1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 /* 30 * etr_perf_buffer - Perf buffer used for ETR 31 * @drvdata - The ETR drvdaga this buffer has been allocated for. 32 * @etr_buf - Actual buffer used by the ETR 33 * @pid - The PID this etr_perf_buffer belongs to. 34 * @snaphost - Perf session mode 35 * @nr_pages - Number of pages in the ring buffer. 36 * @pages - Array of Pages in the ring buffer. 37 */ 38 struct etr_perf_buffer { 39 struct tmc_drvdata *drvdata; 40 struct etr_buf *etr_buf; 41 pid_t pid; 42 bool snapshot; 43 int nr_pages; 44 void **pages; 45 }; 46 47 /* Convert the perf index to an offset within the ETR buffer */ 48 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 49 50 /* Lower limit for ETR hardware buffer */ 51 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 52 53 /* 54 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 55 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 56 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 57 * contain more than one SG buffer and tables. 58 * 59 * A table entry has the following format: 60 * 61 * ---Bit31------------Bit4-------Bit1-----Bit0-- 62 * | Address[39:12] | SBZ | Entry Type | 63 * ---------------------------------------------- 64 * 65 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 66 * always zero. 67 * 68 * Entry type: 69 * b00 - Reserved. 70 * b01 - Last entry in the tables, points to 4K page buffer. 71 * b10 - Normal entry, points to 4K page buffer. 72 * b11 - Link. The address points to the base of next table. 73 */ 74 75 typedef u32 sgte_t; 76 77 #define ETR_SG_PAGE_SHIFT 12 78 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 79 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 80 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 81 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 82 83 #define ETR_SG_ET_MASK 0x3 84 #define ETR_SG_ET_LAST 0x1 85 #define ETR_SG_ET_NORMAL 0x2 86 #define ETR_SG_ET_LINK 0x3 87 88 #define ETR_SG_ADDR_SHIFT 4 89 90 #define ETR_SG_ENTRY(addr, type) \ 91 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 92 (type & ETR_SG_ET_MASK)) 93 94 #define ETR_SG_ADDR(entry) \ 95 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 96 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 97 98 /* 99 * struct etr_sg_table : ETR SG Table 100 * @sg_table: Generic SG Table holding the data/table pages. 101 * @hwaddr: hwaddress used by the TMC, which is the base 102 * address of the table. 103 */ 104 struct etr_sg_table { 105 struct tmc_sg_table *sg_table; 106 dma_addr_t hwaddr; 107 }; 108 109 /* 110 * tmc_etr_sg_table_entries: Total number of table entries required to map 111 * @nr_pages system pages. 112 * 113 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 114 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 115 * with the last entry pointing to another page of table entries. 116 * If we spill over to a new page for mapping 1 entry, we could as 117 * well replace the link entry of the previous page with the last entry. 118 */ 119 static inline unsigned long __attribute_const__ 120 tmc_etr_sg_table_entries(int nr_pages) 121 { 122 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 123 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 124 /* 125 * If we spill over to a new page for 1 entry, we could as well 126 * make it the LAST entry in the previous page, skipping the Link 127 * address. 128 */ 129 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 130 nr_sglinks--; 131 return nr_sgpages + nr_sglinks; 132 } 133 134 /* 135 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 136 * and map the device address @addr to an offset within the virtual 137 * contiguous buffer. 138 */ 139 static long 140 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 141 { 142 int i; 143 dma_addr_t page_start; 144 145 for (i = 0; i < tmc_pages->nr_pages; i++) { 146 page_start = tmc_pages->daddrs[i]; 147 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 148 return i * PAGE_SIZE + (addr - page_start); 149 } 150 151 return -EINVAL; 152 } 153 154 /* 155 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 156 * If the pages were not allocated in tmc_pages_alloc(), we would 157 * simply drop the refcount. 158 */ 159 static void tmc_pages_free(struct tmc_pages *tmc_pages, 160 struct device *dev, enum dma_data_direction dir) 161 { 162 int i; 163 struct device *real_dev = dev->parent; 164 165 for (i = 0; i < tmc_pages->nr_pages; i++) { 166 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 167 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 168 PAGE_SIZE, dir); 169 if (tmc_pages->pages && tmc_pages->pages[i]) 170 __free_page(tmc_pages->pages[i]); 171 } 172 173 kfree(tmc_pages->pages); 174 kfree(tmc_pages->daddrs); 175 tmc_pages->pages = NULL; 176 tmc_pages->daddrs = NULL; 177 tmc_pages->nr_pages = 0; 178 } 179 180 /* 181 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 182 * If @pages is not NULL, the list of page virtual addresses are 183 * used as the data pages. The pages are then dma_map'ed for @dev 184 * with dma_direction @dir. 185 * 186 * Returns 0 upon success, else the error number. 187 */ 188 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 189 struct device *dev, int node, 190 enum dma_data_direction dir, void **pages) 191 { 192 int i, nr_pages; 193 dma_addr_t paddr; 194 struct page *page; 195 struct device *real_dev = dev->parent; 196 197 nr_pages = tmc_pages->nr_pages; 198 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 199 GFP_KERNEL); 200 if (!tmc_pages->daddrs) 201 return -ENOMEM; 202 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 203 GFP_KERNEL); 204 if (!tmc_pages->pages) { 205 kfree(tmc_pages->daddrs); 206 tmc_pages->daddrs = NULL; 207 return -ENOMEM; 208 } 209 210 for (i = 0; i < nr_pages; i++) { 211 if (pages && pages[i]) { 212 page = virt_to_page(pages[i]); 213 /* Hold a refcount on the page */ 214 get_page(page); 215 } else { 216 page = alloc_pages_node(node, 217 GFP_KERNEL | __GFP_ZERO, 0); 218 if (!page) 219 goto err; 220 } 221 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 222 if (dma_mapping_error(real_dev, paddr)) 223 goto err; 224 tmc_pages->daddrs[i] = paddr; 225 tmc_pages->pages[i] = page; 226 } 227 return 0; 228 err: 229 tmc_pages_free(tmc_pages, dev, dir); 230 return -ENOMEM; 231 } 232 233 static inline long 234 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 235 { 236 return tmc_pages_get_offset(&sg_table->data_pages, addr); 237 } 238 239 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 240 { 241 if (sg_table->table_vaddr) 242 vunmap(sg_table->table_vaddr); 243 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 244 } 245 246 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 247 { 248 if (sg_table->data_vaddr) 249 vunmap(sg_table->data_vaddr); 250 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 251 } 252 253 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 254 { 255 tmc_free_table_pages(sg_table); 256 tmc_free_data_pages(sg_table); 257 } 258 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 259 260 /* 261 * Alloc pages for the table. Since this will be used by the device, 262 * allocate the pages closer to the device (i.e, dev_to_node(dev) 263 * rather than the CPU node). 264 */ 265 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 266 { 267 int rc; 268 struct tmc_pages *table_pages = &sg_table->table_pages; 269 270 rc = tmc_pages_alloc(table_pages, sg_table->dev, 271 dev_to_node(sg_table->dev), 272 DMA_TO_DEVICE, NULL); 273 if (rc) 274 return rc; 275 sg_table->table_vaddr = vmap(table_pages->pages, 276 table_pages->nr_pages, 277 VM_MAP, 278 PAGE_KERNEL); 279 if (!sg_table->table_vaddr) 280 rc = -ENOMEM; 281 else 282 sg_table->table_daddr = table_pages->daddrs[0]; 283 return rc; 284 } 285 286 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 287 { 288 int rc; 289 290 /* Allocate data pages on the node requested by the caller */ 291 rc = tmc_pages_alloc(&sg_table->data_pages, 292 sg_table->dev, sg_table->node, 293 DMA_FROM_DEVICE, pages); 294 if (!rc) { 295 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 296 sg_table->data_pages.nr_pages, 297 VM_MAP, 298 PAGE_KERNEL); 299 if (!sg_table->data_vaddr) 300 rc = -ENOMEM; 301 } 302 return rc; 303 } 304 305 /* 306 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 307 * and data buffers. TMC writes to the data buffers and reads from the SG 308 * Table pages. 309 * 310 * @dev - Coresight device to which page should be DMA mapped. 311 * @node - Numa node for mem allocations 312 * @nr_tpages - Number of pages for the table entries. 313 * @nr_dpages - Number of pages for Data buffer. 314 * @pages - Optional list of virtual address of pages. 315 */ 316 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 317 int node, 318 int nr_tpages, 319 int nr_dpages, 320 void **pages) 321 { 322 long rc; 323 struct tmc_sg_table *sg_table; 324 325 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 326 if (!sg_table) 327 return ERR_PTR(-ENOMEM); 328 sg_table->data_pages.nr_pages = nr_dpages; 329 sg_table->table_pages.nr_pages = nr_tpages; 330 sg_table->node = node; 331 sg_table->dev = dev; 332 333 rc = tmc_alloc_data_pages(sg_table, pages); 334 if (!rc) 335 rc = tmc_alloc_table_pages(sg_table); 336 if (rc) { 337 tmc_free_sg_table(sg_table); 338 kfree(sg_table); 339 return ERR_PTR(rc); 340 } 341 342 return sg_table; 343 } 344 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 345 346 /* 347 * tmc_sg_table_sync_data_range: Sync the data buffer written 348 * by the device from @offset upto a @size bytes. 349 */ 350 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 351 u64 offset, u64 size) 352 { 353 int i, index, start; 354 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 355 struct device *real_dev = table->dev->parent; 356 struct tmc_pages *data = &table->data_pages; 357 358 start = offset >> PAGE_SHIFT; 359 for (i = start; i < (start + npages); i++) { 360 index = i % data->nr_pages; 361 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 362 PAGE_SIZE, DMA_FROM_DEVICE); 363 } 364 } 365 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 366 367 /* tmc_sg_sync_table: Sync the page table */ 368 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 369 { 370 int i; 371 struct device *real_dev = sg_table->dev->parent; 372 struct tmc_pages *table_pages = &sg_table->table_pages; 373 374 for (i = 0; i < table_pages->nr_pages; i++) 375 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 376 PAGE_SIZE, DMA_TO_DEVICE); 377 } 378 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 379 380 /* 381 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 382 * in the SG buffer. The @bufpp is updated to point to the buffer. 383 * Returns : 384 * the length of linear data available at @offset. 385 * or 386 * <= 0 if no data is available. 387 */ 388 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 389 u64 offset, size_t len, char **bufpp) 390 { 391 size_t size; 392 int pg_idx = offset >> PAGE_SHIFT; 393 int pg_offset = offset & (PAGE_SIZE - 1); 394 struct tmc_pages *data_pages = &sg_table->data_pages; 395 396 size = tmc_sg_table_buf_size(sg_table); 397 if (offset >= size) 398 return -EINVAL; 399 400 /* Make sure we don't go beyond the end */ 401 len = (len < (size - offset)) ? len : size - offset; 402 /* Respect the page boundaries */ 403 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 404 if (len > 0) 405 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 406 return len; 407 } 408 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 409 410 #ifdef ETR_SG_DEBUG 411 /* Map a dma address to virtual address */ 412 static unsigned long 413 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 414 dma_addr_t addr, bool table) 415 { 416 long offset; 417 unsigned long base; 418 struct tmc_pages *tmc_pages; 419 420 if (table) { 421 tmc_pages = &sg_table->table_pages; 422 base = (unsigned long)sg_table->table_vaddr; 423 } else { 424 tmc_pages = &sg_table->data_pages; 425 base = (unsigned long)sg_table->data_vaddr; 426 } 427 428 offset = tmc_pages_get_offset(tmc_pages, addr); 429 if (offset < 0) 430 return 0; 431 return base + offset; 432 } 433 434 /* Dump the given sg_table */ 435 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 436 { 437 sgte_t *ptr; 438 int i = 0; 439 dma_addr_t addr; 440 struct tmc_sg_table *sg_table = etr_table->sg_table; 441 442 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 443 etr_table->hwaddr, true); 444 while (ptr) { 445 addr = ETR_SG_ADDR(*ptr); 446 switch (ETR_SG_ET(*ptr)) { 447 case ETR_SG_ET_NORMAL: 448 dev_dbg(sg_table->dev, 449 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 450 ptr++; 451 break; 452 case ETR_SG_ET_LINK: 453 dev_dbg(sg_table->dev, 454 "%05d: *** %p\t:{L} 0x%llx ***\n", 455 i, ptr, addr); 456 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 457 addr, true); 458 break; 459 case ETR_SG_ET_LAST: 460 dev_dbg(sg_table->dev, 461 "%05d: ### %p\t:[L] 0x%llx ###\n", 462 i, ptr, addr); 463 return; 464 default: 465 dev_dbg(sg_table->dev, 466 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 467 i, ptr, addr); 468 return; 469 } 470 i++; 471 } 472 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 473 } 474 #else 475 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 476 #endif 477 478 /* 479 * Populate the SG Table page table entries from table/data 480 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 481 * So does a Table page. So we keep track of indices of the tables 482 * in each system page and move the pointers accordingly. 483 */ 484 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 485 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 486 { 487 dma_addr_t paddr; 488 int i, type, nr_entries; 489 int tpidx = 0; /* index to the current system table_page */ 490 int sgtidx = 0; /* index to the sg_table within the current syspage */ 491 int sgtentry = 0; /* the entry within the sg_table */ 492 int dpidx = 0; /* index to the current system data_page */ 493 int spidx = 0; /* index to the SG page within the current data page */ 494 sgte_t *ptr; /* pointer to the table entry to fill */ 495 struct tmc_sg_table *sg_table = etr_table->sg_table; 496 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 497 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 498 499 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 500 /* 501 * Use the contiguous virtual address of the table to update entries. 502 */ 503 ptr = sg_table->table_vaddr; 504 /* 505 * Fill all the entries, except the last entry to avoid special 506 * checks within the loop. 507 */ 508 for (i = 0; i < nr_entries - 1; i++) { 509 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 510 /* 511 * Last entry in a sg_table page is a link address to 512 * the next table page. If this sg_table is the last 513 * one in the system page, it links to the first 514 * sg_table in the next system page. Otherwise, it 515 * links to the next sg_table page within the system 516 * page. 517 */ 518 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 519 paddr = table_daddrs[tpidx + 1]; 520 } else { 521 paddr = table_daddrs[tpidx] + 522 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 523 } 524 type = ETR_SG_ET_LINK; 525 } else { 526 /* 527 * Update the indices to the data_pages to point to the 528 * next sg_page in the data buffer. 529 */ 530 type = ETR_SG_ET_NORMAL; 531 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 532 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 533 dpidx++; 534 } 535 *ptr++ = ETR_SG_ENTRY(paddr, type); 536 /* 537 * Move to the next table pointer, moving the table page index 538 * if necessary 539 */ 540 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 541 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 542 tpidx++; 543 } 544 } 545 546 /* Set up the last entry, which is always a data pointer */ 547 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 548 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 549 } 550 551 /* 552 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 553 * populate the table. 554 * 555 * @dev - Device pointer for the TMC 556 * @node - NUMA node where the memory should be allocated 557 * @size - Total size of the data buffer 558 * @pages - Optional list of page virtual address 559 */ 560 static struct etr_sg_table * 561 tmc_init_etr_sg_table(struct device *dev, int node, 562 unsigned long size, void **pages) 563 { 564 int nr_entries, nr_tpages; 565 int nr_dpages = size >> PAGE_SHIFT; 566 struct tmc_sg_table *sg_table; 567 struct etr_sg_table *etr_table; 568 569 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 570 if (!etr_table) 571 return ERR_PTR(-ENOMEM); 572 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 573 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 574 575 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 576 if (IS_ERR(sg_table)) { 577 kfree(etr_table); 578 return ERR_CAST(sg_table); 579 } 580 581 etr_table->sg_table = sg_table; 582 /* TMC should use table base address for DBA */ 583 etr_table->hwaddr = sg_table->table_daddr; 584 tmc_etr_sg_table_populate(etr_table); 585 /* Sync the table pages for the HW */ 586 tmc_sg_table_sync_table(sg_table); 587 tmc_etr_sg_table_dump(etr_table); 588 589 return etr_table; 590 } 591 592 /* 593 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 594 */ 595 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 596 struct etr_buf *etr_buf, int node, 597 void **pages) 598 { 599 struct etr_flat_buf *flat_buf; 600 struct device *real_dev = drvdata->csdev->dev.parent; 601 602 /* We cannot reuse existing pages for flat buf */ 603 if (pages) 604 return -EINVAL; 605 606 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 607 if (!flat_buf) 608 return -ENOMEM; 609 610 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 611 &flat_buf->daddr, 612 DMA_FROM_DEVICE, GFP_KERNEL); 613 if (!flat_buf->vaddr) { 614 kfree(flat_buf); 615 return -ENOMEM; 616 } 617 618 flat_buf->size = etr_buf->size; 619 flat_buf->dev = &drvdata->csdev->dev; 620 etr_buf->hwaddr = flat_buf->daddr; 621 etr_buf->mode = ETR_MODE_FLAT; 622 etr_buf->private = flat_buf; 623 return 0; 624 } 625 626 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 627 { 628 struct etr_flat_buf *flat_buf = etr_buf->private; 629 630 if (flat_buf && flat_buf->daddr) { 631 struct device *real_dev = flat_buf->dev->parent; 632 633 dma_free_noncoherent(real_dev, etr_buf->size, 634 flat_buf->vaddr, flat_buf->daddr, 635 DMA_FROM_DEVICE); 636 } 637 kfree(flat_buf); 638 } 639 640 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 641 { 642 struct etr_flat_buf *flat_buf = etr_buf->private; 643 struct device *real_dev = flat_buf->dev->parent; 644 645 /* 646 * Adjust the buffer to point to the beginning of the trace data 647 * and update the available trace data. 648 */ 649 etr_buf->offset = rrp - etr_buf->hwaddr; 650 if (etr_buf->full) 651 etr_buf->len = etr_buf->size; 652 else 653 etr_buf->len = rwp - rrp; 654 655 /* 656 * The driver always starts tracing at the beginning of the buffer, 657 * the only reason why we would get a wrap around is when the buffer 658 * is full. Sync the entire buffer in one go for this case. 659 */ 660 if (etr_buf->offset + etr_buf->len > etr_buf->size) 661 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 662 etr_buf->size, DMA_FROM_DEVICE); 663 else 664 dma_sync_single_for_cpu(real_dev, 665 flat_buf->daddr + etr_buf->offset, 666 etr_buf->len, DMA_FROM_DEVICE); 667 } 668 669 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 670 u64 offset, size_t len, char **bufpp) 671 { 672 struct etr_flat_buf *flat_buf = etr_buf->private; 673 674 *bufpp = (char *)flat_buf->vaddr + offset; 675 /* 676 * tmc_etr_buf_get_data already adjusts the length to handle 677 * buffer wrapping around. 678 */ 679 return len; 680 } 681 682 static const struct etr_buf_operations etr_flat_buf_ops = { 683 .alloc = tmc_etr_alloc_flat_buf, 684 .free = tmc_etr_free_flat_buf, 685 .sync = tmc_etr_sync_flat_buf, 686 .get_data = tmc_etr_get_data_flat_buf, 687 }; 688 689 /* 690 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 691 * appropriately. 692 */ 693 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 694 struct etr_buf *etr_buf, int node, 695 void **pages) 696 { 697 struct etr_sg_table *etr_table; 698 struct device *dev = &drvdata->csdev->dev; 699 700 etr_table = tmc_init_etr_sg_table(dev, node, 701 etr_buf->size, pages); 702 if (IS_ERR(etr_table)) 703 return -ENOMEM; 704 etr_buf->hwaddr = etr_table->hwaddr; 705 etr_buf->mode = ETR_MODE_ETR_SG; 706 etr_buf->private = etr_table; 707 return 0; 708 } 709 710 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 711 { 712 struct etr_sg_table *etr_table = etr_buf->private; 713 714 if (etr_table) { 715 tmc_free_sg_table(etr_table->sg_table); 716 kfree(etr_table); 717 } 718 } 719 720 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 721 size_t len, char **bufpp) 722 { 723 struct etr_sg_table *etr_table = etr_buf->private; 724 725 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 726 } 727 728 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 729 { 730 long r_offset, w_offset; 731 struct etr_sg_table *etr_table = etr_buf->private; 732 struct tmc_sg_table *table = etr_table->sg_table; 733 734 /* Convert hw address to offset in the buffer */ 735 r_offset = tmc_sg_get_data_page_offset(table, rrp); 736 if (r_offset < 0) { 737 dev_warn(table->dev, 738 "Unable to map RRP %llx to offset\n", rrp); 739 etr_buf->len = 0; 740 return; 741 } 742 743 w_offset = tmc_sg_get_data_page_offset(table, rwp); 744 if (w_offset < 0) { 745 dev_warn(table->dev, 746 "Unable to map RWP %llx to offset\n", rwp); 747 etr_buf->len = 0; 748 return; 749 } 750 751 etr_buf->offset = r_offset; 752 if (etr_buf->full) 753 etr_buf->len = etr_buf->size; 754 else 755 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 756 w_offset - r_offset; 757 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 758 } 759 760 static const struct etr_buf_operations etr_sg_buf_ops = { 761 .alloc = tmc_etr_alloc_sg_buf, 762 .free = tmc_etr_free_sg_buf, 763 .sync = tmc_etr_sync_sg_buf, 764 .get_data = tmc_etr_get_data_sg_buf, 765 }; 766 767 /* 768 * TMC ETR could be connected to a CATU device, which can provide address 769 * translation service. This is represented by the Output port of the TMC 770 * (ETR) connected to the input port of the CATU. 771 * 772 * Returns : coresight_device ptr for the CATU device if a CATU is found. 773 * : NULL otherwise. 774 */ 775 struct coresight_device * 776 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 777 { 778 int i; 779 struct coresight_device *tmp, *etr = drvdata->csdev; 780 781 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 782 return NULL; 783 784 for (i = 0; i < etr->pdata->nr_outport; i++) { 785 tmp = etr->pdata->conns[i].child_dev; 786 if (tmp && coresight_is_catu_device(tmp)) 787 return tmp; 788 } 789 790 return NULL; 791 } 792 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 793 794 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata, 795 struct etr_buf *etr_buf) 796 { 797 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 798 799 if (catu && helper_ops(catu)->enable) 800 return helper_ops(catu)->enable(catu, etr_buf); 801 return 0; 802 } 803 804 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata) 805 { 806 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 807 808 if (catu && helper_ops(catu)->disable) 809 helper_ops(catu)->disable(catu, drvdata->etr_buf); 810 } 811 812 static const struct etr_buf_operations *etr_buf_ops[] = { 813 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 814 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 815 [ETR_MODE_CATU] = NULL, 816 }; 817 818 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 819 { 820 etr_buf_ops[ETR_MODE_CATU] = catu; 821 } 822 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 823 824 void tmc_etr_remove_catu_ops(void) 825 { 826 etr_buf_ops[ETR_MODE_CATU] = NULL; 827 } 828 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 829 830 static inline int tmc_etr_mode_alloc_buf(int mode, 831 struct tmc_drvdata *drvdata, 832 struct etr_buf *etr_buf, int node, 833 void **pages) 834 { 835 int rc = -EINVAL; 836 837 switch (mode) { 838 case ETR_MODE_FLAT: 839 case ETR_MODE_ETR_SG: 840 case ETR_MODE_CATU: 841 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 842 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 843 node, pages); 844 if (!rc) 845 etr_buf->ops = etr_buf_ops[mode]; 846 return rc; 847 default: 848 return -EINVAL; 849 } 850 } 851 852 /* 853 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 854 * @drvdata : ETR device details. 855 * @size : size of the requested buffer. 856 * @flags : Required properties for the buffer. 857 * @node : Node for memory allocations. 858 * @pages : An optional list of pages. 859 */ 860 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 861 ssize_t size, int flags, 862 int node, void **pages) 863 { 864 int rc = -ENOMEM; 865 bool has_etr_sg, has_iommu; 866 bool has_sg, has_catu; 867 struct etr_buf *etr_buf; 868 struct device *dev = &drvdata->csdev->dev; 869 870 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 871 has_iommu = iommu_get_domain_for_dev(dev->parent); 872 has_catu = !!tmc_etr_get_catu_device(drvdata); 873 874 has_sg = has_catu || has_etr_sg; 875 876 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 877 if (!etr_buf) 878 return ERR_PTR(-ENOMEM); 879 880 etr_buf->size = size; 881 882 /* 883 * If we have to use an existing list of pages, we cannot reliably 884 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 885 * we use the contiguous DMA memory if at least one of the following 886 * conditions is true: 887 * a) The ETR cannot use Scatter-Gather. 888 * b) we have a backing IOMMU 889 * c) The requested memory size is smaller (< 1M). 890 * 891 * Fallback to available mechanisms. 892 * 893 */ 894 if (!pages && 895 (!has_sg || has_iommu || size < SZ_1M)) 896 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 897 etr_buf, node, pages); 898 if (rc && has_etr_sg) 899 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 900 etr_buf, node, pages); 901 if (rc && has_catu) 902 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 903 etr_buf, node, pages); 904 if (rc) { 905 kfree(etr_buf); 906 return ERR_PTR(rc); 907 } 908 909 refcount_set(&etr_buf->refcount, 1); 910 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 911 (unsigned long)size >> 10, etr_buf->mode); 912 return etr_buf; 913 } 914 915 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 916 { 917 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 918 etr_buf->ops->free(etr_buf); 919 kfree(etr_buf); 920 } 921 922 /* 923 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 924 * with a maximum of @len bytes. 925 * Returns: The size of the linear data available @pos, with *bufpp 926 * updated to point to the buffer. 927 */ 928 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 929 u64 offset, size_t len, char **bufpp) 930 { 931 /* Adjust the length to limit this transaction to end of buffer */ 932 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 933 934 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 935 } 936 937 static inline s64 938 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 939 { 940 ssize_t len; 941 char *bufp; 942 943 len = tmc_etr_buf_get_data(etr_buf, offset, 944 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 945 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE)) 946 return -EINVAL; 947 coresight_insert_barrier_packet(bufp); 948 return offset + CORESIGHT_BARRIER_PKT_SIZE; 949 } 950 951 /* 952 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 953 * Makes sure the trace data is synced to the memory for consumption. 954 * @etr_buf->offset will hold the offset to the beginning of the trace data 955 * within the buffer, with @etr_buf->len bytes to consume. 956 */ 957 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 958 { 959 struct etr_buf *etr_buf = drvdata->etr_buf; 960 u64 rrp, rwp; 961 u32 status; 962 963 rrp = tmc_read_rrp(drvdata); 964 rwp = tmc_read_rwp(drvdata); 965 status = readl_relaxed(drvdata->base + TMC_STS); 966 967 /* 968 * If there were memory errors in the session, truncate the 969 * buffer. 970 */ 971 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 972 dev_dbg(&drvdata->csdev->dev, 973 "tmc memory error detected, truncating buffer\n"); 974 etr_buf->len = 0; 975 etr_buf->full = false; 976 return; 977 } 978 979 etr_buf->full = !!(status & TMC_STS_FULL); 980 981 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 982 983 etr_buf->ops->sync(etr_buf, rrp, rwp); 984 } 985 986 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 987 { 988 u32 axictl, sts; 989 struct etr_buf *etr_buf = drvdata->etr_buf; 990 int rc = 0; 991 992 CS_UNLOCK(drvdata->base); 993 994 /* Wait for TMCSReady bit to be set */ 995 rc = tmc_wait_for_tmcready(drvdata); 996 if (rc) { 997 dev_err(&drvdata->csdev->dev, 998 "Failed to enable : TMC not ready\n"); 999 CS_LOCK(drvdata->base); 1000 return rc; 1001 } 1002 1003 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 1004 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 1005 1006 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 1007 axictl &= ~TMC_AXICTL_CLEAR_MASK; 1008 axictl |= TMC_AXICTL_PROT_CTL_B1; 1009 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 1010 axictl |= TMC_AXICTL_AXCACHE_OS; 1011 1012 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 1013 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 1014 axictl |= TMC_AXICTL_ARCACHE_OS; 1015 } 1016 1017 if (etr_buf->mode == ETR_MODE_ETR_SG) 1018 axictl |= TMC_AXICTL_SCT_GAT_MODE; 1019 1020 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1021 tmc_write_dba(drvdata, etr_buf->hwaddr); 1022 /* 1023 * If the TMC pointers must be programmed before the session, 1024 * we have to set it properly (i.e, RRP/RWP to base address and 1025 * STS to "not full"). 1026 */ 1027 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1028 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1029 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1030 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1031 writel_relaxed(sts, drvdata->base + TMC_STS); 1032 } 1033 1034 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1035 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1036 TMC_FFCR_TRIGON_TRIGIN, 1037 drvdata->base + TMC_FFCR); 1038 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1039 tmc_enable_hw(drvdata); 1040 1041 CS_LOCK(drvdata->base); 1042 return rc; 1043 } 1044 1045 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1046 struct etr_buf *etr_buf) 1047 { 1048 int rc; 1049 1050 /* Callers should provide an appropriate buffer for use */ 1051 if (WARN_ON(!etr_buf)) 1052 return -EINVAL; 1053 1054 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1055 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1056 return -EINVAL; 1057 1058 if (WARN_ON(drvdata->etr_buf)) 1059 return -EBUSY; 1060 1061 /* 1062 * If this ETR is connected to a CATU, enable it before we turn 1063 * this on. 1064 */ 1065 rc = tmc_etr_enable_catu(drvdata, etr_buf); 1066 if (rc) 1067 return rc; 1068 rc = coresight_claim_device(drvdata->csdev); 1069 if (!rc) { 1070 drvdata->etr_buf = etr_buf; 1071 rc = __tmc_etr_enable_hw(drvdata); 1072 if (rc) { 1073 drvdata->etr_buf = NULL; 1074 coresight_disclaim_device(drvdata->csdev); 1075 tmc_etr_disable_catu(drvdata); 1076 } 1077 } 1078 1079 return rc; 1080 } 1081 1082 /* 1083 * Return the available trace data in the buffer (starts at etr_buf->offset, 1084 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1085 * also updating the @bufpp on where to find it. Since the trace data 1086 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1087 * @len returned to handle buffer wrapping around. 1088 * 1089 * We are protected here by drvdata->reading != 0, which ensures the 1090 * sysfs_buf stays alive. 1091 */ 1092 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1093 loff_t pos, size_t len, char **bufpp) 1094 { 1095 s64 offset; 1096 ssize_t actual = len; 1097 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1098 1099 if (pos + actual > etr_buf->len) 1100 actual = etr_buf->len - pos; 1101 if (actual <= 0) 1102 return actual; 1103 1104 /* Compute the offset from which we read the data */ 1105 offset = etr_buf->offset + pos; 1106 if (offset >= etr_buf->size) 1107 offset -= etr_buf->size; 1108 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1109 } 1110 1111 static struct etr_buf * 1112 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1113 { 1114 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1115 0, cpu_to_node(0), NULL); 1116 } 1117 1118 static void 1119 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1120 { 1121 if (buf) 1122 tmc_free_etr_buf(buf); 1123 } 1124 1125 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1126 { 1127 struct etr_buf *etr_buf = drvdata->etr_buf; 1128 1129 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1130 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1131 drvdata->sysfs_buf = NULL; 1132 } else { 1133 tmc_sync_etr_buf(drvdata); 1134 /* 1135 * Insert barrier packets at the beginning, if there was 1136 * an overflow. 1137 */ 1138 if (etr_buf->full) 1139 tmc_etr_buf_insert_barrier_packet(etr_buf, 1140 etr_buf->offset); 1141 } 1142 } 1143 1144 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1145 { 1146 CS_UNLOCK(drvdata->base); 1147 1148 tmc_flush_and_stop(drvdata); 1149 /* 1150 * When operating in sysFS mode the content of the buffer needs to be 1151 * read before the TMC is disabled. 1152 */ 1153 if (drvdata->mode == CS_MODE_SYSFS) 1154 tmc_etr_sync_sysfs_buf(drvdata); 1155 1156 tmc_disable_hw(drvdata); 1157 1158 CS_LOCK(drvdata->base); 1159 1160 } 1161 1162 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1163 { 1164 __tmc_etr_disable_hw(drvdata); 1165 /* Disable CATU device if this ETR is connected to one */ 1166 tmc_etr_disable_catu(drvdata); 1167 coresight_disclaim_device(drvdata->csdev); 1168 /* Reset the ETR buf used by hardware */ 1169 drvdata->etr_buf = NULL; 1170 } 1171 1172 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1173 { 1174 int ret = 0; 1175 unsigned long flags; 1176 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1177 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1178 1179 /* 1180 * If we are enabling the ETR from disabled state, we need to make 1181 * sure we have a buffer with the right size. The etr_buf is not reset 1182 * immediately after we stop the tracing in SYSFS mode as we wait for 1183 * the user to collect the data. We may be able to reuse the existing 1184 * buffer, provided the size matches. Any allocation has to be done 1185 * with the lock released. 1186 */ 1187 spin_lock_irqsave(&drvdata->spinlock, flags); 1188 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1189 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1190 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1191 1192 /* Allocate memory with the locks released */ 1193 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1194 if (IS_ERR(new_buf)) 1195 return PTR_ERR(new_buf); 1196 1197 /* Let's try again */ 1198 spin_lock_irqsave(&drvdata->spinlock, flags); 1199 } 1200 1201 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1202 ret = -EBUSY; 1203 goto out; 1204 } 1205 1206 /* 1207 * In sysFS mode we can have multiple writers per sink. Since this 1208 * sink is already enabled no memory is needed and the HW need not be 1209 * touched, even if the buffer size has changed. 1210 */ 1211 if (drvdata->mode == CS_MODE_SYSFS) { 1212 atomic_inc(csdev->refcnt); 1213 goto out; 1214 } 1215 1216 /* 1217 * If we don't have a buffer or it doesn't match the requested size, 1218 * use the buffer allocated above. Otherwise reuse the existing buffer. 1219 */ 1220 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1221 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1222 free_buf = sysfs_buf; 1223 drvdata->sysfs_buf = new_buf; 1224 } 1225 1226 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf); 1227 if (!ret) { 1228 drvdata->mode = CS_MODE_SYSFS; 1229 atomic_inc(csdev->refcnt); 1230 } 1231 out: 1232 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1233 1234 /* Free memory outside the spinlock if need be */ 1235 if (free_buf) 1236 tmc_etr_free_sysfs_buf(free_buf); 1237 1238 if (!ret) 1239 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1240 1241 return ret; 1242 } 1243 1244 /* 1245 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1246 * The size of the hardware buffer is dependent on the size configured 1247 * via sysfs and the perf ring buffer size. We prefer to allocate the 1248 * largest possible size, scaling down the size by half until it 1249 * reaches a minimum limit (1M), beyond which we give up. 1250 */ 1251 static struct etr_buf * 1252 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1253 int nr_pages, void **pages, bool snapshot) 1254 { 1255 int node; 1256 struct etr_buf *etr_buf; 1257 unsigned long size; 1258 1259 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1260 /* 1261 * Try to match the perf ring buffer size if it is larger 1262 * than the size requested via sysfs. 1263 */ 1264 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1265 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT), 1266 0, node, NULL); 1267 if (!IS_ERR(etr_buf)) 1268 goto done; 1269 } 1270 1271 /* 1272 * Else switch to configured size for this ETR 1273 * and scale down until we hit the minimum limit. 1274 */ 1275 size = drvdata->size; 1276 do { 1277 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1278 if (!IS_ERR(etr_buf)) 1279 goto done; 1280 size /= 2; 1281 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1282 1283 return ERR_PTR(-ENOMEM); 1284 1285 done: 1286 return etr_buf; 1287 } 1288 1289 static struct etr_buf * 1290 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1291 struct perf_event *event, int nr_pages, 1292 void **pages, bool snapshot) 1293 { 1294 int ret; 1295 pid_t pid = task_pid_nr(event->owner); 1296 struct etr_buf *etr_buf; 1297 1298 retry: 1299 /* 1300 * An etr_perf_buffer is associated with an event and holds a reference 1301 * to the AUX ring buffer that was created for that event. In CPU-wide 1302 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1303 * buffer, share a sink. As such an etr_perf_buffer is created for each 1304 * event but a single etr_buf associated with the ETR is shared between 1305 * them. The last event in a trace session will copy the content of the 1306 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1307 * events are simply not used an freed as events are destoyed. We still 1308 * need to allocate a ring buffer for each event since we don't know 1309 * which event will be last. 1310 */ 1311 1312 /* 1313 * The first thing to do here is check if an etr_buf has already been 1314 * allocated for this session. If so it is shared with this event, 1315 * otherwise it is created. 1316 */ 1317 mutex_lock(&drvdata->idr_mutex); 1318 etr_buf = idr_find(&drvdata->idr, pid); 1319 if (etr_buf) { 1320 refcount_inc(&etr_buf->refcount); 1321 mutex_unlock(&drvdata->idr_mutex); 1322 return etr_buf; 1323 } 1324 1325 /* If we made it here no buffer has been allocated, do so now. */ 1326 mutex_unlock(&drvdata->idr_mutex); 1327 1328 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1329 if (IS_ERR(etr_buf)) 1330 return etr_buf; 1331 1332 /* Now that we have a buffer, add it to the IDR. */ 1333 mutex_lock(&drvdata->idr_mutex); 1334 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1335 mutex_unlock(&drvdata->idr_mutex); 1336 1337 /* Another event with this session ID has allocated this buffer. */ 1338 if (ret == -ENOSPC) { 1339 tmc_free_etr_buf(etr_buf); 1340 goto retry; 1341 } 1342 1343 /* The IDR can't allocate room for a new session, abandon ship. */ 1344 if (ret == -ENOMEM) { 1345 tmc_free_etr_buf(etr_buf); 1346 return ERR_PTR(ret); 1347 } 1348 1349 1350 return etr_buf; 1351 } 1352 1353 static struct etr_buf * 1354 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1355 struct perf_event *event, int nr_pages, 1356 void **pages, bool snapshot) 1357 { 1358 /* 1359 * In per-thread mode the etr_buf isn't shared, so just go ahead 1360 * with memory allocation. 1361 */ 1362 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1363 } 1364 1365 static struct etr_buf * 1366 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1367 int nr_pages, void **pages, bool snapshot) 1368 { 1369 if (event->cpu == -1) 1370 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1371 pages, snapshot); 1372 1373 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1374 pages, snapshot); 1375 } 1376 1377 static struct etr_perf_buffer * 1378 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1379 int nr_pages, void **pages, bool snapshot) 1380 { 1381 int node; 1382 struct etr_buf *etr_buf; 1383 struct etr_perf_buffer *etr_perf; 1384 1385 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1386 1387 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1388 if (!etr_perf) 1389 return ERR_PTR(-ENOMEM); 1390 1391 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1392 if (!IS_ERR(etr_buf)) 1393 goto done; 1394 1395 kfree(etr_perf); 1396 return ERR_PTR(-ENOMEM); 1397 1398 done: 1399 /* 1400 * Keep a reference to the ETR this buffer has been allocated for 1401 * in order to have access to the IDR in tmc_free_etr_buffer(). 1402 */ 1403 etr_perf->drvdata = drvdata; 1404 etr_perf->etr_buf = etr_buf; 1405 1406 return etr_perf; 1407 } 1408 1409 1410 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1411 struct perf_event *event, void **pages, 1412 int nr_pages, bool snapshot) 1413 { 1414 struct etr_perf_buffer *etr_perf; 1415 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1416 1417 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1418 nr_pages, pages, snapshot); 1419 if (IS_ERR(etr_perf)) { 1420 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1421 return NULL; 1422 } 1423 1424 etr_perf->pid = task_pid_nr(event->owner); 1425 etr_perf->snapshot = snapshot; 1426 etr_perf->nr_pages = nr_pages; 1427 etr_perf->pages = pages; 1428 1429 return etr_perf; 1430 } 1431 1432 static void tmc_free_etr_buffer(void *config) 1433 { 1434 struct etr_perf_buffer *etr_perf = config; 1435 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1436 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1437 1438 if (!etr_buf) 1439 goto free_etr_perf_buffer; 1440 1441 mutex_lock(&drvdata->idr_mutex); 1442 /* If we are not the last one to use the buffer, don't touch it. */ 1443 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1444 mutex_unlock(&drvdata->idr_mutex); 1445 goto free_etr_perf_buffer; 1446 } 1447 1448 /* We are the last one, remove from the IDR and free the buffer. */ 1449 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1450 mutex_unlock(&drvdata->idr_mutex); 1451 1452 /* 1453 * Something went very wrong if the buffer associated with this ID 1454 * is not the same in the IDR. Leak to avoid use after free. 1455 */ 1456 if (buf && WARN_ON(buf != etr_buf)) 1457 goto free_etr_perf_buffer; 1458 1459 tmc_free_etr_buf(etr_perf->etr_buf); 1460 1461 free_etr_perf_buffer: 1462 kfree(etr_perf); 1463 } 1464 1465 /* 1466 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1467 * buffer to the perf ring buffer. 1468 */ 1469 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1470 unsigned long head, 1471 unsigned long src_offset, 1472 unsigned long to_copy) 1473 { 1474 long bytes; 1475 long pg_idx, pg_offset; 1476 char **dst_pages, *src_buf; 1477 struct etr_buf *etr_buf = etr_perf->etr_buf; 1478 1479 head = PERF_IDX2OFF(head, etr_perf); 1480 pg_idx = head >> PAGE_SHIFT; 1481 pg_offset = head & (PAGE_SIZE - 1); 1482 dst_pages = (char **)etr_perf->pages; 1483 1484 while (to_copy > 0) { 1485 /* 1486 * In one iteration, we can copy minimum of : 1487 * 1) what is available in the source buffer, 1488 * 2) what is available in the source buffer, before it 1489 * wraps around. 1490 * 3) what is available in the destination page. 1491 * in one iteration. 1492 */ 1493 if (src_offset >= etr_buf->size) 1494 src_offset -= etr_buf->size; 1495 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1496 &src_buf); 1497 if (WARN_ON_ONCE(bytes <= 0)) 1498 break; 1499 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1500 1501 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1502 1503 to_copy -= bytes; 1504 1505 /* Move destination pointers */ 1506 pg_offset += bytes; 1507 if (pg_offset == PAGE_SIZE) { 1508 pg_offset = 0; 1509 if (++pg_idx == etr_perf->nr_pages) 1510 pg_idx = 0; 1511 } 1512 1513 /* Move source pointers */ 1514 src_offset += bytes; 1515 } 1516 } 1517 1518 /* 1519 * tmc_update_etr_buffer : Update the perf ring buffer with the 1520 * available trace data. We use software double buffering at the moment. 1521 * 1522 * TODO: Add support for reusing the perf ring buffer. 1523 */ 1524 static unsigned long 1525 tmc_update_etr_buffer(struct coresight_device *csdev, 1526 struct perf_output_handle *handle, 1527 void *config) 1528 { 1529 bool lost = false; 1530 unsigned long flags, offset, size = 0; 1531 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1532 struct etr_perf_buffer *etr_perf = config; 1533 struct etr_buf *etr_buf = etr_perf->etr_buf; 1534 1535 spin_lock_irqsave(&drvdata->spinlock, flags); 1536 1537 /* Don't do anything if another tracer is using this sink */ 1538 if (atomic_read(csdev->refcnt) != 1) { 1539 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1540 goto out; 1541 } 1542 1543 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1544 lost = true; 1545 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1546 goto out; 1547 } 1548 1549 CS_UNLOCK(drvdata->base); 1550 1551 tmc_flush_and_stop(drvdata); 1552 tmc_sync_etr_buf(drvdata); 1553 1554 CS_LOCK(drvdata->base); 1555 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1556 1557 lost = etr_buf->full; 1558 offset = etr_buf->offset; 1559 size = etr_buf->len; 1560 1561 /* 1562 * The ETR buffer may be bigger than the space available in the 1563 * perf ring buffer (handle->size). If so advance the offset so that we 1564 * get the latest trace data. In snapshot mode none of that matters 1565 * since we are expected to clobber stale data in favour of the latest 1566 * traces. 1567 */ 1568 if (!etr_perf->snapshot && size > handle->size) { 1569 u32 mask = tmc_get_memwidth_mask(drvdata); 1570 1571 /* 1572 * Make sure the new size is aligned in accordance with the 1573 * requirement explained in function tmc_get_memwidth_mask(). 1574 */ 1575 size = handle->size & mask; 1576 offset = etr_buf->offset + etr_buf->len - size; 1577 1578 if (offset >= etr_buf->size) 1579 offset -= etr_buf->size; 1580 lost = true; 1581 } 1582 1583 /* Insert barrier packets at the beginning, if there was an overflow */ 1584 if (lost) 1585 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1586 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1587 1588 /* 1589 * In snapshot mode we simply increment the head by the number of byte 1590 * that were written. User space will figure out how many bytes to get 1591 * from the AUX buffer based on the position of the head. 1592 */ 1593 if (etr_perf->snapshot) 1594 handle->head += size; 1595 1596 /* 1597 * Ensure that the AUX trace data is visible before the aux_head 1598 * is updated via perf_aux_output_end(), as expected by the 1599 * perf ring buffer. 1600 */ 1601 smp_wmb(); 1602 1603 out: 1604 /* 1605 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1606 * captured buffer is expected to be truncated and 2) a full buffer 1607 * prevents the event from being re-enabled by the perf core, 1608 * resulting in stale data being send to user space. 1609 */ 1610 if (!etr_perf->snapshot && lost) 1611 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1612 return size; 1613 } 1614 1615 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1616 { 1617 int rc = 0; 1618 pid_t pid; 1619 unsigned long flags; 1620 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1621 struct perf_output_handle *handle = data; 1622 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1623 1624 spin_lock_irqsave(&drvdata->spinlock, flags); 1625 /* Don't use this sink if it is already claimed by sysFS */ 1626 if (drvdata->mode == CS_MODE_SYSFS) { 1627 rc = -EBUSY; 1628 goto unlock_out; 1629 } 1630 1631 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1632 rc = -EINVAL; 1633 goto unlock_out; 1634 } 1635 1636 /* Get a handle on the pid of the process to monitor */ 1637 pid = etr_perf->pid; 1638 1639 /* Do not proceed if this device is associated with another session */ 1640 if (drvdata->pid != -1 && drvdata->pid != pid) { 1641 rc = -EBUSY; 1642 goto unlock_out; 1643 } 1644 1645 /* 1646 * No HW configuration is needed if the sink is already in 1647 * use for this session. 1648 */ 1649 if (drvdata->pid == pid) { 1650 atomic_inc(csdev->refcnt); 1651 goto unlock_out; 1652 } 1653 1654 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1655 if (!rc) { 1656 /* Associate with monitored process. */ 1657 drvdata->pid = pid; 1658 drvdata->mode = CS_MODE_PERF; 1659 drvdata->perf_buf = etr_perf->etr_buf; 1660 atomic_inc(csdev->refcnt); 1661 } 1662 1663 unlock_out: 1664 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1665 return rc; 1666 } 1667 1668 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1669 u32 mode, void *data) 1670 { 1671 switch (mode) { 1672 case CS_MODE_SYSFS: 1673 return tmc_enable_etr_sink_sysfs(csdev); 1674 case CS_MODE_PERF: 1675 return tmc_enable_etr_sink_perf(csdev, data); 1676 } 1677 1678 /* We shouldn't be here */ 1679 return -EINVAL; 1680 } 1681 1682 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1683 { 1684 unsigned long flags; 1685 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1686 1687 spin_lock_irqsave(&drvdata->spinlock, flags); 1688 1689 if (drvdata->reading) { 1690 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1691 return -EBUSY; 1692 } 1693 1694 if (atomic_dec_return(csdev->refcnt)) { 1695 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1696 return -EBUSY; 1697 } 1698 1699 /* Complain if we (somehow) got out of sync */ 1700 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1701 tmc_etr_disable_hw(drvdata); 1702 /* Dissociate from monitored process. */ 1703 drvdata->pid = -1; 1704 drvdata->mode = CS_MODE_DISABLED; 1705 /* Reset perf specific data */ 1706 drvdata->perf_buf = NULL; 1707 1708 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1709 1710 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1711 return 0; 1712 } 1713 1714 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1715 .enable = tmc_enable_etr_sink, 1716 .disable = tmc_disable_etr_sink, 1717 .alloc_buffer = tmc_alloc_etr_buffer, 1718 .update_buffer = tmc_update_etr_buffer, 1719 .free_buffer = tmc_free_etr_buffer, 1720 }; 1721 1722 const struct coresight_ops tmc_etr_cs_ops = { 1723 .sink_ops = &tmc_etr_sink_ops, 1724 }; 1725 1726 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1727 { 1728 int ret = 0; 1729 unsigned long flags; 1730 1731 /* config types are set a boot time and never change */ 1732 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1733 return -EINVAL; 1734 1735 spin_lock_irqsave(&drvdata->spinlock, flags); 1736 if (drvdata->reading) { 1737 ret = -EBUSY; 1738 goto out; 1739 } 1740 1741 /* 1742 * We can safely allow reads even if the ETR is operating in PERF mode, 1743 * since the sysfs session is captured in mode specific data. 1744 * If drvdata::sysfs_data is NULL the trace data has been read already. 1745 */ 1746 if (!drvdata->sysfs_buf) { 1747 ret = -EINVAL; 1748 goto out; 1749 } 1750 1751 /* Disable the TMC if we are trying to read from a running session. */ 1752 if (drvdata->mode == CS_MODE_SYSFS) 1753 __tmc_etr_disable_hw(drvdata); 1754 1755 drvdata->reading = true; 1756 out: 1757 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1758 1759 return ret; 1760 } 1761 1762 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1763 { 1764 unsigned long flags; 1765 struct etr_buf *sysfs_buf = NULL; 1766 1767 /* config types are set a boot time and never change */ 1768 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1769 return -EINVAL; 1770 1771 spin_lock_irqsave(&drvdata->spinlock, flags); 1772 1773 /* RE-enable the TMC if need be */ 1774 if (drvdata->mode == CS_MODE_SYSFS) { 1775 /* 1776 * The trace run will continue with the same allocated trace 1777 * buffer. Since the tracer is still enabled drvdata::buf can't 1778 * be NULL. 1779 */ 1780 __tmc_etr_enable_hw(drvdata); 1781 } else { 1782 /* 1783 * The ETR is not tracing and the buffer was just read. 1784 * As such prepare to free the trace buffer. 1785 */ 1786 sysfs_buf = drvdata->sysfs_buf; 1787 drvdata->sysfs_buf = NULL; 1788 } 1789 1790 drvdata->reading = false; 1791 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1792 1793 /* Free allocated memory out side of the spinlock */ 1794 if (sysfs_buf) 1795 tmc_etr_free_sysfs_buf(sysfs_buf); 1796 1797 return 0; 1798 } 1799