1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 /* 30 * etr_perf_buffer - Perf buffer used for ETR 31 * @drvdata - The ETR drvdaga this buffer has been allocated for. 32 * @etr_buf - Actual buffer used by the ETR 33 * @pid - The PID this etr_perf_buffer belongs to. 34 * @snaphost - Perf session mode 35 * @nr_pages - Number of pages in the ring buffer. 36 * @pages - Array of Pages in the ring buffer. 37 */ 38 struct etr_perf_buffer { 39 struct tmc_drvdata *drvdata; 40 struct etr_buf *etr_buf; 41 pid_t pid; 42 bool snapshot; 43 int nr_pages; 44 void **pages; 45 }; 46 47 /* Convert the perf index to an offset within the ETR buffer */ 48 #define PERF_IDX2OFF(idx, buf) \ 49 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT)) 50 51 /* Lower limit for ETR hardware buffer */ 52 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 53 54 /* 55 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 56 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 57 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 58 * contain more than one SG buffer and tables. 59 * 60 * A table entry has the following format: 61 * 62 * ---Bit31------------Bit4-------Bit1-----Bit0-- 63 * | Address[39:12] | SBZ | Entry Type | 64 * ---------------------------------------------- 65 * 66 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 67 * always zero. 68 * 69 * Entry type: 70 * b00 - Reserved. 71 * b01 - Last entry in the tables, points to 4K page buffer. 72 * b10 - Normal entry, points to 4K page buffer. 73 * b11 - Link. The address points to the base of next table. 74 */ 75 76 typedef u32 sgte_t; 77 78 #define ETR_SG_PAGE_SHIFT 12 79 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 80 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 81 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 82 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 83 84 #define ETR_SG_ET_MASK 0x3 85 #define ETR_SG_ET_LAST 0x1 86 #define ETR_SG_ET_NORMAL 0x2 87 #define ETR_SG_ET_LINK 0x3 88 89 #define ETR_SG_ADDR_SHIFT 4 90 91 #define ETR_SG_ENTRY(addr, type) \ 92 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 93 (type & ETR_SG_ET_MASK)) 94 95 #define ETR_SG_ADDR(entry) \ 96 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 97 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 98 99 /* 100 * struct etr_sg_table : ETR SG Table 101 * @sg_table: Generic SG Table holding the data/table pages. 102 * @hwaddr: hwaddress used by the TMC, which is the base 103 * address of the table. 104 */ 105 struct etr_sg_table { 106 struct tmc_sg_table *sg_table; 107 dma_addr_t hwaddr; 108 }; 109 110 /* 111 * tmc_etr_sg_table_entries: Total number of table entries required to map 112 * @nr_pages system pages. 113 * 114 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 115 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 116 * with the last entry pointing to another page of table entries. 117 * If we spill over to a new page for mapping 1 entry, we could as 118 * well replace the link entry of the previous page with the last entry. 119 */ 120 static inline unsigned long __attribute_const__ 121 tmc_etr_sg_table_entries(int nr_pages) 122 { 123 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 124 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 125 /* 126 * If we spill over to a new page for 1 entry, we could as well 127 * make it the LAST entry in the previous page, skipping the Link 128 * address. 129 */ 130 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 131 nr_sglinks--; 132 return nr_sgpages + nr_sglinks; 133 } 134 135 /* 136 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 137 * and map the device address @addr to an offset within the virtual 138 * contiguous buffer. 139 */ 140 static long 141 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 142 { 143 int i; 144 dma_addr_t page_start; 145 146 for (i = 0; i < tmc_pages->nr_pages; i++) { 147 page_start = tmc_pages->daddrs[i]; 148 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 149 return i * PAGE_SIZE + (addr - page_start); 150 } 151 152 return -EINVAL; 153 } 154 155 /* 156 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 157 * If the pages were not allocated in tmc_pages_alloc(), we would 158 * simply drop the refcount. 159 */ 160 static void tmc_pages_free(struct tmc_pages *tmc_pages, 161 struct device *dev, enum dma_data_direction dir) 162 { 163 int i; 164 struct device *real_dev = dev->parent; 165 166 for (i = 0; i < tmc_pages->nr_pages; i++) { 167 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 168 dma_unmap_page(real_dev, tmc_pages->daddrs[i], 169 PAGE_SIZE, dir); 170 if (tmc_pages->pages && tmc_pages->pages[i]) 171 __free_page(tmc_pages->pages[i]); 172 } 173 174 kfree(tmc_pages->pages); 175 kfree(tmc_pages->daddrs); 176 tmc_pages->pages = NULL; 177 tmc_pages->daddrs = NULL; 178 tmc_pages->nr_pages = 0; 179 } 180 181 /* 182 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 183 * If @pages is not NULL, the list of page virtual addresses are 184 * used as the data pages. The pages are then dma_map'ed for @dev 185 * with dma_direction @dir. 186 * 187 * Returns 0 upon success, else the error number. 188 */ 189 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 190 struct device *dev, int node, 191 enum dma_data_direction dir, void **pages) 192 { 193 int i, nr_pages; 194 dma_addr_t paddr; 195 struct page *page; 196 struct device *real_dev = dev->parent; 197 198 nr_pages = tmc_pages->nr_pages; 199 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 200 GFP_KERNEL); 201 if (!tmc_pages->daddrs) 202 return -ENOMEM; 203 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 204 GFP_KERNEL); 205 if (!tmc_pages->pages) { 206 kfree(tmc_pages->daddrs); 207 tmc_pages->daddrs = NULL; 208 return -ENOMEM; 209 } 210 211 for (i = 0; i < nr_pages; i++) { 212 if (pages && pages[i]) { 213 page = virt_to_page(pages[i]); 214 /* Hold a refcount on the page */ 215 get_page(page); 216 } else { 217 page = alloc_pages_node(node, 218 GFP_KERNEL | __GFP_ZERO, 0); 219 if (!page) 220 goto err; 221 } 222 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); 223 if (dma_mapping_error(real_dev, paddr)) 224 goto err; 225 tmc_pages->daddrs[i] = paddr; 226 tmc_pages->pages[i] = page; 227 } 228 return 0; 229 err: 230 tmc_pages_free(tmc_pages, dev, dir); 231 return -ENOMEM; 232 } 233 234 static inline long 235 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 236 { 237 return tmc_pages_get_offset(&sg_table->data_pages, addr); 238 } 239 240 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 241 { 242 if (sg_table->table_vaddr) 243 vunmap(sg_table->table_vaddr); 244 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 245 } 246 247 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 248 { 249 if (sg_table->data_vaddr) 250 vunmap(sg_table->data_vaddr); 251 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 252 } 253 254 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 255 { 256 tmc_free_table_pages(sg_table); 257 tmc_free_data_pages(sg_table); 258 kfree(sg_table); 259 } 260 EXPORT_SYMBOL_GPL(tmc_free_sg_table); 261 262 /* 263 * Alloc pages for the table. Since this will be used by the device, 264 * allocate the pages closer to the device (i.e, dev_to_node(dev) 265 * rather than the CPU node). 266 */ 267 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 268 { 269 int rc; 270 struct tmc_pages *table_pages = &sg_table->table_pages; 271 272 rc = tmc_pages_alloc(table_pages, sg_table->dev, 273 dev_to_node(sg_table->dev), 274 DMA_TO_DEVICE, NULL); 275 if (rc) 276 return rc; 277 sg_table->table_vaddr = vmap(table_pages->pages, 278 table_pages->nr_pages, 279 VM_MAP, 280 PAGE_KERNEL); 281 if (!sg_table->table_vaddr) 282 rc = -ENOMEM; 283 else 284 sg_table->table_daddr = table_pages->daddrs[0]; 285 return rc; 286 } 287 288 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 289 { 290 int rc; 291 292 /* Allocate data pages on the node requested by the caller */ 293 rc = tmc_pages_alloc(&sg_table->data_pages, 294 sg_table->dev, sg_table->node, 295 DMA_FROM_DEVICE, pages); 296 if (!rc) { 297 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 298 sg_table->data_pages.nr_pages, 299 VM_MAP, 300 PAGE_KERNEL); 301 if (!sg_table->data_vaddr) 302 rc = -ENOMEM; 303 } 304 return rc; 305 } 306 307 /* 308 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 309 * and data buffers. TMC writes to the data buffers and reads from the SG 310 * Table pages. 311 * 312 * @dev - Coresight device to which page should be DMA mapped. 313 * @node - Numa node for mem allocations 314 * @nr_tpages - Number of pages for the table entries. 315 * @nr_dpages - Number of pages for Data buffer. 316 * @pages - Optional list of virtual address of pages. 317 */ 318 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 319 int node, 320 int nr_tpages, 321 int nr_dpages, 322 void **pages) 323 { 324 long rc; 325 struct tmc_sg_table *sg_table; 326 327 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 328 if (!sg_table) 329 return ERR_PTR(-ENOMEM); 330 sg_table->data_pages.nr_pages = nr_dpages; 331 sg_table->table_pages.nr_pages = nr_tpages; 332 sg_table->node = node; 333 sg_table->dev = dev; 334 335 rc = tmc_alloc_data_pages(sg_table, pages); 336 if (!rc) 337 rc = tmc_alloc_table_pages(sg_table); 338 if (rc) { 339 tmc_free_sg_table(sg_table); 340 return ERR_PTR(rc); 341 } 342 343 return sg_table; 344 } 345 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table); 346 347 /* 348 * tmc_sg_table_sync_data_range: Sync the data buffer written 349 * by the device from @offset upto a @size bytes. 350 */ 351 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 352 u64 offset, u64 size) 353 { 354 int i, index, start; 355 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 356 struct device *real_dev = table->dev->parent; 357 struct tmc_pages *data = &table->data_pages; 358 359 start = offset >> PAGE_SHIFT; 360 for (i = start; i < (start + npages); i++) { 361 index = i % data->nr_pages; 362 dma_sync_single_for_cpu(real_dev, data->daddrs[index], 363 PAGE_SIZE, DMA_FROM_DEVICE); 364 } 365 } 366 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range); 367 368 /* tmc_sg_sync_table: Sync the page table */ 369 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 370 { 371 int i; 372 struct device *real_dev = sg_table->dev->parent; 373 struct tmc_pages *table_pages = &sg_table->table_pages; 374 375 for (i = 0; i < table_pages->nr_pages; i++) 376 dma_sync_single_for_device(real_dev, table_pages->daddrs[i], 377 PAGE_SIZE, DMA_TO_DEVICE); 378 } 379 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table); 380 381 /* 382 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 383 * in the SG buffer. The @bufpp is updated to point to the buffer. 384 * Returns : 385 * the length of linear data available at @offset. 386 * or 387 * <= 0 if no data is available. 388 */ 389 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 390 u64 offset, size_t len, char **bufpp) 391 { 392 size_t size; 393 int pg_idx = offset >> PAGE_SHIFT; 394 int pg_offset = offset & (PAGE_SIZE - 1); 395 struct tmc_pages *data_pages = &sg_table->data_pages; 396 397 size = tmc_sg_table_buf_size(sg_table); 398 if (offset >= size) 399 return -EINVAL; 400 401 /* Make sure we don't go beyond the end */ 402 len = (len < (size - offset)) ? len : size - offset; 403 /* Respect the page boundaries */ 404 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 405 if (len > 0) 406 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 407 return len; 408 } 409 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data); 410 411 #ifdef ETR_SG_DEBUG 412 /* Map a dma address to virtual address */ 413 static unsigned long 414 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 415 dma_addr_t addr, bool table) 416 { 417 long offset; 418 unsigned long base; 419 struct tmc_pages *tmc_pages; 420 421 if (table) { 422 tmc_pages = &sg_table->table_pages; 423 base = (unsigned long)sg_table->table_vaddr; 424 } else { 425 tmc_pages = &sg_table->data_pages; 426 base = (unsigned long)sg_table->data_vaddr; 427 } 428 429 offset = tmc_pages_get_offset(tmc_pages, addr); 430 if (offset < 0) 431 return 0; 432 return base + offset; 433 } 434 435 /* Dump the given sg_table */ 436 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 437 { 438 sgte_t *ptr; 439 int i = 0; 440 dma_addr_t addr; 441 struct tmc_sg_table *sg_table = etr_table->sg_table; 442 443 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 444 etr_table->hwaddr, true); 445 while (ptr) { 446 addr = ETR_SG_ADDR(*ptr); 447 switch (ETR_SG_ET(*ptr)) { 448 case ETR_SG_ET_NORMAL: 449 dev_dbg(sg_table->dev, 450 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 451 ptr++; 452 break; 453 case ETR_SG_ET_LINK: 454 dev_dbg(sg_table->dev, 455 "%05d: *** %p\t:{L} 0x%llx ***\n", 456 i, ptr, addr); 457 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 458 addr, true); 459 break; 460 case ETR_SG_ET_LAST: 461 dev_dbg(sg_table->dev, 462 "%05d: ### %p\t:[L] 0x%llx ###\n", 463 i, ptr, addr); 464 return; 465 default: 466 dev_dbg(sg_table->dev, 467 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 468 i, ptr, addr); 469 return; 470 } 471 i++; 472 } 473 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 474 } 475 #else 476 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 477 #endif 478 479 /* 480 * Populate the SG Table page table entries from table/data 481 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 482 * So does a Table page. So we keep track of indices of the tables 483 * in each system page and move the pointers accordingly. 484 */ 485 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 486 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 487 { 488 dma_addr_t paddr; 489 int i, type, nr_entries; 490 int tpidx = 0; /* index to the current system table_page */ 491 int sgtidx = 0; /* index to the sg_table within the current syspage */ 492 int sgtentry = 0; /* the entry within the sg_table */ 493 int dpidx = 0; /* index to the current system data_page */ 494 int spidx = 0; /* index to the SG page within the current data page */ 495 sgte_t *ptr; /* pointer to the table entry to fill */ 496 struct tmc_sg_table *sg_table = etr_table->sg_table; 497 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 498 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 499 500 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 501 /* 502 * Use the contiguous virtual address of the table to update entries. 503 */ 504 ptr = sg_table->table_vaddr; 505 /* 506 * Fill all the entries, except the last entry to avoid special 507 * checks within the loop. 508 */ 509 for (i = 0; i < nr_entries - 1; i++) { 510 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 511 /* 512 * Last entry in a sg_table page is a link address to 513 * the next table page. If this sg_table is the last 514 * one in the system page, it links to the first 515 * sg_table in the next system page. Otherwise, it 516 * links to the next sg_table page within the system 517 * page. 518 */ 519 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 520 paddr = table_daddrs[tpidx + 1]; 521 } else { 522 paddr = table_daddrs[tpidx] + 523 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 524 } 525 type = ETR_SG_ET_LINK; 526 } else { 527 /* 528 * Update the indices to the data_pages to point to the 529 * next sg_page in the data buffer. 530 */ 531 type = ETR_SG_ET_NORMAL; 532 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 533 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 534 dpidx++; 535 } 536 *ptr++ = ETR_SG_ENTRY(paddr, type); 537 /* 538 * Move to the next table pointer, moving the table page index 539 * if necessary 540 */ 541 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 542 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 543 tpidx++; 544 } 545 } 546 547 /* Set up the last entry, which is always a data pointer */ 548 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 549 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 550 } 551 552 /* 553 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 554 * populate the table. 555 * 556 * @dev - Device pointer for the TMC 557 * @node - NUMA node where the memory should be allocated 558 * @size - Total size of the data buffer 559 * @pages - Optional list of page virtual address 560 */ 561 static struct etr_sg_table * 562 tmc_init_etr_sg_table(struct device *dev, int node, 563 unsigned long size, void **pages) 564 { 565 int nr_entries, nr_tpages; 566 int nr_dpages = size >> PAGE_SHIFT; 567 struct tmc_sg_table *sg_table; 568 struct etr_sg_table *etr_table; 569 570 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 571 if (!etr_table) 572 return ERR_PTR(-ENOMEM); 573 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 574 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 575 576 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 577 if (IS_ERR(sg_table)) { 578 kfree(etr_table); 579 return ERR_CAST(sg_table); 580 } 581 582 etr_table->sg_table = sg_table; 583 /* TMC should use table base address for DBA */ 584 etr_table->hwaddr = sg_table->table_daddr; 585 tmc_etr_sg_table_populate(etr_table); 586 /* Sync the table pages for the HW */ 587 tmc_sg_table_sync_table(sg_table); 588 tmc_etr_sg_table_dump(etr_table); 589 590 return etr_table; 591 } 592 593 /* 594 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 595 */ 596 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 597 struct etr_buf *etr_buf, int node, 598 void **pages) 599 { 600 struct etr_flat_buf *flat_buf; 601 struct device *real_dev = drvdata->csdev->dev.parent; 602 603 /* We cannot reuse existing pages for flat buf */ 604 if (pages) 605 return -EINVAL; 606 607 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 608 if (!flat_buf) 609 return -ENOMEM; 610 611 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size, 612 &flat_buf->daddr, 613 DMA_FROM_DEVICE, 614 GFP_KERNEL | __GFP_NOWARN); 615 if (!flat_buf->vaddr) { 616 kfree(flat_buf); 617 return -ENOMEM; 618 } 619 620 flat_buf->size = etr_buf->size; 621 flat_buf->dev = &drvdata->csdev->dev; 622 etr_buf->hwaddr = flat_buf->daddr; 623 etr_buf->mode = ETR_MODE_FLAT; 624 etr_buf->private = flat_buf; 625 return 0; 626 } 627 628 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 629 { 630 struct etr_flat_buf *flat_buf = etr_buf->private; 631 632 if (flat_buf && flat_buf->daddr) { 633 struct device *real_dev = flat_buf->dev->parent; 634 635 dma_free_noncoherent(real_dev, etr_buf->size, 636 flat_buf->vaddr, flat_buf->daddr, 637 DMA_FROM_DEVICE); 638 } 639 kfree(flat_buf); 640 } 641 642 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 643 { 644 struct etr_flat_buf *flat_buf = etr_buf->private; 645 struct device *real_dev = flat_buf->dev->parent; 646 647 /* 648 * Adjust the buffer to point to the beginning of the trace data 649 * and update the available trace data. 650 */ 651 etr_buf->offset = rrp - etr_buf->hwaddr; 652 if (etr_buf->full) 653 etr_buf->len = etr_buf->size; 654 else 655 etr_buf->len = rwp - rrp; 656 657 /* 658 * The driver always starts tracing at the beginning of the buffer, 659 * the only reason why we would get a wrap around is when the buffer 660 * is full. Sync the entire buffer in one go for this case. 661 */ 662 if (etr_buf->offset + etr_buf->len > etr_buf->size) 663 dma_sync_single_for_cpu(real_dev, flat_buf->daddr, 664 etr_buf->size, DMA_FROM_DEVICE); 665 else 666 dma_sync_single_for_cpu(real_dev, 667 flat_buf->daddr + etr_buf->offset, 668 etr_buf->len, DMA_FROM_DEVICE); 669 } 670 671 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 672 u64 offset, size_t len, char **bufpp) 673 { 674 struct etr_flat_buf *flat_buf = etr_buf->private; 675 676 *bufpp = (char *)flat_buf->vaddr + offset; 677 /* 678 * tmc_etr_buf_get_data already adjusts the length to handle 679 * buffer wrapping around. 680 */ 681 return len; 682 } 683 684 static const struct etr_buf_operations etr_flat_buf_ops = { 685 .alloc = tmc_etr_alloc_flat_buf, 686 .free = tmc_etr_free_flat_buf, 687 .sync = tmc_etr_sync_flat_buf, 688 .get_data = tmc_etr_get_data_flat_buf, 689 }; 690 691 /* 692 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 693 * appropriately. 694 */ 695 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 696 struct etr_buf *etr_buf, int node, 697 void **pages) 698 { 699 struct etr_sg_table *etr_table; 700 struct device *dev = &drvdata->csdev->dev; 701 702 etr_table = tmc_init_etr_sg_table(dev, node, 703 etr_buf->size, pages); 704 if (IS_ERR(etr_table)) 705 return -ENOMEM; 706 etr_buf->hwaddr = etr_table->hwaddr; 707 etr_buf->mode = ETR_MODE_ETR_SG; 708 etr_buf->private = etr_table; 709 return 0; 710 } 711 712 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 713 { 714 struct etr_sg_table *etr_table = etr_buf->private; 715 716 if (etr_table) { 717 tmc_free_sg_table(etr_table->sg_table); 718 kfree(etr_table); 719 } 720 } 721 722 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 723 size_t len, char **bufpp) 724 { 725 struct etr_sg_table *etr_table = etr_buf->private; 726 727 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 728 } 729 730 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 731 { 732 long r_offset, w_offset; 733 struct etr_sg_table *etr_table = etr_buf->private; 734 struct tmc_sg_table *table = etr_table->sg_table; 735 736 /* Convert hw address to offset in the buffer */ 737 r_offset = tmc_sg_get_data_page_offset(table, rrp); 738 if (r_offset < 0) { 739 dev_warn(table->dev, 740 "Unable to map RRP %llx to offset\n", rrp); 741 etr_buf->len = 0; 742 return; 743 } 744 745 w_offset = tmc_sg_get_data_page_offset(table, rwp); 746 if (w_offset < 0) { 747 dev_warn(table->dev, 748 "Unable to map RWP %llx to offset\n", rwp); 749 etr_buf->len = 0; 750 return; 751 } 752 753 etr_buf->offset = r_offset; 754 if (etr_buf->full) 755 etr_buf->len = etr_buf->size; 756 else 757 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 758 w_offset - r_offset; 759 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 760 } 761 762 static const struct etr_buf_operations etr_sg_buf_ops = { 763 .alloc = tmc_etr_alloc_sg_buf, 764 .free = tmc_etr_free_sg_buf, 765 .sync = tmc_etr_sync_sg_buf, 766 .get_data = tmc_etr_get_data_sg_buf, 767 }; 768 769 /* 770 * TMC ETR could be connected to a CATU device, which can provide address 771 * translation service. This is represented by the Output port of the TMC 772 * (ETR) connected to the input port of the CATU. 773 * 774 * Returns : coresight_device ptr for the CATU device if a CATU is found. 775 * : NULL otherwise. 776 */ 777 struct coresight_device * 778 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 779 { 780 struct coresight_device *etr = drvdata->csdev; 781 union coresight_dev_subtype catu_subtype = { 782 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU 783 }; 784 785 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 786 return NULL; 787 788 return coresight_find_output_type(etr->pdata, CORESIGHT_DEV_TYPE_HELPER, 789 catu_subtype); 790 } 791 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device); 792 793 static const struct etr_buf_operations *etr_buf_ops[] = { 794 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 795 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 796 [ETR_MODE_CATU] = NULL, 797 }; 798 799 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu) 800 { 801 etr_buf_ops[ETR_MODE_CATU] = catu; 802 } 803 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops); 804 805 void tmc_etr_remove_catu_ops(void) 806 { 807 etr_buf_ops[ETR_MODE_CATU] = NULL; 808 } 809 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops); 810 811 static inline int tmc_etr_mode_alloc_buf(int mode, 812 struct tmc_drvdata *drvdata, 813 struct etr_buf *etr_buf, int node, 814 void **pages) 815 { 816 int rc = -EINVAL; 817 818 switch (mode) { 819 case ETR_MODE_FLAT: 820 case ETR_MODE_ETR_SG: 821 case ETR_MODE_CATU: 822 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 823 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 824 node, pages); 825 if (!rc) 826 etr_buf->ops = etr_buf_ops[mode]; 827 return rc; 828 default: 829 return -EINVAL; 830 } 831 } 832 833 /* 834 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 835 * @drvdata : ETR device details. 836 * @size : size of the requested buffer. 837 * @flags : Required properties for the buffer. 838 * @node : Node for memory allocations. 839 * @pages : An optional list of pages. 840 */ 841 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 842 ssize_t size, int flags, 843 int node, void **pages) 844 { 845 int rc = -ENOMEM; 846 bool has_etr_sg, has_iommu; 847 bool has_sg, has_catu; 848 struct etr_buf *etr_buf; 849 struct device *dev = &drvdata->csdev->dev; 850 851 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 852 has_iommu = iommu_get_domain_for_dev(dev->parent); 853 has_catu = !!tmc_etr_get_catu_device(drvdata); 854 855 has_sg = has_catu || has_etr_sg; 856 857 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 858 if (!etr_buf) 859 return ERR_PTR(-ENOMEM); 860 861 etr_buf->size = size; 862 863 /* 864 * If we have to use an existing list of pages, we cannot reliably 865 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 866 * we use the contiguous DMA memory if at least one of the following 867 * conditions is true: 868 * a) The ETR cannot use Scatter-Gather. 869 * b) we have a backing IOMMU 870 * c) The requested memory size is smaller (< 1M). 871 * 872 * Fallback to available mechanisms. 873 * 874 */ 875 if (!pages && 876 (!has_sg || has_iommu || size < SZ_1M)) 877 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 878 etr_buf, node, pages); 879 if (rc && has_etr_sg) 880 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 881 etr_buf, node, pages); 882 if (rc && has_catu) 883 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 884 etr_buf, node, pages); 885 if (rc) { 886 kfree(etr_buf); 887 return ERR_PTR(rc); 888 } 889 890 refcount_set(&etr_buf->refcount, 1); 891 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", 892 (unsigned long)size >> 10, etr_buf->mode); 893 return etr_buf; 894 } 895 896 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 897 { 898 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 899 etr_buf->ops->free(etr_buf); 900 kfree(etr_buf); 901 } 902 903 /* 904 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 905 * with a maximum of @len bytes. 906 * Returns: The size of the linear data available @pos, with *bufpp 907 * updated to point to the buffer. 908 */ 909 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 910 u64 offset, size_t len, char **bufpp) 911 { 912 /* Adjust the length to limit this transaction to end of buffer */ 913 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 914 915 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 916 } 917 918 static inline s64 919 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 920 { 921 ssize_t len; 922 char *bufp; 923 924 len = tmc_etr_buf_get_data(etr_buf, offset, 925 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 926 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) 927 return -EINVAL; 928 coresight_insert_barrier_packet(bufp); 929 return offset + CORESIGHT_BARRIER_PKT_SIZE; 930 } 931 932 /* 933 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 934 * Makes sure the trace data is synced to the memory for consumption. 935 * @etr_buf->offset will hold the offset to the beginning of the trace data 936 * within the buffer, with @etr_buf->len bytes to consume. 937 */ 938 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 939 { 940 struct etr_buf *etr_buf = drvdata->etr_buf; 941 u64 rrp, rwp; 942 u32 status; 943 944 rrp = tmc_read_rrp(drvdata); 945 rwp = tmc_read_rwp(drvdata); 946 status = readl_relaxed(drvdata->base + TMC_STS); 947 948 /* 949 * If there were memory errors in the session, truncate the 950 * buffer. 951 */ 952 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { 953 dev_dbg(&drvdata->csdev->dev, 954 "tmc memory error detected, truncating buffer\n"); 955 etr_buf->len = 0; 956 etr_buf->full = false; 957 return; 958 } 959 960 etr_buf->full = !!(status & TMC_STS_FULL); 961 962 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 963 964 etr_buf->ops->sync(etr_buf, rrp, rwp); 965 } 966 967 static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 968 { 969 u32 axictl, sts; 970 struct etr_buf *etr_buf = drvdata->etr_buf; 971 int rc = 0; 972 973 CS_UNLOCK(drvdata->base); 974 975 /* Wait for TMCSReady bit to be set */ 976 rc = tmc_wait_for_tmcready(drvdata); 977 if (rc) { 978 dev_err(&drvdata->csdev->dev, 979 "Failed to enable : TMC not ready\n"); 980 CS_LOCK(drvdata->base); 981 return rc; 982 } 983 984 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 985 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 986 987 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 988 axictl &= ~TMC_AXICTL_CLEAR_MASK; 989 axictl |= TMC_AXICTL_PROT_CTL_B1; 990 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size); 991 axictl |= TMC_AXICTL_AXCACHE_OS; 992 993 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 994 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 995 axictl |= TMC_AXICTL_ARCACHE_OS; 996 } 997 998 if (etr_buf->mode == ETR_MODE_ETR_SG) 999 axictl |= TMC_AXICTL_SCT_GAT_MODE; 1000 1001 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 1002 tmc_write_dba(drvdata, etr_buf->hwaddr); 1003 /* 1004 * If the TMC pointers must be programmed before the session, 1005 * we have to set it properly (i.e, RRP/RWP to base address and 1006 * STS to "not full"). 1007 */ 1008 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 1009 tmc_write_rrp(drvdata, etr_buf->hwaddr); 1010 tmc_write_rwp(drvdata, etr_buf->hwaddr); 1011 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 1012 writel_relaxed(sts, drvdata->base + TMC_STS); 1013 } 1014 1015 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 1016 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 1017 TMC_FFCR_TRIGON_TRIGIN, 1018 drvdata->base + TMC_FFCR); 1019 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 1020 tmc_enable_hw(drvdata); 1021 1022 CS_LOCK(drvdata->base); 1023 return rc; 1024 } 1025 1026 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 1027 struct etr_buf *etr_buf) 1028 { 1029 int rc; 1030 1031 /* Callers should provide an appropriate buffer for use */ 1032 if (WARN_ON(!etr_buf)) 1033 return -EINVAL; 1034 1035 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 1036 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 1037 return -EINVAL; 1038 1039 if (WARN_ON(drvdata->etr_buf)) 1040 return -EBUSY; 1041 1042 rc = coresight_claim_device(drvdata->csdev); 1043 if (!rc) { 1044 drvdata->etr_buf = etr_buf; 1045 rc = __tmc_etr_enable_hw(drvdata); 1046 if (rc) { 1047 drvdata->etr_buf = NULL; 1048 coresight_disclaim_device(drvdata->csdev); 1049 } 1050 } 1051 1052 return rc; 1053 } 1054 1055 /* 1056 * Return the available trace data in the buffer (starts at etr_buf->offset, 1057 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1058 * also updating the @bufpp on where to find it. Since the trace data 1059 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1060 * @len returned to handle buffer wrapping around. 1061 * 1062 * We are protected here by drvdata->reading != 0, which ensures the 1063 * sysfs_buf stays alive. 1064 */ 1065 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1066 loff_t pos, size_t len, char **bufpp) 1067 { 1068 s64 offset; 1069 ssize_t actual = len; 1070 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1071 1072 if (pos + actual > etr_buf->len) 1073 actual = etr_buf->len - pos; 1074 if (actual <= 0) 1075 return actual; 1076 1077 /* Compute the offset from which we read the data */ 1078 offset = etr_buf->offset + pos; 1079 if (offset >= etr_buf->size) 1080 offset -= etr_buf->size; 1081 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1082 } 1083 1084 static struct etr_buf * 1085 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1086 { 1087 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1088 0, cpu_to_node(0), NULL); 1089 } 1090 1091 static void 1092 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1093 { 1094 if (buf) 1095 tmc_free_etr_buf(buf); 1096 } 1097 1098 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1099 { 1100 struct etr_buf *etr_buf = drvdata->etr_buf; 1101 1102 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1103 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1104 drvdata->sysfs_buf = NULL; 1105 } else { 1106 tmc_sync_etr_buf(drvdata); 1107 /* 1108 * Insert barrier packets at the beginning, if there was 1109 * an overflow. 1110 */ 1111 if (etr_buf->full) 1112 tmc_etr_buf_insert_barrier_packet(etr_buf, 1113 etr_buf->offset); 1114 } 1115 } 1116 1117 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1118 { 1119 CS_UNLOCK(drvdata->base); 1120 1121 tmc_flush_and_stop(drvdata); 1122 /* 1123 * When operating in sysFS mode the content of the buffer needs to be 1124 * read before the TMC is disabled. 1125 */ 1126 if (drvdata->mode == CS_MODE_SYSFS) 1127 tmc_etr_sync_sysfs_buf(drvdata); 1128 1129 tmc_disable_hw(drvdata); 1130 1131 CS_LOCK(drvdata->base); 1132 1133 } 1134 1135 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1136 { 1137 __tmc_etr_disable_hw(drvdata); 1138 coresight_disclaim_device(drvdata->csdev); 1139 /* Reset the ETR buf used by hardware */ 1140 drvdata->etr_buf = NULL; 1141 } 1142 1143 static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev) 1144 { 1145 int ret = 0; 1146 unsigned long flags; 1147 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1148 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1149 1150 /* 1151 * If we are enabling the ETR from disabled state, we need to make 1152 * sure we have a buffer with the right size. The etr_buf is not reset 1153 * immediately after we stop the tracing in SYSFS mode as we wait for 1154 * the user to collect the data. We may be able to reuse the existing 1155 * buffer, provided the size matches. Any allocation has to be done 1156 * with the lock released. 1157 */ 1158 spin_lock_irqsave(&drvdata->spinlock, flags); 1159 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1160 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1161 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1162 1163 /* Allocate memory with the locks released */ 1164 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1165 if (IS_ERR(new_buf)) 1166 return new_buf; 1167 1168 /* Let's try again */ 1169 spin_lock_irqsave(&drvdata->spinlock, flags); 1170 } 1171 1172 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1173 ret = -EBUSY; 1174 goto out; 1175 } 1176 1177 /* 1178 * If we don't have a buffer or it doesn't match the requested size, 1179 * use the buffer allocated above. Otherwise reuse the existing buffer. 1180 */ 1181 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1182 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1183 free_buf = sysfs_buf; 1184 drvdata->sysfs_buf = new_buf; 1185 } 1186 1187 out: 1188 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1189 1190 /* Free memory outside the spinlock if need be */ 1191 if (free_buf) 1192 tmc_etr_free_sysfs_buf(free_buf); 1193 return ret ? ERR_PTR(ret) : drvdata->sysfs_buf; 1194 } 1195 1196 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1197 { 1198 int ret = 0; 1199 unsigned long flags; 1200 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1201 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev); 1202 1203 if (IS_ERR(sysfs_buf)) 1204 return PTR_ERR(sysfs_buf); 1205 1206 spin_lock_irqsave(&drvdata->spinlock, flags); 1207 1208 /* 1209 * In sysFS mode we can have multiple writers per sink. Since this 1210 * sink is already enabled no memory is needed and the HW need not be 1211 * touched, even if the buffer size has changed. 1212 */ 1213 if (drvdata->mode == CS_MODE_SYSFS) { 1214 atomic_inc(&csdev->refcnt); 1215 goto out; 1216 } 1217 1218 ret = tmc_etr_enable_hw(drvdata, sysfs_buf); 1219 if (!ret) { 1220 drvdata->mode = CS_MODE_SYSFS; 1221 atomic_inc(&csdev->refcnt); 1222 } 1223 1224 out: 1225 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1226 1227 if (!ret) 1228 dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); 1229 1230 return ret; 1231 } 1232 1233 struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev, 1234 enum cs_mode mode, void *data) 1235 { 1236 struct perf_output_handle *handle = data; 1237 struct etr_perf_buffer *etr_perf; 1238 1239 switch (mode) { 1240 case CS_MODE_SYSFS: 1241 return tmc_etr_get_sysfs_buffer(csdev); 1242 case CS_MODE_PERF: 1243 etr_perf = etm_perf_sink_config(handle); 1244 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) 1245 return ERR_PTR(-EINVAL); 1246 return etr_perf->etr_buf; 1247 default: 1248 return ERR_PTR(-EINVAL); 1249 } 1250 } 1251 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer); 1252 1253 /* 1254 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1255 * The size of the hardware buffer is dependent on the size configured 1256 * via sysfs and the perf ring buffer size. We prefer to allocate the 1257 * largest possible size, scaling down the size by half until it 1258 * reaches a minimum limit (1M), beyond which we give up. 1259 */ 1260 static struct etr_buf * 1261 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1262 int nr_pages, void **pages, bool snapshot) 1263 { 1264 int node; 1265 struct etr_buf *etr_buf; 1266 unsigned long size; 1267 1268 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1269 /* 1270 * Try to match the perf ring buffer size if it is larger 1271 * than the size requested via sysfs. 1272 */ 1273 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1274 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT), 1275 0, node, NULL); 1276 if (!IS_ERR(etr_buf)) 1277 goto done; 1278 } 1279 1280 /* 1281 * Else switch to configured size for this ETR 1282 * and scale down until we hit the minimum limit. 1283 */ 1284 size = drvdata->size; 1285 do { 1286 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1287 if (!IS_ERR(etr_buf)) 1288 goto done; 1289 size /= 2; 1290 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1291 1292 return ERR_PTR(-ENOMEM); 1293 1294 done: 1295 return etr_buf; 1296 } 1297 1298 static struct etr_buf * 1299 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1300 struct perf_event *event, int nr_pages, 1301 void **pages, bool snapshot) 1302 { 1303 int ret; 1304 pid_t pid = task_pid_nr(event->owner); 1305 struct etr_buf *etr_buf; 1306 1307 retry: 1308 /* 1309 * An etr_perf_buffer is associated with an event and holds a reference 1310 * to the AUX ring buffer that was created for that event. In CPU-wide 1311 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1312 * buffer, share a sink. As such an etr_perf_buffer is created for each 1313 * event but a single etr_buf associated with the ETR is shared between 1314 * them. The last event in a trace session will copy the content of the 1315 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1316 * events are simply not used an freed as events are destoyed. We still 1317 * need to allocate a ring buffer for each event since we don't know 1318 * which event will be last. 1319 */ 1320 1321 /* 1322 * The first thing to do here is check if an etr_buf has already been 1323 * allocated for this session. If so it is shared with this event, 1324 * otherwise it is created. 1325 */ 1326 mutex_lock(&drvdata->idr_mutex); 1327 etr_buf = idr_find(&drvdata->idr, pid); 1328 if (etr_buf) { 1329 refcount_inc(&etr_buf->refcount); 1330 mutex_unlock(&drvdata->idr_mutex); 1331 return etr_buf; 1332 } 1333 1334 /* If we made it here no buffer has been allocated, do so now. */ 1335 mutex_unlock(&drvdata->idr_mutex); 1336 1337 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1338 if (IS_ERR(etr_buf)) 1339 return etr_buf; 1340 1341 /* Now that we have a buffer, add it to the IDR. */ 1342 mutex_lock(&drvdata->idr_mutex); 1343 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1344 mutex_unlock(&drvdata->idr_mutex); 1345 1346 /* Another event with this session ID has allocated this buffer. */ 1347 if (ret == -ENOSPC) { 1348 tmc_free_etr_buf(etr_buf); 1349 goto retry; 1350 } 1351 1352 /* The IDR can't allocate room for a new session, abandon ship. */ 1353 if (ret == -ENOMEM) { 1354 tmc_free_etr_buf(etr_buf); 1355 return ERR_PTR(ret); 1356 } 1357 1358 1359 return etr_buf; 1360 } 1361 1362 static struct etr_buf * 1363 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1364 struct perf_event *event, int nr_pages, 1365 void **pages, bool snapshot) 1366 { 1367 /* 1368 * In per-thread mode the etr_buf isn't shared, so just go ahead 1369 * with memory allocation. 1370 */ 1371 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1372 } 1373 1374 static struct etr_buf * 1375 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1376 int nr_pages, void **pages, bool snapshot) 1377 { 1378 if (event->cpu == -1) 1379 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1380 pages, snapshot); 1381 1382 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1383 pages, snapshot); 1384 } 1385 1386 static struct etr_perf_buffer * 1387 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1388 int nr_pages, void **pages, bool snapshot) 1389 { 1390 int node; 1391 struct etr_buf *etr_buf; 1392 struct etr_perf_buffer *etr_perf; 1393 1394 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); 1395 1396 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1397 if (!etr_perf) 1398 return ERR_PTR(-ENOMEM); 1399 1400 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1401 if (!IS_ERR(etr_buf)) 1402 goto done; 1403 1404 kfree(etr_perf); 1405 return ERR_PTR(-ENOMEM); 1406 1407 done: 1408 /* 1409 * Keep a reference to the ETR this buffer has been allocated for 1410 * in order to have access to the IDR in tmc_free_etr_buffer(). 1411 */ 1412 etr_perf->drvdata = drvdata; 1413 etr_perf->etr_buf = etr_buf; 1414 1415 return etr_perf; 1416 } 1417 1418 1419 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1420 struct perf_event *event, void **pages, 1421 int nr_pages, bool snapshot) 1422 { 1423 struct etr_perf_buffer *etr_perf; 1424 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1425 1426 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1427 nr_pages, pages, snapshot); 1428 if (IS_ERR(etr_perf)) { 1429 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); 1430 return NULL; 1431 } 1432 1433 etr_perf->pid = task_pid_nr(event->owner); 1434 etr_perf->snapshot = snapshot; 1435 etr_perf->nr_pages = nr_pages; 1436 etr_perf->pages = pages; 1437 1438 return etr_perf; 1439 } 1440 1441 static void tmc_free_etr_buffer(void *config) 1442 { 1443 struct etr_perf_buffer *etr_perf = config; 1444 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1445 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1446 1447 if (!etr_buf) 1448 goto free_etr_perf_buffer; 1449 1450 mutex_lock(&drvdata->idr_mutex); 1451 /* If we are not the last one to use the buffer, don't touch it. */ 1452 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1453 mutex_unlock(&drvdata->idr_mutex); 1454 goto free_etr_perf_buffer; 1455 } 1456 1457 /* We are the last one, remove from the IDR and free the buffer. */ 1458 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1459 mutex_unlock(&drvdata->idr_mutex); 1460 1461 /* 1462 * Something went very wrong if the buffer associated with this ID 1463 * is not the same in the IDR. Leak to avoid use after free. 1464 */ 1465 if (buf && WARN_ON(buf != etr_buf)) 1466 goto free_etr_perf_buffer; 1467 1468 tmc_free_etr_buf(etr_perf->etr_buf); 1469 1470 free_etr_perf_buffer: 1471 kfree(etr_perf); 1472 } 1473 1474 /* 1475 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1476 * buffer to the perf ring buffer. 1477 */ 1478 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, 1479 unsigned long head, 1480 unsigned long src_offset, 1481 unsigned long to_copy) 1482 { 1483 long bytes; 1484 long pg_idx, pg_offset; 1485 char **dst_pages, *src_buf; 1486 struct etr_buf *etr_buf = etr_perf->etr_buf; 1487 1488 head = PERF_IDX2OFF(head, etr_perf); 1489 pg_idx = head >> PAGE_SHIFT; 1490 pg_offset = head & (PAGE_SIZE - 1); 1491 dst_pages = (char **)etr_perf->pages; 1492 1493 while (to_copy > 0) { 1494 /* 1495 * In one iteration, we can copy minimum of : 1496 * 1) what is available in the source buffer, 1497 * 2) what is available in the source buffer, before it 1498 * wraps around. 1499 * 3) what is available in the destination page. 1500 * in one iteration. 1501 */ 1502 if (src_offset >= etr_buf->size) 1503 src_offset -= etr_buf->size; 1504 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1505 &src_buf); 1506 if (WARN_ON_ONCE(bytes <= 0)) 1507 break; 1508 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1509 1510 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1511 1512 to_copy -= bytes; 1513 1514 /* Move destination pointers */ 1515 pg_offset += bytes; 1516 if (pg_offset == PAGE_SIZE) { 1517 pg_offset = 0; 1518 if (++pg_idx == etr_perf->nr_pages) 1519 pg_idx = 0; 1520 } 1521 1522 /* Move source pointers */ 1523 src_offset += bytes; 1524 } 1525 } 1526 1527 /* 1528 * tmc_update_etr_buffer : Update the perf ring buffer with the 1529 * available trace data. We use software double buffering at the moment. 1530 * 1531 * TODO: Add support for reusing the perf ring buffer. 1532 */ 1533 static unsigned long 1534 tmc_update_etr_buffer(struct coresight_device *csdev, 1535 struct perf_output_handle *handle, 1536 void *config) 1537 { 1538 bool lost = false; 1539 unsigned long flags, offset, size = 0; 1540 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1541 struct etr_perf_buffer *etr_perf = config; 1542 struct etr_buf *etr_buf = etr_perf->etr_buf; 1543 1544 spin_lock_irqsave(&drvdata->spinlock, flags); 1545 1546 /* Don't do anything if another tracer is using this sink */ 1547 if (atomic_read(&csdev->refcnt) != 1) { 1548 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1549 goto out; 1550 } 1551 1552 if (WARN_ON(drvdata->perf_buf != etr_buf)) { 1553 lost = true; 1554 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1555 goto out; 1556 } 1557 1558 CS_UNLOCK(drvdata->base); 1559 1560 tmc_flush_and_stop(drvdata); 1561 tmc_sync_etr_buf(drvdata); 1562 1563 CS_LOCK(drvdata->base); 1564 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1565 1566 lost = etr_buf->full; 1567 offset = etr_buf->offset; 1568 size = etr_buf->len; 1569 1570 /* 1571 * The ETR buffer may be bigger than the space available in the 1572 * perf ring buffer (handle->size). If so advance the offset so that we 1573 * get the latest trace data. In snapshot mode none of that matters 1574 * since we are expected to clobber stale data in favour of the latest 1575 * traces. 1576 */ 1577 if (!etr_perf->snapshot && size > handle->size) { 1578 u32 mask = tmc_get_memwidth_mask(drvdata); 1579 1580 /* 1581 * Make sure the new size is aligned in accordance with the 1582 * requirement explained in function tmc_get_memwidth_mask(). 1583 */ 1584 size = handle->size & mask; 1585 offset = etr_buf->offset + etr_buf->len - size; 1586 1587 if (offset >= etr_buf->size) 1588 offset -= etr_buf->size; 1589 lost = true; 1590 } 1591 1592 /* Insert barrier packets at the beginning, if there was an overflow */ 1593 if (lost) 1594 tmc_etr_buf_insert_barrier_packet(etr_buf, offset); 1595 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size); 1596 1597 /* 1598 * In snapshot mode we simply increment the head by the number of byte 1599 * that were written. User space will figure out how many bytes to get 1600 * from the AUX buffer based on the position of the head. 1601 */ 1602 if (etr_perf->snapshot) 1603 handle->head += size; 1604 1605 /* 1606 * Ensure that the AUX trace data is visible before the aux_head 1607 * is updated via perf_aux_output_end(), as expected by the 1608 * perf ring buffer. 1609 */ 1610 smp_wmb(); 1611 1612 out: 1613 /* 1614 * Don't set the TRUNCATED flag in snapshot mode because 1) the 1615 * captured buffer is expected to be truncated and 2) a full buffer 1616 * prevents the event from being re-enabled by the perf core, 1617 * resulting in stale data being send to user space. 1618 */ 1619 if (!etr_perf->snapshot && lost) 1620 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1621 return size; 1622 } 1623 1624 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1625 { 1626 int rc = 0; 1627 pid_t pid; 1628 unsigned long flags; 1629 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1630 struct perf_output_handle *handle = data; 1631 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1632 1633 spin_lock_irqsave(&drvdata->spinlock, flags); 1634 /* Don't use this sink if it is already claimed by sysFS */ 1635 if (drvdata->mode == CS_MODE_SYSFS) { 1636 rc = -EBUSY; 1637 goto unlock_out; 1638 } 1639 1640 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1641 rc = -EINVAL; 1642 goto unlock_out; 1643 } 1644 1645 /* Get a handle on the pid of the process to monitor */ 1646 pid = etr_perf->pid; 1647 1648 /* Do not proceed if this device is associated with another session */ 1649 if (drvdata->pid != -1 && drvdata->pid != pid) { 1650 rc = -EBUSY; 1651 goto unlock_out; 1652 } 1653 1654 /* 1655 * No HW configuration is needed if the sink is already in 1656 * use for this session. 1657 */ 1658 if (drvdata->pid == pid) { 1659 atomic_inc(&csdev->refcnt); 1660 goto unlock_out; 1661 } 1662 1663 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1664 if (!rc) { 1665 /* Associate with monitored process. */ 1666 drvdata->pid = pid; 1667 drvdata->mode = CS_MODE_PERF; 1668 drvdata->perf_buf = etr_perf->etr_buf; 1669 atomic_inc(&csdev->refcnt); 1670 } 1671 1672 unlock_out: 1673 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1674 return rc; 1675 } 1676 1677 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1678 enum cs_mode mode, void *data) 1679 { 1680 switch (mode) { 1681 case CS_MODE_SYSFS: 1682 return tmc_enable_etr_sink_sysfs(csdev); 1683 case CS_MODE_PERF: 1684 return tmc_enable_etr_sink_perf(csdev, data); 1685 default: 1686 return -EINVAL; 1687 } 1688 } 1689 1690 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1691 { 1692 unsigned long flags; 1693 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1694 1695 spin_lock_irqsave(&drvdata->spinlock, flags); 1696 1697 if (drvdata->reading) { 1698 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1699 return -EBUSY; 1700 } 1701 1702 if (atomic_dec_return(&csdev->refcnt)) { 1703 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1704 return -EBUSY; 1705 } 1706 1707 /* Complain if we (somehow) got out of sync */ 1708 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1709 tmc_etr_disable_hw(drvdata); 1710 /* Dissociate from monitored process. */ 1711 drvdata->pid = -1; 1712 drvdata->mode = CS_MODE_DISABLED; 1713 /* Reset perf specific data */ 1714 drvdata->perf_buf = NULL; 1715 1716 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1717 1718 dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); 1719 return 0; 1720 } 1721 1722 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1723 .enable = tmc_enable_etr_sink, 1724 .disable = tmc_disable_etr_sink, 1725 .alloc_buffer = tmc_alloc_etr_buffer, 1726 .update_buffer = tmc_update_etr_buffer, 1727 .free_buffer = tmc_free_etr_buffer, 1728 }; 1729 1730 const struct coresight_ops tmc_etr_cs_ops = { 1731 .sink_ops = &tmc_etr_sink_ops, 1732 }; 1733 1734 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1735 { 1736 int ret = 0; 1737 unsigned long flags; 1738 1739 /* config types are set a boot time and never change */ 1740 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1741 return -EINVAL; 1742 1743 spin_lock_irqsave(&drvdata->spinlock, flags); 1744 if (drvdata->reading) { 1745 ret = -EBUSY; 1746 goto out; 1747 } 1748 1749 /* 1750 * We can safely allow reads even if the ETR is operating in PERF mode, 1751 * since the sysfs session is captured in mode specific data. 1752 * If drvdata::sysfs_data is NULL the trace data has been read already. 1753 */ 1754 if (!drvdata->sysfs_buf) { 1755 ret = -EINVAL; 1756 goto out; 1757 } 1758 1759 /* Disable the TMC if we are trying to read from a running session. */ 1760 if (drvdata->mode == CS_MODE_SYSFS) 1761 __tmc_etr_disable_hw(drvdata); 1762 1763 drvdata->reading = true; 1764 out: 1765 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1766 1767 return ret; 1768 } 1769 1770 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1771 { 1772 unsigned long flags; 1773 struct etr_buf *sysfs_buf = NULL; 1774 1775 /* config types are set a boot time and never change */ 1776 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1777 return -EINVAL; 1778 1779 spin_lock_irqsave(&drvdata->spinlock, flags); 1780 1781 /* RE-enable the TMC if need be */ 1782 if (drvdata->mode == CS_MODE_SYSFS) { 1783 /* 1784 * The trace run will continue with the same allocated trace 1785 * buffer. Since the tracer is still enabled drvdata::buf can't 1786 * be NULL. 1787 */ 1788 __tmc_etr_enable_hw(drvdata); 1789 } else { 1790 /* 1791 * The ETR is not tracing and the buffer was just read. 1792 * As such prepare to free the trace buffer. 1793 */ 1794 sysfs_buf = drvdata->sysfs_buf; 1795 drvdata->sysfs_buf = NULL; 1796 } 1797 1798 drvdata->reading = false; 1799 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1800 1801 /* Free allocated memory out side of the spinlock */ 1802 if (sysfs_buf) 1803 tmc_etr_free_sysfs_buf(sysfs_buf); 1804 1805 return 0; 1806 } 1807