1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2016 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21 
22 struct etr_flat_buf {
23 	struct device	*dev;
24 	dma_addr_t	daddr;
25 	void		*vaddr;
26 	size_t		size;
27 };
28 
29 /*
30  * etr_perf_buffer - Perf buffer used for ETR
31  * @drvdata		- The ETR drvdaga this buffer has been allocated for.
32  * @etr_buf		- Actual buffer used by the ETR
33  * @pid			- The PID this etr_perf_buffer belongs to.
34  * @snaphost		- Perf session mode
35  * @nr_pages		- Number of pages in the ring buffer.
36  * @pages		- Array of Pages in the ring buffer.
37  */
38 struct etr_perf_buffer {
39 	struct tmc_drvdata	*drvdata;
40 	struct etr_buf		*etr_buf;
41 	pid_t			pid;
42 	bool			snapshot;
43 	int			nr_pages;
44 	void			**pages;
45 };
46 
47 /* Convert the perf index to an offset within the ETR buffer */
48 #define PERF_IDX2OFF(idx, buf)		\
49 		((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
50 
51 /* Lower limit for ETR hardware buffer */
52 #define TMC_ETR_PERF_MIN_BUF_SIZE	SZ_1M
53 
54 /*
55  * The TMC ETR SG has a page size of 4K. The SG table contains pointers
56  * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
57  * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
58  * contain more than one SG buffer and tables.
59  *
60  * A table entry has the following format:
61  *
62  * ---Bit31------------Bit4-------Bit1-----Bit0--
63  * |     Address[39:12]    | SBZ |  Entry Type  |
64  * ----------------------------------------------
65  *
66  * Address: Bits [39:12] of a physical page address. Bits [11:0] are
67  *	    always zero.
68  *
69  * Entry type:
70  *	b00 - Reserved.
71  *	b01 - Last entry in the tables, points to 4K page buffer.
72  *	b10 - Normal entry, points to 4K page buffer.
73  *	b11 - Link. The address points to the base of next table.
74  */
75 
76 typedef u32 sgte_t;
77 
78 #define ETR_SG_PAGE_SHIFT		12
79 #define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
80 #define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
81 #define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
82 #define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))
83 
84 #define ETR_SG_ET_MASK			0x3
85 #define ETR_SG_ET_LAST			0x1
86 #define ETR_SG_ET_NORMAL		0x2
87 #define ETR_SG_ET_LINK			0x3
88 
89 #define ETR_SG_ADDR_SHIFT		4
90 
91 #define ETR_SG_ENTRY(addr, type) \
92 	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
93 		 (type & ETR_SG_ET_MASK))
94 
95 #define ETR_SG_ADDR(entry) \
96 	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
97 #define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)
98 
99 /*
100  * struct etr_sg_table : ETR SG Table
101  * @sg_table:		Generic SG Table holding the data/table pages.
102  * @hwaddr:		hwaddress used by the TMC, which is the base
103  *			address of the table.
104  */
105 struct etr_sg_table {
106 	struct tmc_sg_table	*sg_table;
107 	dma_addr_t		hwaddr;
108 };
109 
110 /*
111  * tmc_etr_sg_table_entries: Total number of table entries required to map
112  * @nr_pages system pages.
113  *
114  * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
115  * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
116  * with the last entry pointing to another page of table entries.
117  * If we spill over to a new page for mapping 1 entry, we could as
118  * well replace the link entry of the previous page with the last entry.
119  */
120 static inline unsigned long __attribute_const__
121 tmc_etr_sg_table_entries(int nr_pages)
122 {
123 	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
124 	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
125 	/*
126 	 * If we spill over to a new page for 1 entry, we could as well
127 	 * make it the LAST entry in the previous page, skipping the Link
128 	 * address.
129 	 */
130 	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
131 		nr_sglinks--;
132 	return nr_sgpages + nr_sglinks;
133 }
134 
135 /*
136  * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
137  * and map the device address @addr to an offset within the virtual
138  * contiguous buffer.
139  */
140 static long
141 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
142 {
143 	int i;
144 	dma_addr_t page_start;
145 
146 	for (i = 0; i < tmc_pages->nr_pages; i++) {
147 		page_start = tmc_pages->daddrs[i];
148 		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
149 			return i * PAGE_SIZE + (addr - page_start);
150 	}
151 
152 	return -EINVAL;
153 }
154 
155 /*
156  * tmc_pages_free : Unmap and free the pages used by tmc_pages.
157  * If the pages were not allocated in tmc_pages_alloc(), we would
158  * simply drop the refcount.
159  */
160 static void tmc_pages_free(struct tmc_pages *tmc_pages,
161 			   struct device *dev, enum dma_data_direction dir)
162 {
163 	int i;
164 	struct device *real_dev = dev->parent;
165 
166 	for (i = 0; i < tmc_pages->nr_pages; i++) {
167 		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
168 			dma_unmap_page(real_dev, tmc_pages->daddrs[i],
169 					 PAGE_SIZE, dir);
170 		if (tmc_pages->pages && tmc_pages->pages[i])
171 			__free_page(tmc_pages->pages[i]);
172 	}
173 
174 	kfree(tmc_pages->pages);
175 	kfree(tmc_pages->daddrs);
176 	tmc_pages->pages = NULL;
177 	tmc_pages->daddrs = NULL;
178 	tmc_pages->nr_pages = 0;
179 }
180 
181 /*
182  * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
183  * If @pages is not NULL, the list of page virtual addresses are
184  * used as the data pages. The pages are then dma_map'ed for @dev
185  * with dma_direction @dir.
186  *
187  * Returns 0 upon success, else the error number.
188  */
189 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
190 			   struct device *dev, int node,
191 			   enum dma_data_direction dir, void **pages)
192 {
193 	int i, nr_pages;
194 	dma_addr_t paddr;
195 	struct page *page;
196 	struct device *real_dev = dev->parent;
197 
198 	nr_pages = tmc_pages->nr_pages;
199 	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
200 					 GFP_KERNEL);
201 	if (!tmc_pages->daddrs)
202 		return -ENOMEM;
203 	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
204 					 GFP_KERNEL);
205 	if (!tmc_pages->pages) {
206 		kfree(tmc_pages->daddrs);
207 		tmc_pages->daddrs = NULL;
208 		return -ENOMEM;
209 	}
210 
211 	for (i = 0; i < nr_pages; i++) {
212 		if (pages && pages[i]) {
213 			page = virt_to_page(pages[i]);
214 			/* Hold a refcount on the page */
215 			get_page(page);
216 		} else {
217 			page = alloc_pages_node(node,
218 						GFP_KERNEL | __GFP_ZERO, 0);
219 			if (!page)
220 				goto err;
221 		}
222 		paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
223 		if (dma_mapping_error(real_dev, paddr))
224 			goto err;
225 		tmc_pages->daddrs[i] = paddr;
226 		tmc_pages->pages[i] = page;
227 	}
228 	return 0;
229 err:
230 	tmc_pages_free(tmc_pages, dev, dir);
231 	return -ENOMEM;
232 }
233 
234 static inline long
235 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
236 {
237 	return tmc_pages_get_offset(&sg_table->data_pages, addr);
238 }
239 
240 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
241 {
242 	if (sg_table->table_vaddr)
243 		vunmap(sg_table->table_vaddr);
244 	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
245 }
246 
247 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
248 {
249 	if (sg_table->data_vaddr)
250 		vunmap(sg_table->data_vaddr);
251 	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
252 }
253 
254 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
255 {
256 	tmc_free_table_pages(sg_table);
257 	tmc_free_data_pages(sg_table);
258 }
259 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
260 
261 /*
262  * Alloc pages for the table. Since this will be used by the device,
263  * allocate the pages closer to the device (i.e, dev_to_node(dev)
264  * rather than the CPU node).
265  */
266 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
267 {
268 	int rc;
269 	struct tmc_pages *table_pages = &sg_table->table_pages;
270 
271 	rc = tmc_pages_alloc(table_pages, sg_table->dev,
272 			     dev_to_node(sg_table->dev),
273 			     DMA_TO_DEVICE, NULL);
274 	if (rc)
275 		return rc;
276 	sg_table->table_vaddr = vmap(table_pages->pages,
277 				     table_pages->nr_pages,
278 				     VM_MAP,
279 				     PAGE_KERNEL);
280 	if (!sg_table->table_vaddr)
281 		rc = -ENOMEM;
282 	else
283 		sg_table->table_daddr = table_pages->daddrs[0];
284 	return rc;
285 }
286 
287 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
288 {
289 	int rc;
290 
291 	/* Allocate data pages on the node requested by the caller */
292 	rc = tmc_pages_alloc(&sg_table->data_pages,
293 			     sg_table->dev, sg_table->node,
294 			     DMA_FROM_DEVICE, pages);
295 	if (!rc) {
296 		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
297 					    sg_table->data_pages.nr_pages,
298 					    VM_MAP,
299 					    PAGE_KERNEL);
300 		if (!sg_table->data_vaddr)
301 			rc = -ENOMEM;
302 	}
303 	return rc;
304 }
305 
306 /*
307  * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
308  * and data buffers. TMC writes to the data buffers and reads from the SG
309  * Table pages.
310  *
311  * @dev		- Coresight device to which page should be DMA mapped.
312  * @node	- Numa node for mem allocations
313  * @nr_tpages	- Number of pages for the table entries.
314  * @nr_dpages	- Number of pages for Data buffer.
315  * @pages	- Optional list of virtual address of pages.
316  */
317 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
318 					int node,
319 					int nr_tpages,
320 					int nr_dpages,
321 					void **pages)
322 {
323 	long rc;
324 	struct tmc_sg_table *sg_table;
325 
326 	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
327 	if (!sg_table)
328 		return ERR_PTR(-ENOMEM);
329 	sg_table->data_pages.nr_pages = nr_dpages;
330 	sg_table->table_pages.nr_pages = nr_tpages;
331 	sg_table->node = node;
332 	sg_table->dev = dev;
333 
334 	rc  = tmc_alloc_data_pages(sg_table, pages);
335 	if (!rc)
336 		rc = tmc_alloc_table_pages(sg_table);
337 	if (rc) {
338 		tmc_free_sg_table(sg_table);
339 		kfree(sg_table);
340 		return ERR_PTR(rc);
341 	}
342 
343 	return sg_table;
344 }
345 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
346 
347 /*
348  * tmc_sg_table_sync_data_range: Sync the data buffer written
349  * by the device from @offset upto a @size bytes.
350  */
351 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
352 				  u64 offset, u64 size)
353 {
354 	int i, index, start;
355 	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
356 	struct device *real_dev = table->dev->parent;
357 	struct tmc_pages *data = &table->data_pages;
358 
359 	start = offset >> PAGE_SHIFT;
360 	for (i = start; i < (start + npages); i++) {
361 		index = i % data->nr_pages;
362 		dma_sync_single_for_cpu(real_dev, data->daddrs[index],
363 					PAGE_SIZE, DMA_FROM_DEVICE);
364 	}
365 }
366 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
367 
368 /* tmc_sg_sync_table: Sync the page table */
369 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
370 {
371 	int i;
372 	struct device *real_dev = sg_table->dev->parent;
373 	struct tmc_pages *table_pages = &sg_table->table_pages;
374 
375 	for (i = 0; i < table_pages->nr_pages; i++)
376 		dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
377 					   PAGE_SIZE, DMA_TO_DEVICE);
378 }
379 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
380 
381 /*
382  * tmc_sg_table_get_data: Get the buffer pointer for data @offset
383  * in the SG buffer. The @bufpp is updated to point to the buffer.
384  * Returns :
385  *	the length of linear data available at @offset.
386  *	or
387  *	<= 0 if no data is available.
388  */
389 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
390 			      u64 offset, size_t len, char **bufpp)
391 {
392 	size_t size;
393 	int pg_idx = offset >> PAGE_SHIFT;
394 	int pg_offset = offset & (PAGE_SIZE - 1);
395 	struct tmc_pages *data_pages = &sg_table->data_pages;
396 
397 	size = tmc_sg_table_buf_size(sg_table);
398 	if (offset >= size)
399 		return -EINVAL;
400 
401 	/* Make sure we don't go beyond the end */
402 	len = (len < (size - offset)) ? len : size - offset;
403 	/* Respect the page boundaries */
404 	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
405 	if (len > 0)
406 		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
407 	return len;
408 }
409 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
410 
411 #ifdef ETR_SG_DEBUG
412 /* Map a dma address to virtual address */
413 static unsigned long
414 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
415 		      dma_addr_t addr, bool table)
416 {
417 	long offset;
418 	unsigned long base;
419 	struct tmc_pages *tmc_pages;
420 
421 	if (table) {
422 		tmc_pages = &sg_table->table_pages;
423 		base = (unsigned long)sg_table->table_vaddr;
424 	} else {
425 		tmc_pages = &sg_table->data_pages;
426 		base = (unsigned long)sg_table->data_vaddr;
427 	}
428 
429 	offset = tmc_pages_get_offset(tmc_pages, addr);
430 	if (offset < 0)
431 		return 0;
432 	return base + offset;
433 }
434 
435 /* Dump the given sg_table */
436 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
437 {
438 	sgte_t *ptr;
439 	int i = 0;
440 	dma_addr_t addr;
441 	struct tmc_sg_table *sg_table = etr_table->sg_table;
442 
443 	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
444 					      etr_table->hwaddr, true);
445 	while (ptr) {
446 		addr = ETR_SG_ADDR(*ptr);
447 		switch (ETR_SG_ET(*ptr)) {
448 		case ETR_SG_ET_NORMAL:
449 			dev_dbg(sg_table->dev,
450 				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
451 			ptr++;
452 			break;
453 		case ETR_SG_ET_LINK:
454 			dev_dbg(sg_table->dev,
455 				"%05d: *** %p\t:{L} 0x%llx ***\n",
456 				 i, ptr, addr);
457 			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
458 							      addr, true);
459 			break;
460 		case ETR_SG_ET_LAST:
461 			dev_dbg(sg_table->dev,
462 				"%05d: ### %p\t:[L] 0x%llx ###\n",
463 				 i, ptr, addr);
464 			return;
465 		default:
466 			dev_dbg(sg_table->dev,
467 				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
468 				 i, ptr, addr);
469 			return;
470 		}
471 		i++;
472 	}
473 	dev_dbg(sg_table->dev, "******* End of Table *****\n");
474 }
475 #else
476 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
477 #endif
478 
479 /*
480  * Populate the SG Table page table entries from table/data
481  * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
482  * So does a Table page. So we keep track of indices of the tables
483  * in each system page and move the pointers accordingly.
484  */
485 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
486 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
487 {
488 	dma_addr_t paddr;
489 	int i, type, nr_entries;
490 	int tpidx = 0; /* index to the current system table_page */
491 	int sgtidx = 0;	/* index to the sg_table within the current syspage */
492 	int sgtentry = 0; /* the entry within the sg_table */
493 	int dpidx = 0; /* index to the current system data_page */
494 	int spidx = 0; /* index to the SG page within the current data page */
495 	sgte_t *ptr; /* pointer to the table entry to fill */
496 	struct tmc_sg_table *sg_table = etr_table->sg_table;
497 	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
498 	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
499 
500 	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
501 	/*
502 	 * Use the contiguous virtual address of the table to update entries.
503 	 */
504 	ptr = sg_table->table_vaddr;
505 	/*
506 	 * Fill all the entries, except the last entry to avoid special
507 	 * checks within the loop.
508 	 */
509 	for (i = 0; i < nr_entries - 1; i++) {
510 		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
511 			/*
512 			 * Last entry in a sg_table page is a link address to
513 			 * the next table page. If this sg_table is the last
514 			 * one in the system page, it links to the first
515 			 * sg_table in the next system page. Otherwise, it
516 			 * links to the next sg_table page within the system
517 			 * page.
518 			 */
519 			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
520 				paddr = table_daddrs[tpidx + 1];
521 			} else {
522 				paddr = table_daddrs[tpidx] +
523 					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
524 			}
525 			type = ETR_SG_ET_LINK;
526 		} else {
527 			/*
528 			 * Update the indices to the data_pages to point to the
529 			 * next sg_page in the data buffer.
530 			 */
531 			type = ETR_SG_ET_NORMAL;
532 			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
533 			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
534 				dpidx++;
535 		}
536 		*ptr++ = ETR_SG_ENTRY(paddr, type);
537 		/*
538 		 * Move to the next table pointer, moving the table page index
539 		 * if necessary
540 		 */
541 		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
542 			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
543 				tpidx++;
544 		}
545 	}
546 
547 	/* Set up the last entry, which is always a data pointer */
548 	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
549 	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
550 }
551 
552 /*
553  * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
554  * populate the table.
555  *
556  * @dev		- Device pointer for the TMC
557  * @node	- NUMA node where the memory should be allocated
558  * @size	- Total size of the data buffer
559  * @pages	- Optional list of page virtual address
560  */
561 static struct etr_sg_table *
562 tmc_init_etr_sg_table(struct device *dev, int node,
563 		      unsigned long size, void **pages)
564 {
565 	int nr_entries, nr_tpages;
566 	int nr_dpages = size >> PAGE_SHIFT;
567 	struct tmc_sg_table *sg_table;
568 	struct etr_sg_table *etr_table;
569 
570 	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
571 	if (!etr_table)
572 		return ERR_PTR(-ENOMEM);
573 	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
574 	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
575 
576 	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
577 	if (IS_ERR(sg_table)) {
578 		kfree(etr_table);
579 		return ERR_CAST(sg_table);
580 	}
581 
582 	etr_table->sg_table = sg_table;
583 	/* TMC should use table base address for DBA */
584 	etr_table->hwaddr = sg_table->table_daddr;
585 	tmc_etr_sg_table_populate(etr_table);
586 	/* Sync the table pages for the HW */
587 	tmc_sg_table_sync_table(sg_table);
588 	tmc_etr_sg_table_dump(etr_table);
589 
590 	return etr_table;
591 }
592 
593 /*
594  * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
595  */
596 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
597 				  struct etr_buf *etr_buf, int node,
598 				  void **pages)
599 {
600 	struct etr_flat_buf *flat_buf;
601 	struct device *real_dev = drvdata->csdev->dev.parent;
602 
603 	/* We cannot reuse existing pages for flat buf */
604 	if (pages)
605 		return -EINVAL;
606 
607 	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
608 	if (!flat_buf)
609 		return -ENOMEM;
610 
611 	flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size,
612 						&flat_buf->daddr,
613 						DMA_FROM_DEVICE, GFP_KERNEL);
614 	if (!flat_buf->vaddr) {
615 		kfree(flat_buf);
616 		return -ENOMEM;
617 	}
618 
619 	flat_buf->size = etr_buf->size;
620 	flat_buf->dev = &drvdata->csdev->dev;
621 	etr_buf->hwaddr = flat_buf->daddr;
622 	etr_buf->mode = ETR_MODE_FLAT;
623 	etr_buf->private = flat_buf;
624 	return 0;
625 }
626 
627 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
628 {
629 	struct etr_flat_buf *flat_buf = etr_buf->private;
630 
631 	if (flat_buf && flat_buf->daddr) {
632 		struct device *real_dev = flat_buf->dev->parent;
633 
634 		dma_free_noncoherent(real_dev, etr_buf->size,
635 				     flat_buf->vaddr, flat_buf->daddr,
636 				     DMA_FROM_DEVICE);
637 	}
638 	kfree(flat_buf);
639 }
640 
641 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
642 {
643 	struct etr_flat_buf *flat_buf = etr_buf->private;
644 	struct device *real_dev = flat_buf->dev->parent;
645 
646 	/*
647 	 * Adjust the buffer to point to the beginning of the trace data
648 	 * and update the available trace data.
649 	 */
650 	etr_buf->offset = rrp - etr_buf->hwaddr;
651 	if (etr_buf->full)
652 		etr_buf->len = etr_buf->size;
653 	else
654 		etr_buf->len = rwp - rrp;
655 
656 	/*
657 	 * The driver always starts tracing at the beginning of the buffer,
658 	 * the only reason why we would get a wrap around is when the buffer
659 	 * is full.  Sync the entire buffer in one go for this case.
660 	 */
661 	if (etr_buf->offset + etr_buf->len > etr_buf->size)
662 		dma_sync_single_for_cpu(real_dev, flat_buf->daddr,
663 					etr_buf->size, DMA_FROM_DEVICE);
664 	else
665 		dma_sync_single_for_cpu(real_dev,
666 					flat_buf->daddr + etr_buf->offset,
667 					etr_buf->len, DMA_FROM_DEVICE);
668 }
669 
670 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
671 					 u64 offset, size_t len, char **bufpp)
672 {
673 	struct etr_flat_buf *flat_buf = etr_buf->private;
674 
675 	*bufpp = (char *)flat_buf->vaddr + offset;
676 	/*
677 	 * tmc_etr_buf_get_data already adjusts the length to handle
678 	 * buffer wrapping around.
679 	 */
680 	return len;
681 }
682 
683 static const struct etr_buf_operations etr_flat_buf_ops = {
684 	.alloc = tmc_etr_alloc_flat_buf,
685 	.free = tmc_etr_free_flat_buf,
686 	.sync = tmc_etr_sync_flat_buf,
687 	.get_data = tmc_etr_get_data_flat_buf,
688 };
689 
690 /*
691  * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
692  * appropriately.
693  */
694 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
695 				struct etr_buf *etr_buf, int node,
696 				void **pages)
697 {
698 	struct etr_sg_table *etr_table;
699 	struct device *dev = &drvdata->csdev->dev;
700 
701 	etr_table = tmc_init_etr_sg_table(dev, node,
702 					  etr_buf->size, pages);
703 	if (IS_ERR(etr_table))
704 		return -ENOMEM;
705 	etr_buf->hwaddr = etr_table->hwaddr;
706 	etr_buf->mode = ETR_MODE_ETR_SG;
707 	etr_buf->private = etr_table;
708 	return 0;
709 }
710 
711 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
712 {
713 	struct etr_sg_table *etr_table = etr_buf->private;
714 
715 	if (etr_table) {
716 		tmc_free_sg_table(etr_table->sg_table);
717 		kfree(etr_table);
718 	}
719 }
720 
721 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
722 				       size_t len, char **bufpp)
723 {
724 	struct etr_sg_table *etr_table = etr_buf->private;
725 
726 	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
727 }
728 
729 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
730 {
731 	long r_offset, w_offset;
732 	struct etr_sg_table *etr_table = etr_buf->private;
733 	struct tmc_sg_table *table = etr_table->sg_table;
734 
735 	/* Convert hw address to offset in the buffer */
736 	r_offset = tmc_sg_get_data_page_offset(table, rrp);
737 	if (r_offset < 0) {
738 		dev_warn(table->dev,
739 			 "Unable to map RRP %llx to offset\n", rrp);
740 		etr_buf->len = 0;
741 		return;
742 	}
743 
744 	w_offset = tmc_sg_get_data_page_offset(table, rwp);
745 	if (w_offset < 0) {
746 		dev_warn(table->dev,
747 			 "Unable to map RWP %llx to offset\n", rwp);
748 		etr_buf->len = 0;
749 		return;
750 	}
751 
752 	etr_buf->offset = r_offset;
753 	if (etr_buf->full)
754 		etr_buf->len = etr_buf->size;
755 	else
756 		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
757 				w_offset - r_offset;
758 	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
759 }
760 
761 static const struct etr_buf_operations etr_sg_buf_ops = {
762 	.alloc = tmc_etr_alloc_sg_buf,
763 	.free = tmc_etr_free_sg_buf,
764 	.sync = tmc_etr_sync_sg_buf,
765 	.get_data = tmc_etr_get_data_sg_buf,
766 };
767 
768 /*
769  * TMC ETR could be connected to a CATU device, which can provide address
770  * translation service. This is represented by the Output port of the TMC
771  * (ETR) connected to the input port of the CATU.
772  *
773  * Returns	: coresight_device ptr for the CATU device if a CATU is found.
774  *		: NULL otherwise.
775  */
776 struct coresight_device *
777 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
778 {
779 	struct coresight_device *etr = drvdata->csdev;
780 	union coresight_dev_subtype catu_subtype = {
781 		.helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU
782 	};
783 
784 	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
785 		return NULL;
786 
787 	return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER,
788 					  catu_subtype);
789 }
790 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
791 
792 static const struct etr_buf_operations *etr_buf_ops[] = {
793 	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
794 	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
795 	[ETR_MODE_CATU] = NULL,
796 };
797 
798 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
799 {
800 	etr_buf_ops[ETR_MODE_CATU] = catu;
801 }
802 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
803 
804 void tmc_etr_remove_catu_ops(void)
805 {
806 	etr_buf_ops[ETR_MODE_CATU] = NULL;
807 }
808 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
809 
810 static inline int tmc_etr_mode_alloc_buf(int mode,
811 					 struct tmc_drvdata *drvdata,
812 					 struct etr_buf *etr_buf, int node,
813 					 void **pages)
814 {
815 	int rc = -EINVAL;
816 
817 	switch (mode) {
818 	case ETR_MODE_FLAT:
819 	case ETR_MODE_ETR_SG:
820 	case ETR_MODE_CATU:
821 		if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
822 			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
823 						      node, pages);
824 		if (!rc)
825 			etr_buf->ops = etr_buf_ops[mode];
826 		return rc;
827 	default:
828 		return -EINVAL;
829 	}
830 }
831 
832 /*
833  * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
834  * @drvdata	: ETR device details.
835  * @size	: size of the requested buffer.
836  * @flags	: Required properties for the buffer.
837  * @node	: Node for memory allocations.
838  * @pages	: An optional list of pages.
839  */
840 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
841 					 ssize_t size, int flags,
842 					 int node, void **pages)
843 {
844 	int rc = -ENOMEM;
845 	bool has_etr_sg, has_iommu;
846 	bool has_sg, has_catu;
847 	struct etr_buf *etr_buf;
848 	struct device *dev = &drvdata->csdev->dev;
849 
850 	has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
851 	has_iommu = iommu_get_domain_for_dev(dev->parent);
852 	has_catu = !!tmc_etr_get_catu_device(drvdata);
853 
854 	has_sg = has_catu || has_etr_sg;
855 
856 	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
857 	if (!etr_buf)
858 		return ERR_PTR(-ENOMEM);
859 
860 	etr_buf->size = size;
861 
862 	/*
863 	 * If we have to use an existing list of pages, we cannot reliably
864 	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
865 	 * we use the contiguous DMA memory if at least one of the following
866 	 * conditions is true:
867 	 *  a) The ETR cannot use Scatter-Gather.
868 	 *  b) we have a backing IOMMU
869 	 *  c) The requested memory size is smaller (< 1M).
870 	 *
871 	 * Fallback to available mechanisms.
872 	 *
873 	 */
874 	if (!pages &&
875 	    (!has_sg || has_iommu || size < SZ_1M))
876 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
877 					    etr_buf, node, pages);
878 	if (rc && has_etr_sg)
879 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
880 					    etr_buf, node, pages);
881 	if (rc && has_catu)
882 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
883 					    etr_buf, node, pages);
884 	if (rc) {
885 		kfree(etr_buf);
886 		return ERR_PTR(rc);
887 	}
888 
889 	refcount_set(&etr_buf->refcount, 1);
890 	dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
891 		(unsigned long)size >> 10, etr_buf->mode);
892 	return etr_buf;
893 }
894 
895 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
896 {
897 	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
898 	etr_buf->ops->free(etr_buf);
899 	kfree(etr_buf);
900 }
901 
902 /*
903  * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
904  * with a maximum of @len bytes.
905  * Returns: The size of the linear data available @pos, with *bufpp
906  * updated to point to the buffer.
907  */
908 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
909 				    u64 offset, size_t len, char **bufpp)
910 {
911 	/* Adjust the length to limit this transaction to end of buffer */
912 	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
913 
914 	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
915 }
916 
917 static inline s64
918 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
919 {
920 	ssize_t len;
921 	char *bufp;
922 
923 	len = tmc_etr_buf_get_data(etr_buf, offset,
924 				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
925 	if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
926 		return -EINVAL;
927 	coresight_insert_barrier_packet(bufp);
928 	return offset + CORESIGHT_BARRIER_PKT_SIZE;
929 }
930 
931 /*
932  * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
933  * Makes sure the trace data is synced to the memory for consumption.
934  * @etr_buf->offset will hold the offset to the beginning of the trace data
935  * within the buffer, with @etr_buf->len bytes to consume.
936  */
937 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
938 {
939 	struct etr_buf *etr_buf = drvdata->etr_buf;
940 	u64 rrp, rwp;
941 	u32 status;
942 
943 	rrp = tmc_read_rrp(drvdata);
944 	rwp = tmc_read_rwp(drvdata);
945 	status = readl_relaxed(drvdata->base + TMC_STS);
946 
947 	/*
948 	 * If there were memory errors in the session, truncate the
949 	 * buffer.
950 	 */
951 	if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
952 		dev_dbg(&drvdata->csdev->dev,
953 			"tmc memory error detected, truncating buffer\n");
954 		etr_buf->len = 0;
955 		etr_buf->full = false;
956 		return;
957 	}
958 
959 	etr_buf->full = !!(status & TMC_STS_FULL);
960 
961 	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
962 
963 	etr_buf->ops->sync(etr_buf, rrp, rwp);
964 }
965 
966 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
967 {
968 	u32 axictl, sts;
969 	struct etr_buf *etr_buf = drvdata->etr_buf;
970 	int rc = 0;
971 
972 	CS_UNLOCK(drvdata->base);
973 
974 	/* Wait for TMCSReady bit to be set */
975 	rc = tmc_wait_for_tmcready(drvdata);
976 	if (rc) {
977 		dev_err(&drvdata->csdev->dev,
978 			"Failed to enable : TMC not ready\n");
979 		CS_LOCK(drvdata->base);
980 		return rc;
981 	}
982 
983 	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
984 	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
985 
986 	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
987 	axictl &= ~TMC_AXICTL_CLEAR_MASK;
988 	axictl |= TMC_AXICTL_PROT_CTL_B1;
989 	axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size);
990 	axictl |= TMC_AXICTL_AXCACHE_OS;
991 
992 	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
993 		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
994 		axictl |= TMC_AXICTL_ARCACHE_OS;
995 	}
996 
997 	if (etr_buf->mode == ETR_MODE_ETR_SG)
998 		axictl |= TMC_AXICTL_SCT_GAT_MODE;
999 
1000 	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
1001 	tmc_write_dba(drvdata, etr_buf->hwaddr);
1002 	/*
1003 	 * If the TMC pointers must be programmed before the session,
1004 	 * we have to set it properly (i.e, RRP/RWP to base address and
1005 	 * STS to "not full").
1006 	 */
1007 	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1008 		tmc_write_rrp(drvdata, etr_buf->hwaddr);
1009 		tmc_write_rwp(drvdata, etr_buf->hwaddr);
1010 		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1011 		writel_relaxed(sts, drvdata->base + TMC_STS);
1012 	}
1013 
1014 	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1015 		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1016 		       TMC_FFCR_TRIGON_TRIGIN,
1017 		       drvdata->base + TMC_FFCR);
1018 	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1019 	tmc_enable_hw(drvdata);
1020 
1021 	CS_LOCK(drvdata->base);
1022 	return rc;
1023 }
1024 
1025 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1026 			     struct etr_buf *etr_buf)
1027 {
1028 	int rc;
1029 
1030 	/* Callers should provide an appropriate buffer for use */
1031 	if (WARN_ON(!etr_buf))
1032 		return -EINVAL;
1033 
1034 	if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1035 	    WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1036 		return -EINVAL;
1037 
1038 	if (WARN_ON(drvdata->etr_buf))
1039 		return -EBUSY;
1040 
1041 	rc = coresight_claim_device(drvdata->csdev);
1042 	if (!rc) {
1043 		drvdata->etr_buf = etr_buf;
1044 		rc = __tmc_etr_enable_hw(drvdata);
1045 		if (rc) {
1046 			drvdata->etr_buf = NULL;
1047 			coresight_disclaim_device(drvdata->csdev);
1048 		}
1049 	}
1050 
1051 	return rc;
1052 }
1053 
1054 /*
1055  * Return the available trace data in the buffer (starts at etr_buf->offset,
1056  * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1057  * also updating the @bufpp on where to find it. Since the trace data
1058  * starts at anywhere in the buffer, depending on the RRP, we adjust the
1059  * @len returned to handle buffer wrapping around.
1060  *
1061  * We are protected here by drvdata->reading != 0, which ensures the
1062  * sysfs_buf stays alive.
1063  */
1064 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1065 				loff_t pos, size_t len, char **bufpp)
1066 {
1067 	s64 offset;
1068 	ssize_t actual = len;
1069 	struct etr_buf *etr_buf = drvdata->sysfs_buf;
1070 
1071 	if (pos + actual > etr_buf->len)
1072 		actual = etr_buf->len - pos;
1073 	if (actual <= 0)
1074 		return actual;
1075 
1076 	/* Compute the offset from which we read the data */
1077 	offset = etr_buf->offset + pos;
1078 	if (offset >= etr_buf->size)
1079 		offset -= etr_buf->size;
1080 	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1081 }
1082 
1083 static struct etr_buf *
1084 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1085 {
1086 	return tmc_alloc_etr_buf(drvdata, drvdata->size,
1087 				 0, cpu_to_node(0), NULL);
1088 }
1089 
1090 static void
1091 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1092 {
1093 	if (buf)
1094 		tmc_free_etr_buf(buf);
1095 }
1096 
1097 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1098 {
1099 	struct etr_buf *etr_buf = drvdata->etr_buf;
1100 
1101 	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1102 		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1103 		drvdata->sysfs_buf = NULL;
1104 	} else {
1105 		tmc_sync_etr_buf(drvdata);
1106 		/*
1107 		 * Insert barrier packets at the beginning, if there was
1108 		 * an overflow.
1109 		 */
1110 		if (etr_buf->full)
1111 			tmc_etr_buf_insert_barrier_packet(etr_buf,
1112 							  etr_buf->offset);
1113 	}
1114 }
1115 
1116 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1117 {
1118 	CS_UNLOCK(drvdata->base);
1119 
1120 	tmc_flush_and_stop(drvdata);
1121 	/*
1122 	 * When operating in sysFS mode the content of the buffer needs to be
1123 	 * read before the TMC is disabled.
1124 	 */
1125 	if (drvdata->mode == CS_MODE_SYSFS)
1126 		tmc_etr_sync_sysfs_buf(drvdata);
1127 
1128 	tmc_disable_hw(drvdata);
1129 
1130 	CS_LOCK(drvdata->base);
1131 
1132 }
1133 
1134 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1135 {
1136 	__tmc_etr_disable_hw(drvdata);
1137 	coresight_disclaim_device(drvdata->csdev);
1138 	/* Reset the ETR buf used by hardware */
1139 	drvdata->etr_buf = NULL;
1140 }
1141 
1142 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev)
1143 {
1144 	int ret = 0;
1145 	unsigned long flags;
1146 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1147 	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1148 
1149 	/*
1150 	 * If we are enabling the ETR from disabled state, we need to make
1151 	 * sure we have a buffer with the right size. The etr_buf is not reset
1152 	 * immediately after we stop the tracing in SYSFS mode as we wait for
1153 	 * the user to collect the data. We may be able to reuse the existing
1154 	 * buffer, provided the size matches. Any allocation has to be done
1155 	 * with the lock released.
1156 	 */
1157 	spin_lock_irqsave(&drvdata->spinlock, flags);
1158 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1159 	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1160 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1161 
1162 		/* Allocate memory with the locks released */
1163 		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1164 		if (IS_ERR(new_buf))
1165 			return new_buf;
1166 
1167 		/* Let's try again */
1168 		spin_lock_irqsave(&drvdata->spinlock, flags);
1169 	}
1170 
1171 	if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1172 		ret = -EBUSY;
1173 		goto out;
1174 	}
1175 
1176 	/*
1177 	 * In sysFS mode we can have multiple writers per sink.  Since this
1178 	 * sink is already enabled no memory is needed and the HW need not be
1179 	 * touched, even if the buffer size has changed.
1180 	 */
1181 	if (drvdata->mode == CS_MODE_SYSFS) {
1182 		atomic_inc(&csdev->refcnt);
1183 		goto out;
1184 	}
1185 
1186 	/*
1187 	 * If we don't have a buffer or it doesn't match the requested size,
1188 	 * use the buffer allocated above. Otherwise reuse the existing buffer.
1189 	 */
1190 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1191 	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1192 		free_buf = sysfs_buf;
1193 		drvdata->sysfs_buf = new_buf;
1194 	}
1195 
1196 out:
1197 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1198 
1199 	/* Free memory outside the spinlock if need be */
1200 	if (free_buf)
1201 		tmc_etr_free_sysfs_buf(free_buf);
1202 	return ret ? ERR_PTR(ret) : drvdata->sysfs_buf;
1203 }
1204 
1205 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1206 {
1207 	int ret;
1208 	unsigned long flags;
1209 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1210 	struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev);
1211 
1212 	if (IS_ERR(sysfs_buf))
1213 		return PTR_ERR(sysfs_buf);
1214 
1215 	spin_lock_irqsave(&drvdata->spinlock, flags);
1216 	ret = tmc_etr_enable_hw(drvdata, sysfs_buf);
1217 	if (!ret) {
1218 		drvdata->mode = CS_MODE_SYSFS;
1219 		atomic_inc(&csdev->refcnt);
1220 	}
1221 
1222 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1223 
1224 	if (!ret)
1225 		dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1226 
1227 	return ret;
1228 }
1229 
1230 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev,
1231 				   enum cs_mode mode, void *data)
1232 {
1233 	struct perf_output_handle *handle = data;
1234 	struct etr_perf_buffer *etr_perf;
1235 
1236 	switch (mode) {
1237 	case CS_MODE_SYSFS:
1238 		return tmc_etr_get_sysfs_buffer(csdev);
1239 	case CS_MODE_PERF:
1240 		etr_perf = etm_perf_sink_config(handle);
1241 		if (WARN_ON(!etr_perf || !etr_perf->etr_buf))
1242 			return ERR_PTR(-EINVAL);
1243 		return etr_perf->etr_buf;
1244 	default:
1245 		return ERR_PTR(-EINVAL);
1246 	}
1247 }
1248 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer);
1249 
1250 /*
1251  * alloc_etr_buf: Allocate ETR buffer for use by perf.
1252  * The size of the hardware buffer is dependent on the size configured
1253  * via sysfs and the perf ring buffer size. We prefer to allocate the
1254  * largest possible size, scaling down the size by half until it
1255  * reaches a minimum limit (1M), beyond which we give up.
1256  */
1257 static struct etr_buf *
1258 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1259 	      int nr_pages, void **pages, bool snapshot)
1260 {
1261 	int node;
1262 	struct etr_buf *etr_buf;
1263 	unsigned long size;
1264 
1265 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1266 	/*
1267 	 * Try to match the perf ring buffer size if it is larger
1268 	 * than the size requested via sysfs.
1269 	 */
1270 	if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1271 		etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
1272 					    0, node, NULL);
1273 		if (!IS_ERR(etr_buf))
1274 			goto done;
1275 	}
1276 
1277 	/*
1278 	 * Else switch to configured size for this ETR
1279 	 * and scale down until we hit the minimum limit.
1280 	 */
1281 	size = drvdata->size;
1282 	do {
1283 		etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1284 		if (!IS_ERR(etr_buf))
1285 			goto done;
1286 		size /= 2;
1287 	} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1288 
1289 	return ERR_PTR(-ENOMEM);
1290 
1291 done:
1292 	return etr_buf;
1293 }
1294 
1295 static struct etr_buf *
1296 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1297 			  struct perf_event *event, int nr_pages,
1298 			  void **pages, bool snapshot)
1299 {
1300 	int ret;
1301 	pid_t pid = task_pid_nr(event->owner);
1302 	struct etr_buf *etr_buf;
1303 
1304 retry:
1305 	/*
1306 	 * An etr_perf_buffer is associated with an event and holds a reference
1307 	 * to the AUX ring buffer that was created for that event.  In CPU-wide
1308 	 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1309 	 * buffer, share a sink.  As such an etr_perf_buffer is created for each
1310 	 * event but a single etr_buf associated with the ETR is shared between
1311 	 * them.  The last event in a trace session will copy the content of the
1312 	 * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1313 	 * events are simply not used an freed as events are destoyed.  We still
1314 	 * need to allocate a ring buffer for each event since we don't know
1315 	 * which event will be last.
1316 	 */
1317 
1318 	/*
1319 	 * The first thing to do here is check if an etr_buf has already been
1320 	 * allocated for this session.  If so it is shared with this event,
1321 	 * otherwise it is created.
1322 	 */
1323 	mutex_lock(&drvdata->idr_mutex);
1324 	etr_buf = idr_find(&drvdata->idr, pid);
1325 	if (etr_buf) {
1326 		refcount_inc(&etr_buf->refcount);
1327 		mutex_unlock(&drvdata->idr_mutex);
1328 		return etr_buf;
1329 	}
1330 
1331 	/* If we made it here no buffer has been allocated, do so now. */
1332 	mutex_unlock(&drvdata->idr_mutex);
1333 
1334 	etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1335 	if (IS_ERR(etr_buf))
1336 		return etr_buf;
1337 
1338 	/* Now that we have a buffer, add it to the IDR. */
1339 	mutex_lock(&drvdata->idr_mutex);
1340 	ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1341 	mutex_unlock(&drvdata->idr_mutex);
1342 
1343 	/* Another event with this session ID has allocated this buffer. */
1344 	if (ret == -ENOSPC) {
1345 		tmc_free_etr_buf(etr_buf);
1346 		goto retry;
1347 	}
1348 
1349 	/* The IDR can't allocate room for a new session, abandon ship. */
1350 	if (ret == -ENOMEM) {
1351 		tmc_free_etr_buf(etr_buf);
1352 		return ERR_PTR(ret);
1353 	}
1354 
1355 
1356 	return etr_buf;
1357 }
1358 
1359 static struct etr_buf *
1360 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1361 			    struct perf_event *event, int nr_pages,
1362 			    void **pages, bool snapshot)
1363 {
1364 	/*
1365 	 * In per-thread mode the etr_buf isn't shared, so just go ahead
1366 	 * with memory allocation.
1367 	 */
1368 	return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1369 }
1370 
1371 static struct etr_buf *
1372 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1373 		 int nr_pages, void **pages, bool snapshot)
1374 {
1375 	if (event->cpu == -1)
1376 		return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1377 						   pages, snapshot);
1378 
1379 	return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1380 					 pages, snapshot);
1381 }
1382 
1383 static struct etr_perf_buffer *
1384 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1385 		       int nr_pages, void **pages, bool snapshot)
1386 {
1387 	int node;
1388 	struct etr_buf *etr_buf;
1389 	struct etr_perf_buffer *etr_perf;
1390 
1391 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1392 
1393 	etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1394 	if (!etr_perf)
1395 		return ERR_PTR(-ENOMEM);
1396 
1397 	etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1398 	if (!IS_ERR(etr_buf))
1399 		goto done;
1400 
1401 	kfree(etr_perf);
1402 	return ERR_PTR(-ENOMEM);
1403 
1404 done:
1405 	/*
1406 	 * Keep a reference to the ETR this buffer has been allocated for
1407 	 * in order to have access to the IDR in tmc_free_etr_buffer().
1408 	 */
1409 	etr_perf->drvdata = drvdata;
1410 	etr_perf->etr_buf = etr_buf;
1411 
1412 	return etr_perf;
1413 }
1414 
1415 
1416 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1417 				  struct perf_event *event, void **pages,
1418 				  int nr_pages, bool snapshot)
1419 {
1420 	struct etr_perf_buffer *etr_perf;
1421 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1422 
1423 	etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1424 					  nr_pages, pages, snapshot);
1425 	if (IS_ERR(etr_perf)) {
1426 		dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1427 		return NULL;
1428 	}
1429 
1430 	etr_perf->pid = task_pid_nr(event->owner);
1431 	etr_perf->snapshot = snapshot;
1432 	etr_perf->nr_pages = nr_pages;
1433 	etr_perf->pages = pages;
1434 
1435 	return etr_perf;
1436 }
1437 
1438 static void tmc_free_etr_buffer(void *config)
1439 {
1440 	struct etr_perf_buffer *etr_perf = config;
1441 	struct tmc_drvdata *drvdata = etr_perf->drvdata;
1442 	struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1443 
1444 	if (!etr_buf)
1445 		goto free_etr_perf_buffer;
1446 
1447 	mutex_lock(&drvdata->idr_mutex);
1448 	/* If we are not the last one to use the buffer, don't touch it. */
1449 	if (!refcount_dec_and_test(&etr_buf->refcount)) {
1450 		mutex_unlock(&drvdata->idr_mutex);
1451 		goto free_etr_perf_buffer;
1452 	}
1453 
1454 	/* We are the last one, remove from the IDR and free the buffer. */
1455 	buf = idr_remove(&drvdata->idr, etr_perf->pid);
1456 	mutex_unlock(&drvdata->idr_mutex);
1457 
1458 	/*
1459 	 * Something went very wrong if the buffer associated with this ID
1460 	 * is not the same in the IDR.  Leak to avoid use after free.
1461 	 */
1462 	if (buf && WARN_ON(buf != etr_buf))
1463 		goto free_etr_perf_buffer;
1464 
1465 	tmc_free_etr_buf(etr_perf->etr_buf);
1466 
1467 free_etr_perf_buffer:
1468 	kfree(etr_perf);
1469 }
1470 
1471 /*
1472  * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1473  * buffer to the perf ring buffer.
1474  */
1475 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1476 				     unsigned long head,
1477 				     unsigned long src_offset,
1478 				     unsigned long to_copy)
1479 {
1480 	long bytes;
1481 	long pg_idx, pg_offset;
1482 	char **dst_pages, *src_buf;
1483 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1484 
1485 	head = PERF_IDX2OFF(head, etr_perf);
1486 	pg_idx = head >> PAGE_SHIFT;
1487 	pg_offset = head & (PAGE_SIZE - 1);
1488 	dst_pages = (char **)etr_perf->pages;
1489 
1490 	while (to_copy > 0) {
1491 		/*
1492 		 * In one iteration, we can copy minimum of :
1493 		 *  1) what is available in the source buffer,
1494 		 *  2) what is available in the source buffer, before it
1495 		 *     wraps around.
1496 		 *  3) what is available in the destination page.
1497 		 * in one iteration.
1498 		 */
1499 		if (src_offset >= etr_buf->size)
1500 			src_offset -= etr_buf->size;
1501 		bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1502 					     &src_buf);
1503 		if (WARN_ON_ONCE(bytes <= 0))
1504 			break;
1505 		bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1506 
1507 		memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1508 
1509 		to_copy -= bytes;
1510 
1511 		/* Move destination pointers */
1512 		pg_offset += bytes;
1513 		if (pg_offset == PAGE_SIZE) {
1514 			pg_offset = 0;
1515 			if (++pg_idx == etr_perf->nr_pages)
1516 				pg_idx = 0;
1517 		}
1518 
1519 		/* Move source pointers */
1520 		src_offset += bytes;
1521 	}
1522 }
1523 
1524 /*
1525  * tmc_update_etr_buffer : Update the perf ring buffer with the
1526  * available trace data. We use software double buffering at the moment.
1527  *
1528  * TODO: Add support for reusing the perf ring buffer.
1529  */
1530 static unsigned long
1531 tmc_update_etr_buffer(struct coresight_device *csdev,
1532 		      struct perf_output_handle *handle,
1533 		      void *config)
1534 {
1535 	bool lost = false;
1536 	unsigned long flags, offset, size = 0;
1537 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1538 	struct etr_perf_buffer *etr_perf = config;
1539 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1540 
1541 	spin_lock_irqsave(&drvdata->spinlock, flags);
1542 
1543 	/* Don't do anything if another tracer is using this sink */
1544 	if (atomic_read(&csdev->refcnt) != 1) {
1545 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1546 		goto out;
1547 	}
1548 
1549 	if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1550 		lost = true;
1551 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1552 		goto out;
1553 	}
1554 
1555 	CS_UNLOCK(drvdata->base);
1556 
1557 	tmc_flush_and_stop(drvdata);
1558 	tmc_sync_etr_buf(drvdata);
1559 
1560 	CS_LOCK(drvdata->base);
1561 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1562 
1563 	lost = etr_buf->full;
1564 	offset = etr_buf->offset;
1565 	size = etr_buf->len;
1566 
1567 	/*
1568 	 * The ETR buffer may be bigger than the space available in the
1569 	 * perf ring buffer (handle->size).  If so advance the offset so that we
1570 	 * get the latest trace data.  In snapshot mode none of that matters
1571 	 * since we are expected to clobber stale data in favour of the latest
1572 	 * traces.
1573 	 */
1574 	if (!etr_perf->snapshot && size > handle->size) {
1575 		u32 mask = tmc_get_memwidth_mask(drvdata);
1576 
1577 		/*
1578 		 * Make sure the new size is aligned in accordance with the
1579 		 * requirement explained in function tmc_get_memwidth_mask().
1580 		 */
1581 		size = handle->size & mask;
1582 		offset = etr_buf->offset + etr_buf->len - size;
1583 
1584 		if (offset >= etr_buf->size)
1585 			offset -= etr_buf->size;
1586 		lost = true;
1587 	}
1588 
1589 	/* Insert barrier packets at the beginning, if there was an overflow */
1590 	if (lost)
1591 		tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1592 	tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size);
1593 
1594 	/*
1595 	 * In snapshot mode we simply increment the head by the number of byte
1596 	 * that were written.  User space will figure out how many bytes to get
1597 	 * from the AUX buffer based on the position of the head.
1598 	 */
1599 	if (etr_perf->snapshot)
1600 		handle->head += size;
1601 
1602 	/*
1603 	 * Ensure that the AUX trace data is visible before the aux_head
1604 	 * is updated via perf_aux_output_end(), as expected by the
1605 	 * perf ring buffer.
1606 	 */
1607 	smp_wmb();
1608 
1609 out:
1610 	/*
1611 	 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1612 	 * captured buffer is expected to be truncated and 2) a full buffer
1613 	 * prevents the event from being re-enabled by the perf core,
1614 	 * resulting in stale data being send to user space.
1615 	 */
1616 	if (!etr_perf->snapshot && lost)
1617 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1618 	return size;
1619 }
1620 
1621 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1622 {
1623 	int rc = 0;
1624 	pid_t pid;
1625 	unsigned long flags;
1626 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1627 	struct perf_output_handle *handle = data;
1628 	struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1629 
1630 	spin_lock_irqsave(&drvdata->spinlock, flags);
1631 	 /* Don't use this sink if it is already claimed by sysFS */
1632 	if (drvdata->mode == CS_MODE_SYSFS) {
1633 		rc = -EBUSY;
1634 		goto unlock_out;
1635 	}
1636 
1637 	if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1638 		rc = -EINVAL;
1639 		goto unlock_out;
1640 	}
1641 
1642 	/* Get a handle on the pid of the process to monitor */
1643 	pid = etr_perf->pid;
1644 
1645 	/* Do not proceed if this device is associated with another session */
1646 	if (drvdata->pid != -1 && drvdata->pid != pid) {
1647 		rc = -EBUSY;
1648 		goto unlock_out;
1649 	}
1650 
1651 	/*
1652 	 * No HW configuration is needed if the sink is already in
1653 	 * use for this session.
1654 	 */
1655 	if (drvdata->pid == pid) {
1656 		atomic_inc(&csdev->refcnt);
1657 		goto unlock_out;
1658 	}
1659 
1660 	rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1661 	if (!rc) {
1662 		/* Associate with monitored process. */
1663 		drvdata->pid = pid;
1664 		drvdata->mode = CS_MODE_PERF;
1665 		drvdata->perf_buf = etr_perf->etr_buf;
1666 		atomic_inc(&csdev->refcnt);
1667 	}
1668 
1669 unlock_out:
1670 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1671 	return rc;
1672 }
1673 
1674 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1675 			       enum cs_mode mode, void *data)
1676 {
1677 	switch (mode) {
1678 	case CS_MODE_SYSFS:
1679 		return tmc_enable_etr_sink_sysfs(csdev);
1680 	case CS_MODE_PERF:
1681 		return tmc_enable_etr_sink_perf(csdev, data);
1682 	default:
1683 		return -EINVAL;
1684 	}
1685 }
1686 
1687 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1688 {
1689 	unsigned long flags;
1690 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1691 
1692 	spin_lock_irqsave(&drvdata->spinlock, flags);
1693 
1694 	if (drvdata->reading) {
1695 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1696 		return -EBUSY;
1697 	}
1698 
1699 	if (atomic_dec_return(&csdev->refcnt)) {
1700 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1701 		return -EBUSY;
1702 	}
1703 
1704 	/* Complain if we (somehow) got out of sync */
1705 	WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1706 	tmc_etr_disable_hw(drvdata);
1707 	/* Dissociate from monitored process. */
1708 	drvdata->pid = -1;
1709 	drvdata->mode = CS_MODE_DISABLED;
1710 	/* Reset perf specific data */
1711 	drvdata->perf_buf = NULL;
1712 
1713 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1714 
1715 	dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1716 	return 0;
1717 }
1718 
1719 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1720 	.enable		= tmc_enable_etr_sink,
1721 	.disable	= tmc_disable_etr_sink,
1722 	.alloc_buffer	= tmc_alloc_etr_buffer,
1723 	.update_buffer	= tmc_update_etr_buffer,
1724 	.free_buffer	= tmc_free_etr_buffer,
1725 };
1726 
1727 const struct coresight_ops tmc_etr_cs_ops = {
1728 	.sink_ops	= &tmc_etr_sink_ops,
1729 };
1730 
1731 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1732 {
1733 	int ret = 0;
1734 	unsigned long flags;
1735 
1736 	/* config types are set a boot time and never change */
1737 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1738 		return -EINVAL;
1739 
1740 	spin_lock_irqsave(&drvdata->spinlock, flags);
1741 	if (drvdata->reading) {
1742 		ret = -EBUSY;
1743 		goto out;
1744 	}
1745 
1746 	/*
1747 	 * We can safely allow reads even if the ETR is operating in PERF mode,
1748 	 * since the sysfs session is captured in mode specific data.
1749 	 * If drvdata::sysfs_data is NULL the trace data has been read already.
1750 	 */
1751 	if (!drvdata->sysfs_buf) {
1752 		ret = -EINVAL;
1753 		goto out;
1754 	}
1755 
1756 	/* Disable the TMC if we are trying to read from a running session. */
1757 	if (drvdata->mode == CS_MODE_SYSFS)
1758 		__tmc_etr_disable_hw(drvdata);
1759 
1760 	drvdata->reading = true;
1761 out:
1762 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1763 
1764 	return ret;
1765 }
1766 
1767 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1768 {
1769 	unsigned long flags;
1770 	struct etr_buf *sysfs_buf = NULL;
1771 
1772 	/* config types are set a boot time and never change */
1773 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1774 		return -EINVAL;
1775 
1776 	spin_lock_irqsave(&drvdata->spinlock, flags);
1777 
1778 	/* RE-enable the TMC if need be */
1779 	if (drvdata->mode == CS_MODE_SYSFS) {
1780 		/*
1781 		 * The trace run will continue with the same allocated trace
1782 		 * buffer. Since the tracer is still enabled drvdata::buf can't
1783 		 * be NULL.
1784 		 */
1785 		__tmc_etr_enable_hw(drvdata);
1786 	} else {
1787 		/*
1788 		 * The ETR is not tracing and the buffer was just read.
1789 		 * As such prepare to free the trace buffer.
1790 		 */
1791 		sysfs_buf = drvdata->sysfs_buf;
1792 		drvdata->sysfs_buf = NULL;
1793 	}
1794 
1795 	drvdata->reading = false;
1796 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1797 
1798 	/* Free allocated memory out side of the spinlock */
1799 	if (sysfs_buf)
1800 		tmc_etr_free_sysfs_buf(sysfs_buf);
1801 
1802 	return 0;
1803 }
1804