1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2016 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21 
22 struct etr_flat_buf {
23 	struct device	*dev;
24 	dma_addr_t	daddr;
25 	void		*vaddr;
26 	size_t		size;
27 };
28 
29 /*
30  * etr_perf_buffer - Perf buffer used for ETR
31  * @drvdata		- The ETR drvdaga this buffer has been allocated for.
32  * @etr_buf		- Actual buffer used by the ETR
33  * @pid			- The PID this etr_perf_buffer belongs to.
34  * @snaphost		- Perf session mode
35  * @nr_pages		- Number of pages in the ring buffer.
36  * @pages		- Array of Pages in the ring buffer.
37  */
38 struct etr_perf_buffer {
39 	struct tmc_drvdata	*drvdata;
40 	struct etr_buf		*etr_buf;
41 	pid_t			pid;
42 	bool			snapshot;
43 	int			nr_pages;
44 	void			**pages;
45 };
46 
47 /* Convert the perf index to an offset within the ETR buffer */
48 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
49 
50 /* Lower limit for ETR hardware buffer */
51 #define TMC_ETR_PERF_MIN_BUF_SIZE	SZ_1M
52 
53 /*
54  * The TMC ETR SG has a page size of 4K. The SG table contains pointers
55  * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
56  * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
57  * contain more than one SG buffer and tables.
58  *
59  * A table entry has the following format:
60  *
61  * ---Bit31------------Bit4-------Bit1-----Bit0--
62  * |     Address[39:12]    | SBZ |  Entry Type  |
63  * ----------------------------------------------
64  *
65  * Address: Bits [39:12] of a physical page address. Bits [11:0] are
66  *	    always zero.
67  *
68  * Entry type:
69  *	b00 - Reserved.
70  *	b01 - Last entry in the tables, points to 4K page buffer.
71  *	b10 - Normal entry, points to 4K page buffer.
72  *	b11 - Link. The address points to the base of next table.
73  */
74 
75 typedef u32 sgte_t;
76 
77 #define ETR_SG_PAGE_SHIFT		12
78 #define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
79 #define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
80 #define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
81 #define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))
82 
83 #define ETR_SG_ET_MASK			0x3
84 #define ETR_SG_ET_LAST			0x1
85 #define ETR_SG_ET_NORMAL		0x2
86 #define ETR_SG_ET_LINK			0x3
87 
88 #define ETR_SG_ADDR_SHIFT		4
89 
90 #define ETR_SG_ENTRY(addr, type) \
91 	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
92 		 (type & ETR_SG_ET_MASK))
93 
94 #define ETR_SG_ADDR(entry) \
95 	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
96 #define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)
97 
98 /*
99  * struct etr_sg_table : ETR SG Table
100  * @sg_table:		Generic SG Table holding the data/table pages.
101  * @hwaddr:		hwaddress used by the TMC, which is the base
102  *			address of the table.
103  */
104 struct etr_sg_table {
105 	struct tmc_sg_table	*sg_table;
106 	dma_addr_t		hwaddr;
107 };
108 
109 /*
110  * tmc_etr_sg_table_entries: Total number of table entries required to map
111  * @nr_pages system pages.
112  *
113  * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
114  * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
115  * with the last entry pointing to another page of table entries.
116  * If we spill over to a new page for mapping 1 entry, we could as
117  * well replace the link entry of the previous page with the last entry.
118  */
119 static inline unsigned long __attribute_const__
120 tmc_etr_sg_table_entries(int nr_pages)
121 {
122 	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
123 	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
124 	/*
125 	 * If we spill over to a new page for 1 entry, we could as well
126 	 * make it the LAST entry in the previous page, skipping the Link
127 	 * address.
128 	 */
129 	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
130 		nr_sglinks--;
131 	return nr_sgpages + nr_sglinks;
132 }
133 
134 /*
135  * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
136  * and map the device address @addr to an offset within the virtual
137  * contiguous buffer.
138  */
139 static long
140 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
141 {
142 	int i;
143 	dma_addr_t page_start;
144 
145 	for (i = 0; i < tmc_pages->nr_pages; i++) {
146 		page_start = tmc_pages->daddrs[i];
147 		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
148 			return i * PAGE_SIZE + (addr - page_start);
149 	}
150 
151 	return -EINVAL;
152 }
153 
154 /*
155  * tmc_pages_free : Unmap and free the pages used by tmc_pages.
156  * If the pages were not allocated in tmc_pages_alloc(), we would
157  * simply drop the refcount.
158  */
159 static void tmc_pages_free(struct tmc_pages *tmc_pages,
160 			   struct device *dev, enum dma_data_direction dir)
161 {
162 	int i;
163 	struct device *real_dev = dev->parent;
164 
165 	for (i = 0; i < tmc_pages->nr_pages; i++) {
166 		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
167 			dma_unmap_page(real_dev, tmc_pages->daddrs[i],
168 					 PAGE_SIZE, dir);
169 		if (tmc_pages->pages && tmc_pages->pages[i])
170 			__free_page(tmc_pages->pages[i]);
171 	}
172 
173 	kfree(tmc_pages->pages);
174 	kfree(tmc_pages->daddrs);
175 	tmc_pages->pages = NULL;
176 	tmc_pages->daddrs = NULL;
177 	tmc_pages->nr_pages = 0;
178 }
179 
180 /*
181  * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
182  * If @pages is not NULL, the list of page virtual addresses are
183  * used as the data pages. The pages are then dma_map'ed for @dev
184  * with dma_direction @dir.
185  *
186  * Returns 0 upon success, else the error number.
187  */
188 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
189 			   struct device *dev, int node,
190 			   enum dma_data_direction dir, void **pages)
191 {
192 	int i, nr_pages;
193 	dma_addr_t paddr;
194 	struct page *page;
195 	struct device *real_dev = dev->parent;
196 
197 	nr_pages = tmc_pages->nr_pages;
198 	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
199 					 GFP_KERNEL);
200 	if (!tmc_pages->daddrs)
201 		return -ENOMEM;
202 	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
203 					 GFP_KERNEL);
204 	if (!tmc_pages->pages) {
205 		kfree(tmc_pages->daddrs);
206 		tmc_pages->daddrs = NULL;
207 		return -ENOMEM;
208 	}
209 
210 	for (i = 0; i < nr_pages; i++) {
211 		if (pages && pages[i]) {
212 			page = virt_to_page(pages[i]);
213 			/* Hold a refcount on the page */
214 			get_page(page);
215 		} else {
216 			page = alloc_pages_node(node,
217 						GFP_KERNEL | __GFP_ZERO, 0);
218 			if (!page)
219 				goto err;
220 		}
221 		paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
222 		if (dma_mapping_error(real_dev, paddr))
223 			goto err;
224 		tmc_pages->daddrs[i] = paddr;
225 		tmc_pages->pages[i] = page;
226 	}
227 	return 0;
228 err:
229 	tmc_pages_free(tmc_pages, dev, dir);
230 	return -ENOMEM;
231 }
232 
233 static inline long
234 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
235 {
236 	return tmc_pages_get_offset(&sg_table->data_pages, addr);
237 }
238 
239 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
240 {
241 	if (sg_table->table_vaddr)
242 		vunmap(sg_table->table_vaddr);
243 	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
244 }
245 
246 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
247 {
248 	if (sg_table->data_vaddr)
249 		vunmap(sg_table->data_vaddr);
250 	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
251 }
252 
253 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
254 {
255 	tmc_free_table_pages(sg_table);
256 	tmc_free_data_pages(sg_table);
257 }
258 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
259 
260 /*
261  * Alloc pages for the table. Since this will be used by the device,
262  * allocate the pages closer to the device (i.e, dev_to_node(dev)
263  * rather than the CPU node).
264  */
265 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
266 {
267 	int rc;
268 	struct tmc_pages *table_pages = &sg_table->table_pages;
269 
270 	rc = tmc_pages_alloc(table_pages, sg_table->dev,
271 			     dev_to_node(sg_table->dev),
272 			     DMA_TO_DEVICE, NULL);
273 	if (rc)
274 		return rc;
275 	sg_table->table_vaddr = vmap(table_pages->pages,
276 				     table_pages->nr_pages,
277 				     VM_MAP,
278 				     PAGE_KERNEL);
279 	if (!sg_table->table_vaddr)
280 		rc = -ENOMEM;
281 	else
282 		sg_table->table_daddr = table_pages->daddrs[0];
283 	return rc;
284 }
285 
286 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
287 {
288 	int rc;
289 
290 	/* Allocate data pages on the node requested by the caller */
291 	rc = tmc_pages_alloc(&sg_table->data_pages,
292 			     sg_table->dev, sg_table->node,
293 			     DMA_FROM_DEVICE, pages);
294 	if (!rc) {
295 		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
296 					    sg_table->data_pages.nr_pages,
297 					    VM_MAP,
298 					    PAGE_KERNEL);
299 		if (!sg_table->data_vaddr)
300 			rc = -ENOMEM;
301 	}
302 	return rc;
303 }
304 
305 /*
306  * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
307  * and data buffers. TMC writes to the data buffers and reads from the SG
308  * Table pages.
309  *
310  * @dev		- Coresight device to which page should be DMA mapped.
311  * @node	- Numa node for mem allocations
312  * @nr_tpages	- Number of pages for the table entries.
313  * @nr_dpages	- Number of pages for Data buffer.
314  * @pages	- Optional list of virtual address of pages.
315  */
316 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
317 					int node,
318 					int nr_tpages,
319 					int nr_dpages,
320 					void **pages)
321 {
322 	long rc;
323 	struct tmc_sg_table *sg_table;
324 
325 	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
326 	if (!sg_table)
327 		return ERR_PTR(-ENOMEM);
328 	sg_table->data_pages.nr_pages = nr_dpages;
329 	sg_table->table_pages.nr_pages = nr_tpages;
330 	sg_table->node = node;
331 	sg_table->dev = dev;
332 
333 	rc  = tmc_alloc_data_pages(sg_table, pages);
334 	if (!rc)
335 		rc = tmc_alloc_table_pages(sg_table);
336 	if (rc) {
337 		tmc_free_sg_table(sg_table);
338 		kfree(sg_table);
339 		return ERR_PTR(rc);
340 	}
341 
342 	return sg_table;
343 }
344 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
345 
346 /*
347  * tmc_sg_table_sync_data_range: Sync the data buffer written
348  * by the device from @offset upto a @size bytes.
349  */
350 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
351 				  u64 offset, u64 size)
352 {
353 	int i, index, start;
354 	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
355 	struct device *real_dev = table->dev->parent;
356 	struct tmc_pages *data = &table->data_pages;
357 
358 	start = offset >> PAGE_SHIFT;
359 	for (i = start; i < (start + npages); i++) {
360 		index = i % data->nr_pages;
361 		dma_sync_single_for_cpu(real_dev, data->daddrs[index],
362 					PAGE_SIZE, DMA_FROM_DEVICE);
363 	}
364 }
365 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
366 
367 /* tmc_sg_sync_table: Sync the page table */
368 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
369 {
370 	int i;
371 	struct device *real_dev = sg_table->dev->parent;
372 	struct tmc_pages *table_pages = &sg_table->table_pages;
373 
374 	for (i = 0; i < table_pages->nr_pages; i++)
375 		dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
376 					   PAGE_SIZE, DMA_TO_DEVICE);
377 }
378 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
379 
380 /*
381  * tmc_sg_table_get_data: Get the buffer pointer for data @offset
382  * in the SG buffer. The @bufpp is updated to point to the buffer.
383  * Returns :
384  *	the length of linear data available at @offset.
385  *	or
386  *	<= 0 if no data is available.
387  */
388 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
389 			      u64 offset, size_t len, char **bufpp)
390 {
391 	size_t size;
392 	int pg_idx = offset >> PAGE_SHIFT;
393 	int pg_offset = offset & (PAGE_SIZE - 1);
394 	struct tmc_pages *data_pages = &sg_table->data_pages;
395 
396 	size = tmc_sg_table_buf_size(sg_table);
397 	if (offset >= size)
398 		return -EINVAL;
399 
400 	/* Make sure we don't go beyond the end */
401 	len = (len < (size - offset)) ? len : size - offset;
402 	/* Respect the page boundaries */
403 	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
404 	if (len > 0)
405 		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
406 	return len;
407 }
408 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
409 
410 #ifdef ETR_SG_DEBUG
411 /* Map a dma address to virtual address */
412 static unsigned long
413 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
414 		      dma_addr_t addr, bool table)
415 {
416 	long offset;
417 	unsigned long base;
418 	struct tmc_pages *tmc_pages;
419 
420 	if (table) {
421 		tmc_pages = &sg_table->table_pages;
422 		base = (unsigned long)sg_table->table_vaddr;
423 	} else {
424 		tmc_pages = &sg_table->data_pages;
425 		base = (unsigned long)sg_table->data_vaddr;
426 	}
427 
428 	offset = tmc_pages_get_offset(tmc_pages, addr);
429 	if (offset < 0)
430 		return 0;
431 	return base + offset;
432 }
433 
434 /* Dump the given sg_table */
435 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
436 {
437 	sgte_t *ptr;
438 	int i = 0;
439 	dma_addr_t addr;
440 	struct tmc_sg_table *sg_table = etr_table->sg_table;
441 
442 	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
443 					      etr_table->hwaddr, true);
444 	while (ptr) {
445 		addr = ETR_SG_ADDR(*ptr);
446 		switch (ETR_SG_ET(*ptr)) {
447 		case ETR_SG_ET_NORMAL:
448 			dev_dbg(sg_table->dev,
449 				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
450 			ptr++;
451 			break;
452 		case ETR_SG_ET_LINK:
453 			dev_dbg(sg_table->dev,
454 				"%05d: *** %p\t:{L} 0x%llx ***\n",
455 				 i, ptr, addr);
456 			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
457 							      addr, true);
458 			break;
459 		case ETR_SG_ET_LAST:
460 			dev_dbg(sg_table->dev,
461 				"%05d: ### %p\t:[L] 0x%llx ###\n",
462 				 i, ptr, addr);
463 			return;
464 		default:
465 			dev_dbg(sg_table->dev,
466 				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
467 				 i, ptr, addr);
468 			return;
469 		}
470 		i++;
471 	}
472 	dev_dbg(sg_table->dev, "******* End of Table *****\n");
473 }
474 #else
475 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
476 #endif
477 
478 /*
479  * Populate the SG Table page table entries from table/data
480  * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
481  * So does a Table page. So we keep track of indices of the tables
482  * in each system page and move the pointers accordingly.
483  */
484 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
485 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
486 {
487 	dma_addr_t paddr;
488 	int i, type, nr_entries;
489 	int tpidx = 0; /* index to the current system table_page */
490 	int sgtidx = 0;	/* index to the sg_table within the current syspage */
491 	int sgtentry = 0; /* the entry within the sg_table */
492 	int dpidx = 0; /* index to the current system data_page */
493 	int spidx = 0; /* index to the SG page within the current data page */
494 	sgte_t *ptr; /* pointer to the table entry to fill */
495 	struct tmc_sg_table *sg_table = etr_table->sg_table;
496 	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
497 	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
498 
499 	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
500 	/*
501 	 * Use the contiguous virtual address of the table to update entries.
502 	 */
503 	ptr = sg_table->table_vaddr;
504 	/*
505 	 * Fill all the entries, except the last entry to avoid special
506 	 * checks within the loop.
507 	 */
508 	for (i = 0; i < nr_entries - 1; i++) {
509 		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
510 			/*
511 			 * Last entry in a sg_table page is a link address to
512 			 * the next table page. If this sg_table is the last
513 			 * one in the system page, it links to the first
514 			 * sg_table in the next system page. Otherwise, it
515 			 * links to the next sg_table page within the system
516 			 * page.
517 			 */
518 			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
519 				paddr = table_daddrs[tpidx + 1];
520 			} else {
521 				paddr = table_daddrs[tpidx] +
522 					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
523 			}
524 			type = ETR_SG_ET_LINK;
525 		} else {
526 			/*
527 			 * Update the indices to the data_pages to point to the
528 			 * next sg_page in the data buffer.
529 			 */
530 			type = ETR_SG_ET_NORMAL;
531 			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
532 			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
533 				dpidx++;
534 		}
535 		*ptr++ = ETR_SG_ENTRY(paddr, type);
536 		/*
537 		 * Move to the next table pointer, moving the table page index
538 		 * if necessary
539 		 */
540 		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
541 			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
542 				tpidx++;
543 		}
544 	}
545 
546 	/* Set up the last entry, which is always a data pointer */
547 	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
548 	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
549 }
550 
551 /*
552  * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
553  * populate the table.
554  *
555  * @dev		- Device pointer for the TMC
556  * @node	- NUMA node where the memory should be allocated
557  * @size	- Total size of the data buffer
558  * @pages	- Optional list of page virtual address
559  */
560 static struct etr_sg_table *
561 tmc_init_etr_sg_table(struct device *dev, int node,
562 		      unsigned long size, void **pages)
563 {
564 	int nr_entries, nr_tpages;
565 	int nr_dpages = size >> PAGE_SHIFT;
566 	struct tmc_sg_table *sg_table;
567 	struct etr_sg_table *etr_table;
568 
569 	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
570 	if (!etr_table)
571 		return ERR_PTR(-ENOMEM);
572 	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
573 	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
574 
575 	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
576 	if (IS_ERR(sg_table)) {
577 		kfree(etr_table);
578 		return ERR_CAST(sg_table);
579 	}
580 
581 	etr_table->sg_table = sg_table;
582 	/* TMC should use table base address for DBA */
583 	etr_table->hwaddr = sg_table->table_daddr;
584 	tmc_etr_sg_table_populate(etr_table);
585 	/* Sync the table pages for the HW */
586 	tmc_sg_table_sync_table(sg_table);
587 	tmc_etr_sg_table_dump(etr_table);
588 
589 	return etr_table;
590 }
591 
592 /*
593  * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
594  */
595 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
596 				  struct etr_buf *etr_buf, int node,
597 				  void **pages)
598 {
599 	struct etr_flat_buf *flat_buf;
600 	struct device *real_dev = drvdata->csdev->dev.parent;
601 
602 	/* We cannot reuse existing pages for flat buf */
603 	if (pages)
604 		return -EINVAL;
605 
606 	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
607 	if (!flat_buf)
608 		return -ENOMEM;
609 
610 	flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size,
611 						&flat_buf->daddr,
612 						DMA_FROM_DEVICE, GFP_KERNEL);
613 	if (!flat_buf->vaddr) {
614 		kfree(flat_buf);
615 		return -ENOMEM;
616 	}
617 
618 	flat_buf->size = etr_buf->size;
619 	flat_buf->dev = &drvdata->csdev->dev;
620 	etr_buf->hwaddr = flat_buf->daddr;
621 	etr_buf->mode = ETR_MODE_FLAT;
622 	etr_buf->private = flat_buf;
623 	return 0;
624 }
625 
626 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
627 {
628 	struct etr_flat_buf *flat_buf = etr_buf->private;
629 
630 	if (flat_buf && flat_buf->daddr) {
631 		struct device *real_dev = flat_buf->dev->parent;
632 
633 		dma_free_noncoherent(real_dev, etr_buf->size,
634 				     flat_buf->vaddr, flat_buf->daddr,
635 				     DMA_FROM_DEVICE);
636 	}
637 	kfree(flat_buf);
638 }
639 
640 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
641 {
642 	struct etr_flat_buf *flat_buf = etr_buf->private;
643 	struct device *real_dev = flat_buf->dev->parent;
644 
645 	/*
646 	 * Adjust the buffer to point to the beginning of the trace data
647 	 * and update the available trace data.
648 	 */
649 	etr_buf->offset = rrp - etr_buf->hwaddr;
650 	if (etr_buf->full)
651 		etr_buf->len = etr_buf->size;
652 	else
653 		etr_buf->len = rwp - rrp;
654 
655 	/*
656 	 * The driver always starts tracing at the beginning of the buffer,
657 	 * the only reason why we would get a wrap around is when the buffer
658 	 * is full.  Sync the entire buffer in one go for this case.
659 	 */
660 	if (etr_buf->offset + etr_buf->len > etr_buf->size)
661 		dma_sync_single_for_cpu(real_dev, flat_buf->daddr,
662 					etr_buf->size, DMA_FROM_DEVICE);
663 	else
664 		dma_sync_single_for_cpu(real_dev,
665 					flat_buf->daddr + etr_buf->offset,
666 					etr_buf->len, DMA_FROM_DEVICE);
667 }
668 
669 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
670 					 u64 offset, size_t len, char **bufpp)
671 {
672 	struct etr_flat_buf *flat_buf = etr_buf->private;
673 
674 	*bufpp = (char *)flat_buf->vaddr + offset;
675 	/*
676 	 * tmc_etr_buf_get_data already adjusts the length to handle
677 	 * buffer wrapping around.
678 	 */
679 	return len;
680 }
681 
682 static const struct etr_buf_operations etr_flat_buf_ops = {
683 	.alloc = tmc_etr_alloc_flat_buf,
684 	.free = tmc_etr_free_flat_buf,
685 	.sync = tmc_etr_sync_flat_buf,
686 	.get_data = tmc_etr_get_data_flat_buf,
687 };
688 
689 /*
690  * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
691  * appropriately.
692  */
693 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
694 				struct etr_buf *etr_buf, int node,
695 				void **pages)
696 {
697 	struct etr_sg_table *etr_table;
698 	struct device *dev = &drvdata->csdev->dev;
699 
700 	etr_table = tmc_init_etr_sg_table(dev, node,
701 					  etr_buf->size, pages);
702 	if (IS_ERR(etr_table))
703 		return -ENOMEM;
704 	etr_buf->hwaddr = etr_table->hwaddr;
705 	etr_buf->mode = ETR_MODE_ETR_SG;
706 	etr_buf->private = etr_table;
707 	return 0;
708 }
709 
710 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
711 {
712 	struct etr_sg_table *etr_table = etr_buf->private;
713 
714 	if (etr_table) {
715 		tmc_free_sg_table(etr_table->sg_table);
716 		kfree(etr_table);
717 	}
718 }
719 
720 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
721 				       size_t len, char **bufpp)
722 {
723 	struct etr_sg_table *etr_table = etr_buf->private;
724 
725 	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
726 }
727 
728 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
729 {
730 	long r_offset, w_offset;
731 	struct etr_sg_table *etr_table = etr_buf->private;
732 	struct tmc_sg_table *table = etr_table->sg_table;
733 
734 	/* Convert hw address to offset in the buffer */
735 	r_offset = tmc_sg_get_data_page_offset(table, rrp);
736 	if (r_offset < 0) {
737 		dev_warn(table->dev,
738 			 "Unable to map RRP %llx to offset\n", rrp);
739 		etr_buf->len = 0;
740 		return;
741 	}
742 
743 	w_offset = tmc_sg_get_data_page_offset(table, rwp);
744 	if (w_offset < 0) {
745 		dev_warn(table->dev,
746 			 "Unable to map RWP %llx to offset\n", rwp);
747 		etr_buf->len = 0;
748 		return;
749 	}
750 
751 	etr_buf->offset = r_offset;
752 	if (etr_buf->full)
753 		etr_buf->len = etr_buf->size;
754 	else
755 		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
756 				w_offset - r_offset;
757 	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
758 }
759 
760 static const struct etr_buf_operations etr_sg_buf_ops = {
761 	.alloc = tmc_etr_alloc_sg_buf,
762 	.free = tmc_etr_free_sg_buf,
763 	.sync = tmc_etr_sync_sg_buf,
764 	.get_data = tmc_etr_get_data_sg_buf,
765 };
766 
767 /*
768  * TMC ETR could be connected to a CATU device, which can provide address
769  * translation service. This is represented by the Output port of the TMC
770  * (ETR) connected to the input port of the CATU.
771  *
772  * Returns	: coresight_device ptr for the CATU device if a CATU is found.
773  *		: NULL otherwise.
774  */
775 struct coresight_device *
776 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
777 {
778 	int i;
779 	struct coresight_device *tmp, *etr = drvdata->csdev;
780 
781 	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
782 		return NULL;
783 
784 	for (i = 0; i < etr->pdata->nr_outport; i++) {
785 		tmp = etr->pdata->conns[i].child_dev;
786 		if (tmp && coresight_is_catu_device(tmp))
787 			return tmp;
788 	}
789 
790 	return NULL;
791 }
792 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
793 
794 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
795 				      struct etr_buf *etr_buf)
796 {
797 	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
798 
799 	if (catu && helper_ops(catu)->enable)
800 		return helper_ops(catu)->enable(catu, etr_buf);
801 	return 0;
802 }
803 
804 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
805 {
806 	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
807 
808 	if (catu && helper_ops(catu)->disable)
809 		helper_ops(catu)->disable(catu, drvdata->etr_buf);
810 }
811 
812 static const struct etr_buf_operations *etr_buf_ops[] = {
813 	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
814 	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
815 	[ETR_MODE_CATU] = NULL,
816 };
817 
818 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
819 {
820 	etr_buf_ops[ETR_MODE_CATU] = catu;
821 }
822 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
823 
824 void tmc_etr_remove_catu_ops(void)
825 {
826 	etr_buf_ops[ETR_MODE_CATU] = NULL;
827 }
828 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
829 
830 static inline int tmc_etr_mode_alloc_buf(int mode,
831 					 struct tmc_drvdata *drvdata,
832 					 struct etr_buf *etr_buf, int node,
833 					 void **pages)
834 {
835 	int rc = -EINVAL;
836 
837 	switch (mode) {
838 	case ETR_MODE_FLAT:
839 	case ETR_MODE_ETR_SG:
840 	case ETR_MODE_CATU:
841 		if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
842 			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
843 						      node, pages);
844 		if (!rc)
845 			etr_buf->ops = etr_buf_ops[mode];
846 		return rc;
847 	default:
848 		return -EINVAL;
849 	}
850 }
851 
852 /*
853  * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
854  * @drvdata	: ETR device details.
855  * @size	: size of the requested buffer.
856  * @flags	: Required properties for the buffer.
857  * @node	: Node for memory allocations.
858  * @pages	: An optional list of pages.
859  */
860 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
861 					 ssize_t size, int flags,
862 					 int node, void **pages)
863 {
864 	int rc = -ENOMEM;
865 	bool has_etr_sg, has_iommu;
866 	bool has_sg, has_catu;
867 	struct etr_buf *etr_buf;
868 	struct device *dev = &drvdata->csdev->dev;
869 
870 	has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
871 	has_iommu = iommu_get_domain_for_dev(dev->parent);
872 	has_catu = !!tmc_etr_get_catu_device(drvdata);
873 
874 	has_sg = has_catu || has_etr_sg;
875 
876 	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
877 	if (!etr_buf)
878 		return ERR_PTR(-ENOMEM);
879 
880 	etr_buf->size = size;
881 
882 	/*
883 	 * If we have to use an existing list of pages, we cannot reliably
884 	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
885 	 * we use the contiguous DMA memory if at least one of the following
886 	 * conditions is true:
887 	 *  a) The ETR cannot use Scatter-Gather.
888 	 *  b) we have a backing IOMMU
889 	 *  c) The requested memory size is smaller (< 1M).
890 	 *
891 	 * Fallback to available mechanisms.
892 	 *
893 	 */
894 	if (!pages &&
895 	    (!has_sg || has_iommu || size < SZ_1M))
896 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
897 					    etr_buf, node, pages);
898 	if (rc && has_etr_sg)
899 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
900 					    etr_buf, node, pages);
901 	if (rc && has_catu)
902 		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
903 					    etr_buf, node, pages);
904 	if (rc) {
905 		kfree(etr_buf);
906 		return ERR_PTR(rc);
907 	}
908 
909 	refcount_set(&etr_buf->refcount, 1);
910 	dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
911 		(unsigned long)size >> 10, etr_buf->mode);
912 	return etr_buf;
913 }
914 
915 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
916 {
917 	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
918 	etr_buf->ops->free(etr_buf);
919 	kfree(etr_buf);
920 }
921 
922 /*
923  * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
924  * with a maximum of @len bytes.
925  * Returns: The size of the linear data available @pos, with *bufpp
926  * updated to point to the buffer.
927  */
928 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
929 				    u64 offset, size_t len, char **bufpp)
930 {
931 	/* Adjust the length to limit this transaction to end of buffer */
932 	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
933 
934 	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
935 }
936 
937 static inline s64
938 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
939 {
940 	ssize_t len;
941 	char *bufp;
942 
943 	len = tmc_etr_buf_get_data(etr_buf, offset,
944 				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
945 	if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
946 		return -EINVAL;
947 	coresight_insert_barrier_packet(bufp);
948 	return offset + CORESIGHT_BARRIER_PKT_SIZE;
949 }
950 
951 /*
952  * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
953  * Makes sure the trace data is synced to the memory for consumption.
954  * @etr_buf->offset will hold the offset to the beginning of the trace data
955  * within the buffer, with @etr_buf->len bytes to consume.
956  */
957 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
958 {
959 	struct etr_buf *etr_buf = drvdata->etr_buf;
960 	u64 rrp, rwp;
961 	u32 status;
962 
963 	rrp = tmc_read_rrp(drvdata);
964 	rwp = tmc_read_rwp(drvdata);
965 	status = readl_relaxed(drvdata->base + TMC_STS);
966 
967 	/*
968 	 * If there were memory errors in the session, truncate the
969 	 * buffer.
970 	 */
971 	if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
972 		dev_dbg(&drvdata->csdev->dev,
973 			"tmc memory error detected, truncating buffer\n");
974 		etr_buf->len = 0;
975 		etr_buf->full = false;
976 		return;
977 	}
978 
979 	etr_buf->full = !!(status & TMC_STS_FULL);
980 
981 	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
982 
983 	etr_buf->ops->sync(etr_buf, rrp, rwp);
984 }
985 
986 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
987 {
988 	u32 axictl, sts;
989 	struct etr_buf *etr_buf = drvdata->etr_buf;
990 
991 	CS_UNLOCK(drvdata->base);
992 
993 	/* Wait for TMCSReady bit to be set */
994 	tmc_wait_for_tmcready(drvdata);
995 
996 	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
997 	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
998 
999 	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
1000 	axictl &= ~TMC_AXICTL_CLEAR_MASK;
1001 	axictl |= TMC_AXICTL_PROT_CTL_B1;
1002 	axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size);
1003 	axictl |= TMC_AXICTL_AXCACHE_OS;
1004 
1005 	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
1006 		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
1007 		axictl |= TMC_AXICTL_ARCACHE_OS;
1008 	}
1009 
1010 	if (etr_buf->mode == ETR_MODE_ETR_SG)
1011 		axictl |= TMC_AXICTL_SCT_GAT_MODE;
1012 
1013 	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
1014 	tmc_write_dba(drvdata, etr_buf->hwaddr);
1015 	/*
1016 	 * If the TMC pointers must be programmed before the session,
1017 	 * we have to set it properly (i.e, RRP/RWP to base address and
1018 	 * STS to "not full").
1019 	 */
1020 	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1021 		tmc_write_rrp(drvdata, etr_buf->hwaddr);
1022 		tmc_write_rwp(drvdata, etr_buf->hwaddr);
1023 		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1024 		writel_relaxed(sts, drvdata->base + TMC_STS);
1025 	}
1026 
1027 	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1028 		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1029 		       TMC_FFCR_TRIGON_TRIGIN,
1030 		       drvdata->base + TMC_FFCR);
1031 	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1032 	tmc_enable_hw(drvdata);
1033 
1034 	CS_LOCK(drvdata->base);
1035 }
1036 
1037 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1038 			     struct etr_buf *etr_buf)
1039 {
1040 	int rc;
1041 
1042 	/* Callers should provide an appropriate buffer for use */
1043 	if (WARN_ON(!etr_buf))
1044 		return -EINVAL;
1045 
1046 	if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1047 	    WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1048 		return -EINVAL;
1049 
1050 	if (WARN_ON(drvdata->etr_buf))
1051 		return -EBUSY;
1052 
1053 	/*
1054 	 * If this ETR is connected to a CATU, enable it before we turn
1055 	 * this on.
1056 	 */
1057 	rc = tmc_etr_enable_catu(drvdata, etr_buf);
1058 	if (rc)
1059 		return rc;
1060 	rc = coresight_claim_device(drvdata->csdev);
1061 	if (!rc) {
1062 		drvdata->etr_buf = etr_buf;
1063 		__tmc_etr_enable_hw(drvdata);
1064 	}
1065 
1066 	return rc;
1067 }
1068 
1069 /*
1070  * Return the available trace data in the buffer (starts at etr_buf->offset,
1071  * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1072  * also updating the @bufpp on where to find it. Since the trace data
1073  * starts at anywhere in the buffer, depending on the RRP, we adjust the
1074  * @len returned to handle buffer wrapping around.
1075  *
1076  * We are protected here by drvdata->reading != 0, which ensures the
1077  * sysfs_buf stays alive.
1078  */
1079 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1080 				loff_t pos, size_t len, char **bufpp)
1081 {
1082 	s64 offset;
1083 	ssize_t actual = len;
1084 	struct etr_buf *etr_buf = drvdata->sysfs_buf;
1085 
1086 	if (pos + actual > etr_buf->len)
1087 		actual = etr_buf->len - pos;
1088 	if (actual <= 0)
1089 		return actual;
1090 
1091 	/* Compute the offset from which we read the data */
1092 	offset = etr_buf->offset + pos;
1093 	if (offset >= etr_buf->size)
1094 		offset -= etr_buf->size;
1095 	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1096 }
1097 
1098 static struct etr_buf *
1099 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1100 {
1101 	return tmc_alloc_etr_buf(drvdata, drvdata->size,
1102 				 0, cpu_to_node(0), NULL);
1103 }
1104 
1105 static void
1106 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1107 {
1108 	if (buf)
1109 		tmc_free_etr_buf(buf);
1110 }
1111 
1112 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1113 {
1114 	struct etr_buf *etr_buf = drvdata->etr_buf;
1115 
1116 	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1117 		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1118 		drvdata->sysfs_buf = NULL;
1119 	} else {
1120 		tmc_sync_etr_buf(drvdata);
1121 		/*
1122 		 * Insert barrier packets at the beginning, if there was
1123 		 * an overflow.
1124 		 */
1125 		if (etr_buf->full)
1126 			tmc_etr_buf_insert_barrier_packet(etr_buf,
1127 							  etr_buf->offset);
1128 	}
1129 }
1130 
1131 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1132 {
1133 	CS_UNLOCK(drvdata->base);
1134 
1135 	tmc_flush_and_stop(drvdata);
1136 	/*
1137 	 * When operating in sysFS mode the content of the buffer needs to be
1138 	 * read before the TMC is disabled.
1139 	 */
1140 	if (drvdata->mode == CS_MODE_SYSFS)
1141 		tmc_etr_sync_sysfs_buf(drvdata);
1142 
1143 	tmc_disable_hw(drvdata);
1144 
1145 	CS_LOCK(drvdata->base);
1146 
1147 }
1148 
1149 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1150 {
1151 	__tmc_etr_disable_hw(drvdata);
1152 	/* Disable CATU device if this ETR is connected to one */
1153 	tmc_etr_disable_catu(drvdata);
1154 	coresight_disclaim_device(drvdata->csdev);
1155 	/* Reset the ETR buf used by hardware */
1156 	drvdata->etr_buf = NULL;
1157 }
1158 
1159 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1160 {
1161 	int ret = 0;
1162 	unsigned long flags;
1163 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1164 	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1165 
1166 	/*
1167 	 * If we are enabling the ETR from disabled state, we need to make
1168 	 * sure we have a buffer with the right size. The etr_buf is not reset
1169 	 * immediately after we stop the tracing in SYSFS mode as we wait for
1170 	 * the user to collect the data. We may be able to reuse the existing
1171 	 * buffer, provided the size matches. Any allocation has to be done
1172 	 * with the lock released.
1173 	 */
1174 	spin_lock_irqsave(&drvdata->spinlock, flags);
1175 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1176 	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1177 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1178 
1179 		/* Allocate memory with the locks released */
1180 		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1181 		if (IS_ERR(new_buf))
1182 			return PTR_ERR(new_buf);
1183 
1184 		/* Let's try again */
1185 		spin_lock_irqsave(&drvdata->spinlock, flags);
1186 	}
1187 
1188 	if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1189 		ret = -EBUSY;
1190 		goto out;
1191 	}
1192 
1193 	/*
1194 	 * In sysFS mode we can have multiple writers per sink.  Since this
1195 	 * sink is already enabled no memory is needed and the HW need not be
1196 	 * touched, even if the buffer size has changed.
1197 	 */
1198 	if (drvdata->mode == CS_MODE_SYSFS) {
1199 		atomic_inc(csdev->refcnt);
1200 		goto out;
1201 	}
1202 
1203 	/*
1204 	 * If we don't have a buffer or it doesn't match the requested size,
1205 	 * use the buffer allocated above. Otherwise reuse the existing buffer.
1206 	 */
1207 	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1208 	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1209 		free_buf = sysfs_buf;
1210 		drvdata->sysfs_buf = new_buf;
1211 	}
1212 
1213 	ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1214 	if (!ret) {
1215 		drvdata->mode = CS_MODE_SYSFS;
1216 		atomic_inc(csdev->refcnt);
1217 	}
1218 out:
1219 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1220 
1221 	/* Free memory outside the spinlock if need be */
1222 	if (free_buf)
1223 		tmc_etr_free_sysfs_buf(free_buf);
1224 
1225 	if (!ret)
1226 		dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1227 
1228 	return ret;
1229 }
1230 
1231 /*
1232  * alloc_etr_buf: Allocate ETR buffer for use by perf.
1233  * The size of the hardware buffer is dependent on the size configured
1234  * via sysfs and the perf ring buffer size. We prefer to allocate the
1235  * largest possible size, scaling down the size by half until it
1236  * reaches a minimum limit (1M), beyond which we give up.
1237  */
1238 static struct etr_buf *
1239 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1240 	      int nr_pages, void **pages, bool snapshot)
1241 {
1242 	int node;
1243 	struct etr_buf *etr_buf;
1244 	unsigned long size;
1245 
1246 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1247 	/*
1248 	 * Try to match the perf ring buffer size if it is larger
1249 	 * than the size requested via sysfs.
1250 	 */
1251 	if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1252 		etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1253 					    0, node, NULL);
1254 		if (!IS_ERR(etr_buf))
1255 			goto done;
1256 	}
1257 
1258 	/*
1259 	 * Else switch to configured size for this ETR
1260 	 * and scale down until we hit the minimum limit.
1261 	 */
1262 	size = drvdata->size;
1263 	do {
1264 		etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1265 		if (!IS_ERR(etr_buf))
1266 			goto done;
1267 		size /= 2;
1268 	} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1269 
1270 	return ERR_PTR(-ENOMEM);
1271 
1272 done:
1273 	return etr_buf;
1274 }
1275 
1276 static struct etr_buf *
1277 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1278 			  struct perf_event *event, int nr_pages,
1279 			  void **pages, bool snapshot)
1280 {
1281 	int ret;
1282 	pid_t pid = task_pid_nr(event->owner);
1283 	struct etr_buf *etr_buf;
1284 
1285 retry:
1286 	/*
1287 	 * An etr_perf_buffer is associated with an event and holds a reference
1288 	 * to the AUX ring buffer that was created for that event.  In CPU-wide
1289 	 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1290 	 * buffer, share a sink.  As such an etr_perf_buffer is created for each
1291 	 * event but a single etr_buf associated with the ETR is shared between
1292 	 * them.  The last event in a trace session will copy the content of the
1293 	 * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1294 	 * events are simply not used an freed as events are destoyed.  We still
1295 	 * need to allocate a ring buffer for each event since we don't know
1296 	 * which event will be last.
1297 	 */
1298 
1299 	/*
1300 	 * The first thing to do here is check if an etr_buf has already been
1301 	 * allocated for this session.  If so it is shared with this event,
1302 	 * otherwise it is created.
1303 	 */
1304 	mutex_lock(&drvdata->idr_mutex);
1305 	etr_buf = idr_find(&drvdata->idr, pid);
1306 	if (etr_buf) {
1307 		refcount_inc(&etr_buf->refcount);
1308 		mutex_unlock(&drvdata->idr_mutex);
1309 		return etr_buf;
1310 	}
1311 
1312 	/* If we made it here no buffer has been allocated, do so now. */
1313 	mutex_unlock(&drvdata->idr_mutex);
1314 
1315 	etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1316 	if (IS_ERR(etr_buf))
1317 		return etr_buf;
1318 
1319 	/* Now that we have a buffer, add it to the IDR. */
1320 	mutex_lock(&drvdata->idr_mutex);
1321 	ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1322 	mutex_unlock(&drvdata->idr_mutex);
1323 
1324 	/* Another event with this session ID has allocated this buffer. */
1325 	if (ret == -ENOSPC) {
1326 		tmc_free_etr_buf(etr_buf);
1327 		goto retry;
1328 	}
1329 
1330 	/* The IDR can't allocate room for a new session, abandon ship. */
1331 	if (ret == -ENOMEM) {
1332 		tmc_free_etr_buf(etr_buf);
1333 		return ERR_PTR(ret);
1334 	}
1335 
1336 
1337 	return etr_buf;
1338 }
1339 
1340 static struct etr_buf *
1341 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1342 			    struct perf_event *event, int nr_pages,
1343 			    void **pages, bool snapshot)
1344 {
1345 	/*
1346 	 * In per-thread mode the etr_buf isn't shared, so just go ahead
1347 	 * with memory allocation.
1348 	 */
1349 	return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1350 }
1351 
1352 static struct etr_buf *
1353 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1354 		 int nr_pages, void **pages, bool snapshot)
1355 {
1356 	if (event->cpu == -1)
1357 		return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1358 						   pages, snapshot);
1359 
1360 	return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1361 					 pages, snapshot);
1362 }
1363 
1364 static struct etr_perf_buffer *
1365 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1366 		       int nr_pages, void **pages, bool snapshot)
1367 {
1368 	int node;
1369 	struct etr_buf *etr_buf;
1370 	struct etr_perf_buffer *etr_perf;
1371 
1372 	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1373 
1374 	etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1375 	if (!etr_perf)
1376 		return ERR_PTR(-ENOMEM);
1377 
1378 	etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1379 	if (!IS_ERR(etr_buf))
1380 		goto done;
1381 
1382 	kfree(etr_perf);
1383 	return ERR_PTR(-ENOMEM);
1384 
1385 done:
1386 	/*
1387 	 * Keep a reference to the ETR this buffer has been allocated for
1388 	 * in order to have access to the IDR in tmc_free_etr_buffer().
1389 	 */
1390 	etr_perf->drvdata = drvdata;
1391 	etr_perf->etr_buf = etr_buf;
1392 
1393 	return etr_perf;
1394 }
1395 
1396 
1397 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1398 				  struct perf_event *event, void **pages,
1399 				  int nr_pages, bool snapshot)
1400 {
1401 	struct etr_perf_buffer *etr_perf;
1402 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1403 
1404 	etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1405 					  nr_pages, pages, snapshot);
1406 	if (IS_ERR(etr_perf)) {
1407 		dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1408 		return NULL;
1409 	}
1410 
1411 	etr_perf->pid = task_pid_nr(event->owner);
1412 	etr_perf->snapshot = snapshot;
1413 	etr_perf->nr_pages = nr_pages;
1414 	etr_perf->pages = pages;
1415 
1416 	return etr_perf;
1417 }
1418 
1419 static void tmc_free_etr_buffer(void *config)
1420 {
1421 	struct etr_perf_buffer *etr_perf = config;
1422 	struct tmc_drvdata *drvdata = etr_perf->drvdata;
1423 	struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1424 
1425 	if (!etr_buf)
1426 		goto free_etr_perf_buffer;
1427 
1428 	mutex_lock(&drvdata->idr_mutex);
1429 	/* If we are not the last one to use the buffer, don't touch it. */
1430 	if (!refcount_dec_and_test(&etr_buf->refcount)) {
1431 		mutex_unlock(&drvdata->idr_mutex);
1432 		goto free_etr_perf_buffer;
1433 	}
1434 
1435 	/* We are the last one, remove from the IDR and free the buffer. */
1436 	buf = idr_remove(&drvdata->idr, etr_perf->pid);
1437 	mutex_unlock(&drvdata->idr_mutex);
1438 
1439 	/*
1440 	 * Something went very wrong if the buffer associated with this ID
1441 	 * is not the same in the IDR.  Leak to avoid use after free.
1442 	 */
1443 	if (buf && WARN_ON(buf != etr_buf))
1444 		goto free_etr_perf_buffer;
1445 
1446 	tmc_free_etr_buf(etr_perf->etr_buf);
1447 
1448 free_etr_perf_buffer:
1449 	kfree(etr_perf);
1450 }
1451 
1452 /*
1453  * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1454  * buffer to the perf ring buffer.
1455  */
1456 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1457 				     unsigned long head,
1458 				     unsigned long src_offset,
1459 				     unsigned long to_copy)
1460 {
1461 	long bytes;
1462 	long pg_idx, pg_offset;
1463 	char **dst_pages, *src_buf;
1464 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1465 
1466 	head = PERF_IDX2OFF(head, etr_perf);
1467 	pg_idx = head >> PAGE_SHIFT;
1468 	pg_offset = head & (PAGE_SIZE - 1);
1469 	dst_pages = (char **)etr_perf->pages;
1470 
1471 	while (to_copy > 0) {
1472 		/*
1473 		 * In one iteration, we can copy minimum of :
1474 		 *  1) what is available in the source buffer,
1475 		 *  2) what is available in the source buffer, before it
1476 		 *     wraps around.
1477 		 *  3) what is available in the destination page.
1478 		 * in one iteration.
1479 		 */
1480 		if (src_offset >= etr_buf->size)
1481 			src_offset -= etr_buf->size;
1482 		bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1483 					     &src_buf);
1484 		if (WARN_ON_ONCE(bytes <= 0))
1485 			break;
1486 		bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1487 
1488 		memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1489 
1490 		to_copy -= bytes;
1491 
1492 		/* Move destination pointers */
1493 		pg_offset += bytes;
1494 		if (pg_offset == PAGE_SIZE) {
1495 			pg_offset = 0;
1496 			if (++pg_idx == etr_perf->nr_pages)
1497 				pg_idx = 0;
1498 		}
1499 
1500 		/* Move source pointers */
1501 		src_offset += bytes;
1502 	}
1503 }
1504 
1505 /*
1506  * tmc_update_etr_buffer : Update the perf ring buffer with the
1507  * available trace data. We use software double buffering at the moment.
1508  *
1509  * TODO: Add support for reusing the perf ring buffer.
1510  */
1511 static unsigned long
1512 tmc_update_etr_buffer(struct coresight_device *csdev,
1513 		      struct perf_output_handle *handle,
1514 		      void *config)
1515 {
1516 	bool lost = false;
1517 	unsigned long flags, offset, size = 0;
1518 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1519 	struct etr_perf_buffer *etr_perf = config;
1520 	struct etr_buf *etr_buf = etr_perf->etr_buf;
1521 
1522 	spin_lock_irqsave(&drvdata->spinlock, flags);
1523 
1524 	/* Don't do anything if another tracer is using this sink */
1525 	if (atomic_read(csdev->refcnt) != 1) {
1526 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1527 		goto out;
1528 	}
1529 
1530 	if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1531 		lost = true;
1532 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1533 		goto out;
1534 	}
1535 
1536 	CS_UNLOCK(drvdata->base);
1537 
1538 	tmc_flush_and_stop(drvdata);
1539 	tmc_sync_etr_buf(drvdata);
1540 
1541 	CS_LOCK(drvdata->base);
1542 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1543 
1544 	lost = etr_buf->full;
1545 	offset = etr_buf->offset;
1546 	size = etr_buf->len;
1547 
1548 	/*
1549 	 * The ETR buffer may be bigger than the space available in the
1550 	 * perf ring buffer (handle->size).  If so advance the offset so that we
1551 	 * get the latest trace data.  In snapshot mode none of that matters
1552 	 * since we are expected to clobber stale data in favour of the latest
1553 	 * traces.
1554 	 */
1555 	if (!etr_perf->snapshot && size > handle->size) {
1556 		u32 mask = tmc_get_memwidth_mask(drvdata);
1557 
1558 		/*
1559 		 * Make sure the new size is aligned in accordance with the
1560 		 * requirement explained in function tmc_get_memwidth_mask().
1561 		 */
1562 		size = handle->size & mask;
1563 		offset = etr_buf->offset + etr_buf->len - size;
1564 
1565 		if (offset >= etr_buf->size)
1566 			offset -= etr_buf->size;
1567 		lost = true;
1568 	}
1569 
1570 	/* Insert barrier packets at the beginning, if there was an overflow */
1571 	if (lost)
1572 		tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1573 	tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size);
1574 
1575 	/*
1576 	 * In snapshot mode we simply increment the head by the number of byte
1577 	 * that were written.  User space will figure out how many bytes to get
1578 	 * from the AUX buffer based on the position of the head.
1579 	 */
1580 	if (etr_perf->snapshot)
1581 		handle->head += size;
1582 
1583 	/*
1584 	 * Ensure that the AUX trace data is visible before the aux_head
1585 	 * is updated via perf_aux_output_end(), as expected by the
1586 	 * perf ring buffer.
1587 	 */
1588 	smp_wmb();
1589 
1590 out:
1591 	/*
1592 	 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1593 	 * captured buffer is expected to be truncated and 2) a full buffer
1594 	 * prevents the event from being re-enabled by the perf core,
1595 	 * resulting in stale data being send to user space.
1596 	 */
1597 	if (!etr_perf->snapshot && lost)
1598 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1599 	return size;
1600 }
1601 
1602 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1603 {
1604 	int rc = 0;
1605 	pid_t pid;
1606 	unsigned long flags;
1607 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1608 	struct perf_output_handle *handle = data;
1609 	struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1610 
1611 	spin_lock_irqsave(&drvdata->spinlock, flags);
1612 	 /* Don't use this sink if it is already claimed by sysFS */
1613 	if (drvdata->mode == CS_MODE_SYSFS) {
1614 		rc = -EBUSY;
1615 		goto unlock_out;
1616 	}
1617 
1618 	if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1619 		rc = -EINVAL;
1620 		goto unlock_out;
1621 	}
1622 
1623 	/* Get a handle on the pid of the process to monitor */
1624 	pid = etr_perf->pid;
1625 
1626 	/* Do not proceed if this device is associated with another session */
1627 	if (drvdata->pid != -1 && drvdata->pid != pid) {
1628 		rc = -EBUSY;
1629 		goto unlock_out;
1630 	}
1631 
1632 	/*
1633 	 * No HW configuration is needed if the sink is already in
1634 	 * use for this session.
1635 	 */
1636 	if (drvdata->pid == pid) {
1637 		atomic_inc(csdev->refcnt);
1638 		goto unlock_out;
1639 	}
1640 
1641 	rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1642 	if (!rc) {
1643 		/* Associate with monitored process. */
1644 		drvdata->pid = pid;
1645 		drvdata->mode = CS_MODE_PERF;
1646 		drvdata->perf_buf = etr_perf->etr_buf;
1647 		atomic_inc(csdev->refcnt);
1648 	}
1649 
1650 unlock_out:
1651 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1652 	return rc;
1653 }
1654 
1655 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1656 			       u32 mode, void *data)
1657 {
1658 	switch (mode) {
1659 	case CS_MODE_SYSFS:
1660 		return tmc_enable_etr_sink_sysfs(csdev);
1661 	case CS_MODE_PERF:
1662 		return tmc_enable_etr_sink_perf(csdev, data);
1663 	}
1664 
1665 	/* We shouldn't be here */
1666 	return -EINVAL;
1667 }
1668 
1669 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1670 {
1671 	unsigned long flags;
1672 	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1673 
1674 	spin_lock_irqsave(&drvdata->spinlock, flags);
1675 
1676 	if (drvdata->reading) {
1677 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1678 		return -EBUSY;
1679 	}
1680 
1681 	if (atomic_dec_return(csdev->refcnt)) {
1682 		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1683 		return -EBUSY;
1684 	}
1685 
1686 	/* Complain if we (somehow) got out of sync */
1687 	WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1688 	tmc_etr_disable_hw(drvdata);
1689 	/* Dissociate from monitored process. */
1690 	drvdata->pid = -1;
1691 	drvdata->mode = CS_MODE_DISABLED;
1692 	/* Reset perf specific data */
1693 	drvdata->perf_buf = NULL;
1694 
1695 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1696 
1697 	dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1698 	return 0;
1699 }
1700 
1701 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1702 	.enable		= tmc_enable_etr_sink,
1703 	.disable	= tmc_disable_etr_sink,
1704 	.alloc_buffer	= tmc_alloc_etr_buffer,
1705 	.update_buffer	= tmc_update_etr_buffer,
1706 	.free_buffer	= tmc_free_etr_buffer,
1707 };
1708 
1709 const struct coresight_ops tmc_etr_cs_ops = {
1710 	.sink_ops	= &tmc_etr_sink_ops,
1711 };
1712 
1713 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1714 {
1715 	int ret = 0;
1716 	unsigned long flags;
1717 
1718 	/* config types are set a boot time and never change */
1719 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1720 		return -EINVAL;
1721 
1722 	spin_lock_irqsave(&drvdata->spinlock, flags);
1723 	if (drvdata->reading) {
1724 		ret = -EBUSY;
1725 		goto out;
1726 	}
1727 
1728 	/*
1729 	 * We can safely allow reads even if the ETR is operating in PERF mode,
1730 	 * since the sysfs session is captured in mode specific data.
1731 	 * If drvdata::sysfs_data is NULL the trace data has been read already.
1732 	 */
1733 	if (!drvdata->sysfs_buf) {
1734 		ret = -EINVAL;
1735 		goto out;
1736 	}
1737 
1738 	/* Disable the TMC if we are trying to read from a running session. */
1739 	if (drvdata->mode == CS_MODE_SYSFS)
1740 		__tmc_etr_disable_hw(drvdata);
1741 
1742 	drvdata->reading = true;
1743 out:
1744 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1745 
1746 	return ret;
1747 }
1748 
1749 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1750 {
1751 	unsigned long flags;
1752 	struct etr_buf *sysfs_buf = NULL;
1753 
1754 	/* config types are set a boot time and never change */
1755 	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1756 		return -EINVAL;
1757 
1758 	spin_lock_irqsave(&drvdata->spinlock, flags);
1759 
1760 	/* RE-enable the TMC if need be */
1761 	if (drvdata->mode == CS_MODE_SYSFS) {
1762 		/*
1763 		 * The trace run will continue with the same allocated trace
1764 		 * buffer. Since the tracer is still enabled drvdata::buf can't
1765 		 * be NULL.
1766 		 */
1767 		__tmc_etr_enable_hw(drvdata);
1768 	} else {
1769 		/*
1770 		 * The ETR is not tracing and the buffer was just read.
1771 		 * As such prepare to free the trace buffer.
1772 		 */
1773 		sysfs_buf = drvdata->sysfs_buf;
1774 		drvdata->sysfs_buf = NULL;
1775 	}
1776 
1777 	drvdata->reading = false;
1778 	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1779 
1780 	/* Free allocated memory out side of the spinlock */
1781 	if (sysfs_buf)
1782 		tmc_etr_free_sysfs_buf(sysfs_buf);
1783 
1784 	return 0;
1785 }
1786