1338 /* Now that we have a buffer, add it to the IDR. */ 1339 mutex_lock(&drvdata->idr_mutex); 1340 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1341 mutex_unlock(&drvdata->idr_mutex); 1342 1343 /* Another event with this session ID has allocated this buffer. */ 1344 if (ret == -ENOSPC) { 1345 tmc_free_etr_buf(etr_buf); 1346 goto retry; 1347 } 1348 1349 /* The IDR can't allocate room for a new session, abandon ship. */ 1350 if (ret == -ENOMEM) { 1351 tmc_free_etr_buf(etr_buf); 1352 return ERR_PTR(ret); 1353 } 1354 1355 1356 return etr_buf; 1357 } 1358 1359 static struct etr_buf * 1360 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1361 struct perf_event *event, int nr_pages, 1362 void **pages, bool snapshot) 1363 { 1364 /* 1365 * In per-thread mode the etr_buf isn't shared, so just go ahead 1366 * with memory allocation. 1367 */ 1368 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1369 } 1370 1371 static struct etr_buf * 1372 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1373 int nr_pages, void **pages, bool snapshot) 1374 { 1375 if (event->cpu == -1) 1376 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1377 pages, snapshot); 1378 1379 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1380 pages, snapshot); 1381 } 1382 1383 static struct etr_perf_buffer * 1384 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1385 int nr_pages, void **pages, bool snapshot) 1386 { 1387 int node; 1388 struct etr_buf *etr_buf; 1389 struct etr_perf_buffer *etr_perf; 1390 1391 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1392 1393 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1394 if (!etr_perf) 1395 return ERR_PTR(-ENOMEM); 1396 1397 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1398 if (!IS_ERR(etr_buf)) 1399 goto done; 1400 1401 kfree(etr_perf); 1402 return ERR_PTR(-ENOMEM); 1403 1404 done: 1405 /* 1406 * Keep a reference to the ETR this buffer has been allocated for 1407 * in order to have access to the IDR in tmc_free_etr_buffer(). 1408 */ 1409 etr_perf->drvdata = drvdata; 1410 etr_perf->etr_buf = etr_buf; 1411 1412 return etr_perf; 1413 } 1414 1415 1416 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1417 struct perf_event *event, void **pages, 1418 int nr_pages, bool snapshot) 1419 { 1420 struct etr_perf_buffer *etr_perf; 1421 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1422 1423 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1424 nr_pages, pages, snapshot); 1425 if (IS_ERR(etr_perf)) { 1426 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1427 return NULL; 1428 } 1429 1430 etr_perf->pid = task_pid_nr(event->owner); 1431 etr_perf->snapshot = snapshot; 1432 etr_perf->nr_pages = nr_pages; 1433 etr_perf->pages = pages; 1434 1435 return etr_perf; 1436 } 1437 1438 static void tmc_free_etr_buffer(void *config) 1439 { 1440 struct etr_perf_buffer *etr_perf = config; 1441 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1442 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1443 1444 if (!etr_buf) 1445 goto free_etr_perf_buffer; 1446 1447 mutex_lock(&drvdata->idr_mutex); 1448 /* If we are not the last one to use the buffer, don't touch it. */ 1449 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1450 mutex_unlock(&drvdata->idr_mutex); 1451 goto free_etr_perf_buffer; 1452 } 1453 1454 /* We are the last one, remove from the IDR and free the buffer. */ 1455 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1456 mutex_unlock(&drvdata->idr_mutex); 1457 1458 /* 1459 * Something went very wrong if the buffer associated with this ID 1460 * is not the same in the IDR. Leak to avoid use after free. 1461 */ 1462 if (buf && WARN_ON(buf != etr_buf)) 1463 goto free_etr_perf_buffer; 1464 1465 tmc_free_etr_buf(etr_perf->etr_buf); 1466 1467 free_etr_perf_buffer: 1468 kfree(etr_perf); 1469 } 1470 1471 /* 1472 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1473 * buffer to the perf ring buffer. 1474 */ 1475 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1476 unsigned long head, 1477 unsigned long src_offset, 1478 unsigned long to_copy) 1479 { 1480 long bytes; 1481 long pg_idx, pg_offset; 1482 char **dst_pages, *src_buf; 1483 struct etr_buf *etr_buf = etr_perf->etr_buf; 1484 1485 head = PERF_IDX2OFF(head, etr_perf); 1486 pg_idx = head >> PAGE_SHIFT; 1487 pg_offset = head & (PAGE_SIZE - 1); 1488 dst_pages = (char **)etr_perf->pages; 1489 1490 while (to_copy > 0) { 1491 /* 1492 * In one iteration, we can copy minimum of : 1493 * 1) what is available in the source buffer, 1494 * 2) what is available in the source buffer, before it 1495 * wraps around. 1496 * 3) what is available in the destination page. 1497 * in one iteration. 1498 */ 1499 if (src_offset >= etr_buf->size) 1500 src_offset -= etr_buf->size; 1501 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1502 &src_buf); 1503 if (WARN_ON_ONCE(bytes <= 0)) 1504 break; 1505 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1506 1507 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1508 1509 to_copy -= bytes; 1510 1511 /* Move destination pointers */ 1512 pg_offset += bytes; 1513 if (pg_offset == PAGE_SIZE) { 1514 pg_offset = 0; 1515 if (++pg_idx == etr_perf->nr_pages) 1516 pg_idx = 0; 1517 } 1518 1519 /* Move source pointers */ 1520 src_offset += bytes; 1521 } 1522 } 1523 1524 /* 1525 * tmc_update_etr_buffer : Update the perf ring buffer with the 1526 * available trace data. We use software double buffering at the moment. 1527 * 1528 * TODO: Add support for reusing the perf ring buffer. 1529 */ 1530 static unsigned long 1531 tmc_update_etr_buffer(struct coresight_device *csdev, 1532 struct perf_output_handle *handle, 1533 void *config) 1534 { 1535 bool lost = false; 1536 unsigned long flags, offset, size = 0; 1537 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1538 struct etr_perf_buffer *etr_perf = config; 1539 struct etr_buf *etr_buf = etr_perf->etr_buf; 1540 1541 spin_lock_irqsave(&drvdata->spinlock, flags); 1542 1543 /* Don't do anything if another tracer is using this sink */ 1544 if (atomic_read(&csdev->refcnt) != 1) { 1545 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1546 goto out; 1547 } 1548 1549 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1550 lost = true; 1551 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1552 goto out; 1553 } 1554 1555 CS_UNLOCK(drvdata->base); 1556 1557 tmc_flush_and_stop(drvdata); 1558 tmc_sync_etr_buf(drvdata); 1559 1560 CS_LOCK(drvdata->base); 1561 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1562 1563 lost = etr_buf->full; 1564 offset = etr_buf->offset; 1565 size = etr_buf->len; 1566 1567 /* 1568 * The ETR buffer may be bigger than the space available in the 1569 * perf ring buffer (handle->size). If so advance the offset so that we 1570 * get the latest trace data. In snapshot mode none of that matters 1571 * since we are expected to clobber stale data in favour of the latest 1572 * traces. 1573 */ 1574 if (!etr_perf->snapshot && size > handle->size) { 1575 u32 mask = tmc_get_memwidth_mask(drvdata); 1576 1577 /* 1578 * Make sure the new size is aligned in accordance with the 1579 * requirement explained in function tmc_get_memwidth_mask(). 1580 */ 1581 size = handle->size & mask; 1582 offset = etr_buf->offset + etr_buf->len - size; 1583 1584 if (offset >= etr_buf->size) 1585 offset -= etr_buf->size; 1586 lost = true; 1587 } 1588 1589 /* Insert barrier packets at the beginning, if there was an overflow */ 1590 if (lost) 1591 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1592 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1593 1594 /* 1595 * In snapshot mode we simply increment the head by the number of byte 1596 * that were written. User space will figure out how many bytes to get 1597 * from the AUX buffer based on the position of the head. 1598 */ 1599 if (etr_perf->snapshot) 1600 handle->head += size; 1601 1602 /* 1603 * Ensure that the AUX trace data is visible before the aux_head 1604 * is updated via perf_aux_output_end(), as expected by the 1605 * perf ring buffer. 1606 */ 1607 smp_wmb(); 1608 1609 out: 1610 /* 1611 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1612 * captured buffer is expected to be truncated and 2) a full buffer 1613 * prevents the event from being re-enabled by the perf core, 1614 * resulting in stale data being send to user space. 1615 */ 1616 if (!etr_perf->snapshot && lost) 1617 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1618 return size; 1619 } 1620 1621 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1622 { 1623 int rc = 0; 1624 pid_t pid; 1625 unsigned long flags; 1626 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1627 struct perf_output_handle *handle = data; 1628 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1629 1630 spin_lock_irqsave(&drvdata->spinlock, flags); 1631 /* Don't use this sink if it is already claimed by sysFS */ 1632 if (drvdata->mode == CS_MODE_SYSFS) { 1633 rc = -EBUSY; 1634 goto unlock_out; 1635 } 1636 1637 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1638 rc = -EINVAL; 1639 goto unlock_out; 1640 } 1641 1642 /* Get a handle on the pid of the process to monitor */ 1643 pid = etr_perf->pid; 1644 1645 /* Do not proceed if this device is associated with another session */ 1646 if (drvdata->pid != -1 && drvdata->pid != pid) { 1647 rc = -EBUSY; 1648 goto unlock_out; 1649 } 1650 1651 /* 1652 * No HW configuration is needed if the sink is already in 1653 * use for this session. 1654 */ 1655 if (drvdata->pid == pid) { 1656 atomic_inc(&csdev->refcnt); 1657 goto unlock_out; 1658 } 1659 1660 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1661 if (!rc) { 1662 /* Associate with monitored process. */ 1663 drvdata->pid = pid; 1664 drvdata->mode = CS_MODE_PERF; 1665 drvdata->perf_buf = etr_perf->etr_buf; 1666 atomic_inc(&csdev->refcnt); 1667 } 1668 1669 unlock_out: 1670 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1671 return rc; 1672 } 1673 1674 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1675 enum cs_mode mode, void *data) 1676 { 1677 switch (mode) { 1678 case CS_MODE_SYSFS: 1679 return tmc_enable_etr_sink_sysfs(csdev); 1680 case CS_MODE_PERF: 1681 return tmc_enable_etr_sink_perf(csdev, data); 1682 default: 1683 return -EINVAL; 1684 } 1685 } 1686 1687 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1688 { 1689 unsigned long flags; 1690 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1691 1692 spin_lock_irqsave(&drvdata->spinlock, flags); 1693 1694 if (drvdata->reading) { 1695 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1696 return -EBUSY; 1697 } 1698 1699 if (atomic_dec_return(&csdev->refcnt)) { 1700 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1701 return -EBUSY; 1702 } 1703 1704 /* Complain if we (somehow) got out of sync */ 1705 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1706 tmc_etr_disable_hw(drvdata); 1707 /* Dissociate from monitored process. */ 1708 drvdata->pid = -1; 1709 drvdata->mode = CS_MODE_DISABLED; 1710 /* Reset perf specific data */ 1711 drvdata->perf_buf = NULL; 1712 1713 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1714 1715 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1716 return 0; 1717 } 1718 1719 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1720 .enable = tmc_enable_etr_sink, 1721 .disable = tmc_disable_etr_sink, 1722 .alloc_buffer = tmc_alloc_etr_buffer, 1723 .update_buffer = tmc_update_etr_buffer, 1724 .free_buffer = tmc_free_etr_buffer, 1725 }; 1726 1727 const struct coresight_ops tmc_etr_cs_ops = { 1728 .sink_ops = &tmc_etr_sink_ops, 1729 }; 1730 1731 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1732 { 1733 int ret = 0; 1734 unsigned long flags; 1735 1736 /* config types are set a boot time and never change */ 1737 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1738 return -EINVAL; 1739 1740 spin_lock_irqsave(&drvdata->spinlock, flags); 1741 if (drvdata->reading) { 1742 ret = -EBUSY; 1743 goto out; 1744 } 1745 1746 /* 1747 * We can safely allow reads even if the ETR is operating in PERF mode, 1748 * since the sysfs session is captured in mode specific data. 1749 * If drvdata::sysfs_data is NULL the trace data has been read already. 1750 */ 1751 if (!drvdata->sysfs_buf) { 1752 ret = -EINVAL; 1753 goto out; 1754 } 1755 1756 /* Disable the TMC if we are trying to read from a running session. */ 1757 if (drvdata->mode == CS_MODE_SYSFS) 1758 __tmc_etr_disable_hw(drvdata); 1759 1760 drvdata->reading = true; 1761 out: 1762 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1763 1764 return ret; 1765 } 1766 1767 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1768 { 1769 unsigned long flags; 1770 struct etr_buf *sysfs_buf = NULL; 1771 1772 /* config types are set a boot time and never change */ 1773 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1774 return -EINVAL; 1775 1776 spin_lock_irqsave(&drvdata->spinlock, flags); 1777 1778 /* RE-enable the TMC if need be */ 1779 if (drvdata->mode == CS_MODE_SYSFS) { 1780 /* 1781 * The trace run will continue with the same allocated trace 1782 * buffer. Since the tracer is still enabled drvdata::buf can't 1783 * be NULL. 1784 */ 1785 __tmc_etr_enable_hw(drvdata); 1786 } else { 1787 /* 1788 * The ETR is not tracing and the buffer was just read. 1789 * As such prepare to free the trace buffer. 1790 */ 1791 sysfs_buf = drvdata->sysfs_buf; 1792 drvdata->sysfs_buf = NULL; 1793 } 1794 1795 drvdata->reading = false; 1796 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1797 1798 /* Free allocated memory out side of the spinlock */ 1799 if (sysfs_buf) 1800 tmc_etr_free_sysfs_buf(sysfs_buf); 1801 1802 return 0; 1803 } 1804