1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2016 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/coresight.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/iommu.h> 11 #include <linux/idr.h> 12 #include <linux/mutex.h> 13 #include <linux/refcount.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/vmalloc.h> 17 #include "coresight-catu.h" 18 #include "coresight-etm-perf.h" 19 #include "coresight-priv.h" 20 #include "coresight-tmc.h" 21 22 struct etr_flat_buf { 23 struct device *dev; 24 dma_addr_t daddr; 25 void *vaddr; 26 size_t size; 27 }; 28 29 /* 30 * etr_perf_buffer - Perf buffer used for ETR 31 * @drvdata - The ETR drvdaga this buffer has been allocated for. 32 * @etr_buf - Actual buffer used by the ETR 33 * @pid - The PID this etr_perf_buffer belongs to. 34 * @snaphost - Perf session mode 35 * @head - handle->head at the beginning of the session. 36 * @nr_pages - Number of pages in the ring buffer. 37 * @pages - Array of Pages in the ring buffer. 38 */ 39 struct etr_perf_buffer { 40 struct tmc_drvdata *drvdata; 41 struct etr_buf *etr_buf; 42 pid_t pid; 43 bool snapshot; 44 unsigned long head; 45 int nr_pages; 46 void **pages; 47 }; 48 49 /* Convert the perf index to an offset within the ETR buffer */ 50 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 51 52 /* Lower limit for ETR hardware buffer */ 53 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M 54 55 /* 56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers 57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from 58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could 59 * contain more than one SG buffer and tables. 60 * 61 * A table entry has the following format: 62 * 63 * ---Bit31------------Bit4-------Bit1-----Bit0-- 64 * | Address[39:12] | SBZ | Entry Type | 65 * ---------------------------------------------- 66 * 67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are 68 * always zero. 69 * 70 * Entry type: 71 * b00 - Reserved. 72 * b01 - Last entry in the tables, points to 4K page buffer. 73 * b10 - Normal entry, points to 4K page buffer. 74 * b11 - Link. The address points to the base of next table. 75 */ 76 77 typedef u32 sgte_t; 78 79 #define ETR_SG_PAGE_SHIFT 12 80 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) 81 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) 82 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) 83 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) 84 85 #define ETR_SG_ET_MASK 0x3 86 #define ETR_SG_ET_LAST 0x1 87 #define ETR_SG_ET_NORMAL 0x2 88 #define ETR_SG_ET_LINK 0x3 89 90 #define ETR_SG_ADDR_SHIFT 4 91 92 #define ETR_SG_ENTRY(addr, type) \ 93 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ 94 (type & ETR_SG_ET_MASK)) 95 96 #define ETR_SG_ADDR(entry) \ 97 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) 98 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) 99 100 /* 101 * struct etr_sg_table : ETR SG Table 102 * @sg_table: Generic SG Table holding the data/table pages. 103 * @hwaddr: hwaddress used by the TMC, which is the base 104 * address of the table. 105 */ 106 struct etr_sg_table { 107 struct tmc_sg_table *sg_table; 108 dma_addr_t hwaddr; 109 }; 110 111 /* 112 * tmc_etr_sg_table_entries: Total number of table entries required to map 113 * @nr_pages system pages. 114 * 115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. 116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, 117 * with the last entry pointing to another page of table entries. 118 * If we spill over to a new page for mapping 1 entry, we could as 119 * well replace the link entry of the previous page with the last entry. 120 */ 121 static inline unsigned long __attribute_const__ 122 tmc_etr_sg_table_entries(int nr_pages) 123 { 124 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; 125 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); 126 /* 127 * If we spill over to a new page for 1 entry, we could as well 128 * make it the LAST entry in the previous page, skipping the Link 129 * address. 130 */ 131 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) 132 nr_sglinks--; 133 return nr_sgpages + nr_sglinks; 134 } 135 136 /* 137 * tmc_pages_get_offset: Go through all the pages in the tmc_pages 138 * and map the device address @addr to an offset within the virtual 139 * contiguous buffer. 140 */ 141 static long 142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) 143 { 144 int i; 145 dma_addr_t page_start; 146 147 for (i = 0; i < tmc_pages->nr_pages; i++) { 148 page_start = tmc_pages->daddrs[i]; 149 if (addr >= page_start && addr < (page_start + PAGE_SIZE)) 150 return i * PAGE_SIZE + (addr - page_start); 151 } 152 153 return -EINVAL; 154 } 155 156 /* 157 * tmc_pages_free : Unmap and free the pages used by tmc_pages. 158 * If the pages were not allocated in tmc_pages_alloc(), we would 159 * simply drop the refcount. 160 */ 161 static void tmc_pages_free(struct tmc_pages *tmc_pages, 162 struct device *dev, enum dma_data_direction dir) 163 { 164 int i; 165 166 for (i = 0; i < tmc_pages->nr_pages; i++) { 167 if (tmc_pages->daddrs && tmc_pages->daddrs[i]) 168 dma_unmap_page(dev, tmc_pages->daddrs[i], 169 PAGE_SIZE, dir); 170 if (tmc_pages->pages && tmc_pages->pages[i]) 171 __free_page(tmc_pages->pages[i]); 172 } 173 174 kfree(tmc_pages->pages); 175 kfree(tmc_pages->daddrs); 176 tmc_pages->pages = NULL; 177 tmc_pages->daddrs = NULL; 178 tmc_pages->nr_pages = 0; 179 } 180 181 /* 182 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. 183 * If @pages is not NULL, the list of page virtual addresses are 184 * used as the data pages. The pages are then dma_map'ed for @dev 185 * with dma_direction @dir. 186 * 187 * Returns 0 upon success, else the error number. 188 */ 189 static int tmc_pages_alloc(struct tmc_pages *tmc_pages, 190 struct device *dev, int node, 191 enum dma_data_direction dir, void **pages) 192 { 193 int i, nr_pages; 194 dma_addr_t paddr; 195 struct page *page; 196 197 nr_pages = tmc_pages->nr_pages; 198 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), 199 GFP_KERNEL); 200 if (!tmc_pages->daddrs) 201 return -ENOMEM; 202 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), 203 GFP_KERNEL); 204 if (!tmc_pages->pages) { 205 kfree(tmc_pages->daddrs); 206 tmc_pages->daddrs = NULL; 207 return -ENOMEM; 208 } 209 210 for (i = 0; i < nr_pages; i++) { 211 if (pages && pages[i]) { 212 page = virt_to_page(pages[i]); 213 /* Hold a refcount on the page */ 214 get_page(page); 215 } else { 216 page = alloc_pages_node(node, 217 GFP_KERNEL | __GFP_ZERO, 0); 218 } 219 paddr = dma_map_page(dev, page, 0, PAGE_SIZE, dir); 220 if (dma_mapping_error(dev, paddr)) 221 goto err; 222 tmc_pages->daddrs[i] = paddr; 223 tmc_pages->pages[i] = page; 224 } 225 return 0; 226 err: 227 tmc_pages_free(tmc_pages, dev, dir); 228 return -ENOMEM; 229 } 230 231 static inline long 232 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) 233 { 234 return tmc_pages_get_offset(&sg_table->data_pages, addr); 235 } 236 237 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) 238 { 239 if (sg_table->table_vaddr) 240 vunmap(sg_table->table_vaddr); 241 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); 242 } 243 244 static void tmc_free_data_pages(struct tmc_sg_table *sg_table) 245 { 246 if (sg_table->data_vaddr) 247 vunmap(sg_table->data_vaddr); 248 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); 249 } 250 251 void tmc_free_sg_table(struct tmc_sg_table *sg_table) 252 { 253 tmc_free_table_pages(sg_table); 254 tmc_free_data_pages(sg_table); 255 } 256 257 /* 258 * Alloc pages for the table. Since this will be used by the device, 259 * allocate the pages closer to the device (i.e, dev_to_node(dev) 260 * rather than the CPU node). 261 */ 262 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) 263 { 264 int rc; 265 struct tmc_pages *table_pages = &sg_table->table_pages; 266 267 rc = tmc_pages_alloc(table_pages, sg_table->dev, 268 dev_to_node(sg_table->dev), 269 DMA_TO_DEVICE, NULL); 270 if (rc) 271 return rc; 272 sg_table->table_vaddr = vmap(table_pages->pages, 273 table_pages->nr_pages, 274 VM_MAP, 275 PAGE_KERNEL); 276 if (!sg_table->table_vaddr) 277 rc = -ENOMEM; 278 else 279 sg_table->table_daddr = table_pages->daddrs[0]; 280 return rc; 281 } 282 283 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) 284 { 285 int rc; 286 287 /* Allocate data pages on the node requested by the caller */ 288 rc = tmc_pages_alloc(&sg_table->data_pages, 289 sg_table->dev, sg_table->node, 290 DMA_FROM_DEVICE, pages); 291 if (!rc) { 292 sg_table->data_vaddr = vmap(sg_table->data_pages.pages, 293 sg_table->data_pages.nr_pages, 294 VM_MAP, 295 PAGE_KERNEL); 296 if (!sg_table->data_vaddr) 297 rc = -ENOMEM; 298 } 299 return rc; 300 } 301 302 /* 303 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table 304 * and data buffers. TMC writes to the data buffers and reads from the SG 305 * Table pages. 306 * 307 * @dev - Device to which page should be DMA mapped. 308 * @node - Numa node for mem allocations 309 * @nr_tpages - Number of pages for the table entries. 310 * @nr_dpages - Number of pages for Data buffer. 311 * @pages - Optional list of virtual address of pages. 312 */ 313 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, 314 int node, 315 int nr_tpages, 316 int nr_dpages, 317 void **pages) 318 { 319 long rc; 320 struct tmc_sg_table *sg_table; 321 322 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); 323 if (!sg_table) 324 return ERR_PTR(-ENOMEM); 325 sg_table->data_pages.nr_pages = nr_dpages; 326 sg_table->table_pages.nr_pages = nr_tpages; 327 sg_table->node = node; 328 sg_table->dev = dev; 329 330 rc = tmc_alloc_data_pages(sg_table, pages); 331 if (!rc) 332 rc = tmc_alloc_table_pages(sg_table); 333 if (rc) { 334 tmc_free_sg_table(sg_table); 335 kfree(sg_table); 336 return ERR_PTR(rc); 337 } 338 339 return sg_table; 340 } 341 342 /* 343 * tmc_sg_table_sync_data_range: Sync the data buffer written 344 * by the device from @offset upto a @size bytes. 345 */ 346 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, 347 u64 offset, u64 size) 348 { 349 int i, index, start; 350 int npages = DIV_ROUND_UP(size, PAGE_SIZE); 351 struct device *dev = table->dev; 352 struct tmc_pages *data = &table->data_pages; 353 354 start = offset >> PAGE_SHIFT; 355 for (i = start; i < (start + npages); i++) { 356 index = i % data->nr_pages; 357 dma_sync_single_for_cpu(dev, data->daddrs[index], 358 PAGE_SIZE, DMA_FROM_DEVICE); 359 } 360 } 361 362 /* tmc_sg_sync_table: Sync the page table */ 363 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) 364 { 365 int i; 366 struct device *dev = sg_table->dev; 367 struct tmc_pages *table_pages = &sg_table->table_pages; 368 369 for (i = 0; i < table_pages->nr_pages; i++) 370 dma_sync_single_for_device(dev, table_pages->daddrs[i], 371 PAGE_SIZE, DMA_TO_DEVICE); 372 } 373 374 /* 375 * tmc_sg_table_get_data: Get the buffer pointer for data @offset 376 * in the SG buffer. The @bufpp is updated to point to the buffer. 377 * Returns : 378 * the length of linear data available at @offset. 379 * or 380 * <= 0 if no data is available. 381 */ 382 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, 383 u64 offset, size_t len, char **bufpp) 384 { 385 size_t size; 386 int pg_idx = offset >> PAGE_SHIFT; 387 int pg_offset = offset & (PAGE_SIZE - 1); 388 struct tmc_pages *data_pages = &sg_table->data_pages; 389 390 size = tmc_sg_table_buf_size(sg_table); 391 if (offset >= size) 392 return -EINVAL; 393 394 /* Make sure we don't go beyond the end */ 395 len = (len < (size - offset)) ? len : size - offset; 396 /* Respect the page boundaries */ 397 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); 398 if (len > 0) 399 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; 400 return len; 401 } 402 403 #ifdef ETR_SG_DEBUG 404 /* Map a dma address to virtual address */ 405 static unsigned long 406 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, 407 dma_addr_t addr, bool table) 408 { 409 long offset; 410 unsigned long base; 411 struct tmc_pages *tmc_pages; 412 413 if (table) { 414 tmc_pages = &sg_table->table_pages; 415 base = (unsigned long)sg_table->table_vaddr; 416 } else { 417 tmc_pages = &sg_table->data_pages; 418 base = (unsigned long)sg_table->data_vaddr; 419 } 420 421 offset = tmc_pages_get_offset(tmc_pages, addr); 422 if (offset < 0) 423 return 0; 424 return base + offset; 425 } 426 427 /* Dump the given sg_table */ 428 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) 429 { 430 sgte_t *ptr; 431 int i = 0; 432 dma_addr_t addr; 433 struct tmc_sg_table *sg_table = etr_table->sg_table; 434 435 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 436 etr_table->hwaddr, true); 437 while (ptr) { 438 addr = ETR_SG_ADDR(*ptr); 439 switch (ETR_SG_ET(*ptr)) { 440 case ETR_SG_ET_NORMAL: 441 dev_dbg(sg_table->dev, 442 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); 443 ptr++; 444 break; 445 case ETR_SG_ET_LINK: 446 dev_dbg(sg_table->dev, 447 "%05d: *** %p\t:{L} 0x%llx ***\n", 448 i, ptr, addr); 449 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, 450 addr, true); 451 break; 452 case ETR_SG_ET_LAST: 453 dev_dbg(sg_table->dev, 454 "%05d: ### %p\t:[L] 0x%llx ###\n", 455 i, ptr, addr); 456 return; 457 default: 458 dev_dbg(sg_table->dev, 459 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", 460 i, ptr, addr); 461 return; 462 } 463 i++; 464 } 465 dev_dbg(sg_table->dev, "******* End of Table *****\n"); 466 } 467 #else 468 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} 469 #endif 470 471 /* 472 * Populate the SG Table page table entries from table/data 473 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. 474 * So does a Table page. So we keep track of indices of the tables 475 * in each system page and move the pointers accordingly. 476 */ 477 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) 478 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) 479 { 480 dma_addr_t paddr; 481 int i, type, nr_entries; 482 int tpidx = 0; /* index to the current system table_page */ 483 int sgtidx = 0; /* index to the sg_table within the current syspage */ 484 int sgtentry = 0; /* the entry within the sg_table */ 485 int dpidx = 0; /* index to the current system data_page */ 486 int spidx = 0; /* index to the SG page within the current data page */ 487 sgte_t *ptr; /* pointer to the table entry to fill */ 488 struct tmc_sg_table *sg_table = etr_table->sg_table; 489 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; 490 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; 491 492 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); 493 /* 494 * Use the contiguous virtual address of the table to update entries. 495 */ 496 ptr = sg_table->table_vaddr; 497 /* 498 * Fill all the entries, except the last entry to avoid special 499 * checks within the loop. 500 */ 501 for (i = 0; i < nr_entries - 1; i++) { 502 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { 503 /* 504 * Last entry in a sg_table page is a link address to 505 * the next table page. If this sg_table is the last 506 * one in the system page, it links to the first 507 * sg_table in the next system page. Otherwise, it 508 * links to the next sg_table page within the system 509 * page. 510 */ 511 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { 512 paddr = table_daddrs[tpidx + 1]; 513 } else { 514 paddr = table_daddrs[tpidx] + 515 (ETR_SG_PAGE_SIZE * (sgtidx + 1)); 516 } 517 type = ETR_SG_ET_LINK; 518 } else { 519 /* 520 * Update the indices to the data_pages to point to the 521 * next sg_page in the data buffer. 522 */ 523 type = ETR_SG_ET_NORMAL; 524 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 525 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) 526 dpidx++; 527 } 528 *ptr++ = ETR_SG_ENTRY(paddr, type); 529 /* 530 * Move to the next table pointer, moving the table page index 531 * if necessary 532 */ 533 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { 534 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) 535 tpidx++; 536 } 537 } 538 539 /* Set up the last entry, which is always a data pointer */ 540 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; 541 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); 542 } 543 544 /* 545 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and 546 * populate the table. 547 * 548 * @dev - Device pointer for the TMC 549 * @node - NUMA node where the memory should be allocated 550 * @size - Total size of the data buffer 551 * @pages - Optional list of page virtual address 552 */ 553 static struct etr_sg_table * 554 tmc_init_etr_sg_table(struct device *dev, int node, 555 unsigned long size, void **pages) 556 { 557 int nr_entries, nr_tpages; 558 int nr_dpages = size >> PAGE_SHIFT; 559 struct tmc_sg_table *sg_table; 560 struct etr_sg_table *etr_table; 561 562 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); 563 if (!etr_table) 564 return ERR_PTR(-ENOMEM); 565 nr_entries = tmc_etr_sg_table_entries(nr_dpages); 566 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); 567 568 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); 569 if (IS_ERR(sg_table)) { 570 kfree(etr_table); 571 return ERR_CAST(sg_table); 572 } 573 574 etr_table->sg_table = sg_table; 575 /* TMC should use table base address for DBA */ 576 etr_table->hwaddr = sg_table->table_daddr; 577 tmc_etr_sg_table_populate(etr_table); 578 /* Sync the table pages for the HW */ 579 tmc_sg_table_sync_table(sg_table); 580 tmc_etr_sg_table_dump(etr_table); 581 582 return etr_table; 583 } 584 585 /* 586 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. 587 */ 588 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, 589 struct etr_buf *etr_buf, int node, 590 void **pages) 591 { 592 struct etr_flat_buf *flat_buf; 593 594 /* We cannot reuse existing pages for flat buf */ 595 if (pages) 596 return -EINVAL; 597 598 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); 599 if (!flat_buf) 600 return -ENOMEM; 601 602 flat_buf->vaddr = dma_alloc_coherent(drvdata->dev, etr_buf->size, 603 &flat_buf->daddr, GFP_KERNEL); 604 if (!flat_buf->vaddr) { 605 kfree(flat_buf); 606 return -ENOMEM; 607 } 608 609 flat_buf->size = etr_buf->size; 610 flat_buf->dev = drvdata->dev; 611 etr_buf->hwaddr = flat_buf->daddr; 612 etr_buf->mode = ETR_MODE_FLAT; 613 etr_buf->private = flat_buf; 614 return 0; 615 } 616 617 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) 618 { 619 struct etr_flat_buf *flat_buf = etr_buf->private; 620 621 if (flat_buf && flat_buf->daddr) 622 dma_free_coherent(flat_buf->dev, flat_buf->size, 623 flat_buf->vaddr, flat_buf->daddr); 624 kfree(flat_buf); 625 } 626 627 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 628 { 629 /* 630 * Adjust the buffer to point to the beginning of the trace data 631 * and update the available trace data. 632 */ 633 etr_buf->offset = rrp - etr_buf->hwaddr; 634 if (etr_buf->full) 635 etr_buf->len = etr_buf->size; 636 else 637 etr_buf->len = rwp - rrp; 638 } 639 640 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, 641 u64 offset, size_t len, char **bufpp) 642 { 643 struct etr_flat_buf *flat_buf = etr_buf->private; 644 645 *bufpp = (char *)flat_buf->vaddr + offset; 646 /* 647 * tmc_etr_buf_get_data already adjusts the length to handle 648 * buffer wrapping around. 649 */ 650 return len; 651 } 652 653 static const struct etr_buf_operations etr_flat_buf_ops = { 654 .alloc = tmc_etr_alloc_flat_buf, 655 .free = tmc_etr_free_flat_buf, 656 .sync = tmc_etr_sync_flat_buf, 657 .get_data = tmc_etr_get_data_flat_buf, 658 }; 659 660 /* 661 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters 662 * appropriately. 663 */ 664 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, 665 struct etr_buf *etr_buf, int node, 666 void **pages) 667 { 668 struct etr_sg_table *etr_table; 669 670 etr_table = tmc_init_etr_sg_table(drvdata->dev, node, 671 etr_buf->size, pages); 672 if (IS_ERR(etr_table)) 673 return -ENOMEM; 674 etr_buf->hwaddr = etr_table->hwaddr; 675 etr_buf->mode = ETR_MODE_ETR_SG; 676 etr_buf->private = etr_table; 677 return 0; 678 } 679 680 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) 681 { 682 struct etr_sg_table *etr_table = etr_buf->private; 683 684 if (etr_table) { 685 tmc_free_sg_table(etr_table->sg_table); 686 kfree(etr_table); 687 } 688 } 689 690 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, 691 size_t len, char **bufpp) 692 { 693 struct etr_sg_table *etr_table = etr_buf->private; 694 695 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); 696 } 697 698 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) 699 { 700 long r_offset, w_offset; 701 struct etr_sg_table *etr_table = etr_buf->private; 702 struct tmc_sg_table *table = etr_table->sg_table; 703 704 /* Convert hw address to offset in the buffer */ 705 r_offset = tmc_sg_get_data_page_offset(table, rrp); 706 if (r_offset < 0) { 707 dev_warn(table->dev, 708 "Unable to map RRP %llx to offset\n", rrp); 709 etr_buf->len = 0; 710 return; 711 } 712 713 w_offset = tmc_sg_get_data_page_offset(table, rwp); 714 if (w_offset < 0) { 715 dev_warn(table->dev, 716 "Unable to map RWP %llx to offset\n", rwp); 717 etr_buf->len = 0; 718 return; 719 } 720 721 etr_buf->offset = r_offset; 722 if (etr_buf->full) 723 etr_buf->len = etr_buf->size; 724 else 725 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + 726 w_offset - r_offset; 727 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); 728 } 729 730 static const struct etr_buf_operations etr_sg_buf_ops = { 731 .alloc = tmc_etr_alloc_sg_buf, 732 .free = tmc_etr_free_sg_buf, 733 .sync = tmc_etr_sync_sg_buf, 734 .get_data = tmc_etr_get_data_sg_buf, 735 }; 736 737 /* 738 * TMC ETR could be connected to a CATU device, which can provide address 739 * translation service. This is represented by the Output port of the TMC 740 * (ETR) connected to the input port of the CATU. 741 * 742 * Returns : coresight_device ptr for the CATU device if a CATU is found. 743 * : NULL otherwise. 744 */ 745 struct coresight_device * 746 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) 747 { 748 int i; 749 struct coresight_device *tmp, *etr = drvdata->csdev; 750 751 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) 752 return NULL; 753 754 for (i = 0; i < etr->nr_outport; i++) { 755 tmp = etr->conns[i].child_dev; 756 if (tmp && coresight_is_catu_device(tmp)) 757 return tmp; 758 } 759 760 return NULL; 761 } 762 763 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata, 764 struct etr_buf *etr_buf) 765 { 766 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 767 768 if (catu && helper_ops(catu)->enable) 769 return helper_ops(catu)->enable(catu, etr_buf); 770 return 0; 771 } 772 773 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata) 774 { 775 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); 776 777 if (catu && helper_ops(catu)->disable) 778 helper_ops(catu)->disable(catu, drvdata->etr_buf); 779 } 780 781 static const struct etr_buf_operations *etr_buf_ops[] = { 782 [ETR_MODE_FLAT] = &etr_flat_buf_ops, 783 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, 784 [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU) 785 ? &etr_catu_buf_ops : NULL, 786 }; 787 788 static inline int tmc_etr_mode_alloc_buf(int mode, 789 struct tmc_drvdata *drvdata, 790 struct etr_buf *etr_buf, int node, 791 void **pages) 792 { 793 int rc = -EINVAL; 794 795 switch (mode) { 796 case ETR_MODE_FLAT: 797 case ETR_MODE_ETR_SG: 798 case ETR_MODE_CATU: 799 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) 800 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, 801 node, pages); 802 if (!rc) 803 etr_buf->ops = etr_buf_ops[mode]; 804 return rc; 805 default: 806 return -EINVAL; 807 } 808 } 809 810 /* 811 * tmc_alloc_etr_buf: Allocate a buffer use by ETR. 812 * @drvdata : ETR device details. 813 * @size : size of the requested buffer. 814 * @flags : Required properties for the buffer. 815 * @node : Node for memory allocations. 816 * @pages : An optional list of pages. 817 */ 818 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, 819 ssize_t size, int flags, 820 int node, void **pages) 821 { 822 int rc = -ENOMEM; 823 bool has_etr_sg, has_iommu; 824 bool has_sg, has_catu; 825 struct etr_buf *etr_buf; 826 827 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); 828 has_iommu = iommu_get_domain_for_dev(drvdata->dev); 829 has_catu = !!tmc_etr_get_catu_device(drvdata); 830 831 has_sg = has_catu || has_etr_sg; 832 833 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); 834 if (!etr_buf) 835 return ERR_PTR(-ENOMEM); 836 837 etr_buf->size = size; 838 839 /* 840 * If we have to use an existing list of pages, we cannot reliably 841 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, 842 * we use the contiguous DMA memory if at least one of the following 843 * conditions is true: 844 * a) The ETR cannot use Scatter-Gather. 845 * b) we have a backing IOMMU 846 * c) The requested memory size is smaller (< 1M). 847 * 848 * Fallback to available mechanisms. 849 * 850 */ 851 if (!pages && 852 (!has_sg || has_iommu || size < SZ_1M)) 853 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, 854 etr_buf, node, pages); 855 if (rc && has_etr_sg) 856 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, 857 etr_buf, node, pages); 858 if (rc && has_catu) 859 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, 860 etr_buf, node, pages); 861 if (rc) { 862 kfree(etr_buf); 863 return ERR_PTR(rc); 864 } 865 866 dev_dbg(drvdata->dev, "allocated buffer of size %ldKB in mode %d\n", 867 (unsigned long)size >> 10, etr_buf->mode); 868 return etr_buf; 869 } 870 871 static void tmc_free_etr_buf(struct etr_buf *etr_buf) 872 { 873 WARN_ON(!etr_buf->ops || !etr_buf->ops->free); 874 etr_buf->ops->free(etr_buf); 875 kfree(etr_buf); 876 } 877 878 /* 879 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset 880 * with a maximum of @len bytes. 881 * Returns: The size of the linear data available @pos, with *bufpp 882 * updated to point to the buffer. 883 */ 884 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, 885 u64 offset, size_t len, char **bufpp) 886 { 887 /* Adjust the length to limit this transaction to end of buffer */ 888 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; 889 890 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); 891 } 892 893 static inline s64 894 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) 895 { 896 ssize_t len; 897 char *bufp; 898 899 len = tmc_etr_buf_get_data(etr_buf, offset, 900 CORESIGHT_BARRIER_PKT_SIZE, &bufp); 901 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE)) 902 return -EINVAL; 903 coresight_insert_barrier_packet(bufp); 904 return offset + CORESIGHT_BARRIER_PKT_SIZE; 905 } 906 907 /* 908 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. 909 * Makes sure the trace data is synced to the memory for consumption. 910 * @etr_buf->offset will hold the offset to the beginning of the trace data 911 * within the buffer, with @etr_buf->len bytes to consume. 912 */ 913 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) 914 { 915 struct etr_buf *etr_buf = drvdata->etr_buf; 916 u64 rrp, rwp; 917 u32 status; 918 919 rrp = tmc_read_rrp(drvdata); 920 rwp = tmc_read_rwp(drvdata); 921 status = readl_relaxed(drvdata->base + TMC_STS); 922 etr_buf->full = status & TMC_STS_FULL; 923 924 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); 925 926 etr_buf->ops->sync(etr_buf, rrp, rwp); 927 928 /* Insert barrier packets at the beginning, if there was an overflow */ 929 if (etr_buf->full) 930 tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset); 931 } 932 933 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) 934 { 935 u32 axictl, sts; 936 struct etr_buf *etr_buf = drvdata->etr_buf; 937 938 CS_UNLOCK(drvdata->base); 939 940 /* Wait for TMCSReady bit to be set */ 941 tmc_wait_for_tmcready(drvdata); 942 943 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); 944 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); 945 946 axictl = readl_relaxed(drvdata->base + TMC_AXICTL); 947 axictl &= ~TMC_AXICTL_CLEAR_MASK; 948 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16); 949 axictl |= TMC_AXICTL_AXCACHE_OS; 950 951 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { 952 axictl &= ~TMC_AXICTL_ARCACHE_MASK; 953 axictl |= TMC_AXICTL_ARCACHE_OS; 954 } 955 956 if (etr_buf->mode == ETR_MODE_ETR_SG) 957 axictl |= TMC_AXICTL_SCT_GAT_MODE; 958 959 writel_relaxed(axictl, drvdata->base + TMC_AXICTL); 960 tmc_write_dba(drvdata, etr_buf->hwaddr); 961 /* 962 * If the TMC pointers must be programmed before the session, 963 * we have to set it properly (i.e, RRP/RWP to base address and 964 * STS to "not full"). 965 */ 966 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { 967 tmc_write_rrp(drvdata, etr_buf->hwaddr); 968 tmc_write_rwp(drvdata, etr_buf->hwaddr); 969 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; 970 writel_relaxed(sts, drvdata->base + TMC_STS); 971 } 972 973 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | 974 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | 975 TMC_FFCR_TRIGON_TRIGIN, 976 drvdata->base + TMC_FFCR); 977 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); 978 tmc_enable_hw(drvdata); 979 980 CS_LOCK(drvdata->base); 981 } 982 983 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, 984 struct etr_buf *etr_buf) 985 { 986 int rc; 987 988 /* Callers should provide an appropriate buffer for use */ 989 if (WARN_ON(!etr_buf)) 990 return -EINVAL; 991 992 if ((etr_buf->mode == ETR_MODE_ETR_SG) && 993 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) 994 return -EINVAL; 995 996 if (WARN_ON(drvdata->etr_buf)) 997 return -EBUSY; 998 999 /* 1000 * If this ETR is connected to a CATU, enable it before we turn 1001 * this on. 1002 */ 1003 rc = tmc_etr_enable_catu(drvdata, etr_buf); 1004 if (rc) 1005 return rc; 1006 rc = coresight_claim_device(drvdata->base); 1007 if (!rc) { 1008 drvdata->etr_buf = etr_buf; 1009 __tmc_etr_enable_hw(drvdata); 1010 } 1011 1012 return rc; 1013 } 1014 1015 /* 1016 * Return the available trace data in the buffer (starts at etr_buf->offset, 1017 * limited by etr_buf->len) from @pos, with a maximum limit of @len, 1018 * also updating the @bufpp on where to find it. Since the trace data 1019 * starts at anywhere in the buffer, depending on the RRP, we adjust the 1020 * @len returned to handle buffer wrapping around. 1021 * 1022 * We are protected here by drvdata->reading != 0, which ensures the 1023 * sysfs_buf stays alive. 1024 */ 1025 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, 1026 loff_t pos, size_t len, char **bufpp) 1027 { 1028 s64 offset; 1029 ssize_t actual = len; 1030 struct etr_buf *etr_buf = drvdata->sysfs_buf; 1031 1032 if (pos + actual > etr_buf->len) 1033 actual = etr_buf->len - pos; 1034 if (actual <= 0) 1035 return actual; 1036 1037 /* Compute the offset from which we read the data */ 1038 offset = etr_buf->offset + pos; 1039 if (offset >= etr_buf->size) 1040 offset -= etr_buf->size; 1041 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); 1042 } 1043 1044 static struct etr_buf * 1045 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) 1046 { 1047 return tmc_alloc_etr_buf(drvdata, drvdata->size, 1048 0, cpu_to_node(0), NULL); 1049 } 1050 1051 static void 1052 tmc_etr_free_sysfs_buf(struct etr_buf *buf) 1053 { 1054 if (buf) 1055 tmc_free_etr_buf(buf); 1056 } 1057 1058 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) 1059 { 1060 struct etr_buf *etr_buf = drvdata->etr_buf; 1061 1062 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { 1063 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); 1064 drvdata->sysfs_buf = NULL; 1065 } else { 1066 tmc_sync_etr_buf(drvdata); 1067 } 1068 } 1069 1070 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1071 { 1072 CS_UNLOCK(drvdata->base); 1073 1074 tmc_flush_and_stop(drvdata); 1075 /* 1076 * When operating in sysFS mode the content of the buffer needs to be 1077 * read before the TMC is disabled. 1078 */ 1079 if (drvdata->mode == CS_MODE_SYSFS) 1080 tmc_etr_sync_sysfs_buf(drvdata); 1081 1082 tmc_disable_hw(drvdata); 1083 1084 CS_LOCK(drvdata->base); 1085 1086 } 1087 1088 static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) 1089 { 1090 __tmc_etr_disable_hw(drvdata); 1091 /* Disable CATU device if this ETR is connected to one */ 1092 tmc_etr_disable_catu(drvdata); 1093 coresight_disclaim_device(drvdata->base); 1094 /* Reset the ETR buf used by hardware */ 1095 drvdata->etr_buf = NULL; 1096 } 1097 1098 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) 1099 { 1100 int ret = 0; 1101 unsigned long flags; 1102 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1103 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; 1104 1105 /* 1106 * If we are enabling the ETR from disabled state, we need to make 1107 * sure we have a buffer with the right size. The etr_buf is not reset 1108 * immediately after we stop the tracing in SYSFS mode as we wait for 1109 * the user to collect the data. We may be able to reuse the existing 1110 * buffer, provided the size matches. Any allocation has to be done 1111 * with the lock released. 1112 */ 1113 spin_lock_irqsave(&drvdata->spinlock, flags); 1114 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1115 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { 1116 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1117 1118 /* Allocate memory with the locks released */ 1119 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); 1120 if (IS_ERR(new_buf)) 1121 return PTR_ERR(new_buf); 1122 1123 /* Let's try again */ 1124 spin_lock_irqsave(&drvdata->spinlock, flags); 1125 } 1126 1127 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { 1128 ret = -EBUSY; 1129 goto out; 1130 } 1131 1132 /* 1133 * In sysFS mode we can have multiple writers per sink. Since this 1134 * sink is already enabled no memory is needed and the HW need not be 1135 * touched, even if the buffer size has changed. 1136 */ 1137 if (drvdata->mode == CS_MODE_SYSFS) { 1138 atomic_inc(csdev->refcnt); 1139 goto out; 1140 } 1141 1142 /* 1143 * If we don't have a buffer or it doesn't match the requested size, 1144 * use the buffer allocated above. Otherwise reuse the existing buffer. 1145 */ 1146 sysfs_buf = READ_ONCE(drvdata->sysfs_buf); 1147 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { 1148 free_buf = sysfs_buf; 1149 drvdata->sysfs_buf = new_buf; 1150 } 1151 1152 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf); 1153 if (!ret) { 1154 drvdata->mode = CS_MODE_SYSFS; 1155 atomic_inc(csdev->refcnt); 1156 } 1157 out: 1158 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1159 1160 /* Free memory outside the spinlock if need be */ 1161 if (free_buf) 1162 tmc_etr_free_sysfs_buf(free_buf); 1163 1164 if (!ret) 1165 dev_dbg(drvdata->dev, "TMC-ETR enabled\n"); 1166 1167 return ret; 1168 } 1169 1170 /* 1171 * alloc_etr_buf: Allocate ETR buffer for use by perf. 1172 * The size of the hardware buffer is dependent on the size configured 1173 * via sysfs and the perf ring buffer size. We prefer to allocate the 1174 * largest possible size, scaling down the size by half until it 1175 * reaches a minimum limit (1M), beyond which we give up. 1176 */ 1177 static struct etr_buf * 1178 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1179 int nr_pages, void **pages, bool snapshot) 1180 { 1181 int node, cpu = event->cpu; 1182 struct etr_buf *etr_buf; 1183 unsigned long size; 1184 1185 if (cpu == -1) 1186 cpu = smp_processor_id(); 1187 node = cpu_to_node(cpu); 1188 1189 /* 1190 * Try to match the perf ring buffer size if it is larger 1191 * than the size requested via sysfs. 1192 */ 1193 if ((nr_pages << PAGE_SHIFT) > drvdata->size) { 1194 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT), 1195 0, node, NULL); 1196 if (!IS_ERR(etr_buf)) 1197 goto done; 1198 } 1199 1200 /* 1201 * Else switch to configured size for this ETR 1202 * and scale down until we hit the minimum limit. 1203 */ 1204 size = drvdata->size; 1205 do { 1206 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); 1207 if (!IS_ERR(etr_buf)) 1208 goto done; 1209 size /= 2; 1210 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); 1211 1212 return ERR_PTR(-ENOMEM); 1213 1214 done: 1215 return etr_buf; 1216 } 1217 1218 static struct etr_buf * 1219 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, 1220 struct perf_event *event, int nr_pages, 1221 void **pages, bool snapshot) 1222 { 1223 int ret; 1224 pid_t pid = task_pid_nr(event->owner); 1225 struct etr_buf *etr_buf; 1226 1227 retry: 1228 /* 1229 * An etr_perf_buffer is associated with an event and holds a reference 1230 * to the AUX ring buffer that was created for that event. In CPU-wide 1231 * N:1 mode multiple events (one per CPU), each with its own AUX ring 1232 * buffer, share a sink. As such an etr_perf_buffer is created for each 1233 * event but a single etr_buf associated with the ETR is shared between 1234 * them. The last event in a trace session will copy the content of the 1235 * etr_buf to its AUX ring buffer. Ring buffer associated to other 1236 * events are simply not used an freed as events are destoyed. We still 1237 * need to allocate a ring buffer for each event since we don't know 1238 * which event will be last. 1239 */ 1240 1241 /* 1242 * The first thing to do here is check if an etr_buf has already been 1243 * allocated for this session. If so it is shared with this event, 1244 * otherwise it is created. 1245 */ 1246 mutex_lock(&drvdata->idr_mutex); 1247 etr_buf = idr_find(&drvdata->idr, pid); 1248 if (etr_buf) { 1249 refcount_inc(&etr_buf->refcount); 1250 mutex_unlock(&drvdata->idr_mutex); 1251 return etr_buf; 1252 } 1253 1254 /* If we made it here no buffer has been allocated, do so now. */ 1255 mutex_unlock(&drvdata->idr_mutex); 1256 1257 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1258 if (IS_ERR(etr_buf)) 1259 return etr_buf; 1260 1261 refcount_set(&etr_buf->refcount, 1); 1262 1263 /* Now that we have a buffer, add it to the IDR. */ 1264 mutex_lock(&drvdata->idr_mutex); 1265 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); 1266 mutex_unlock(&drvdata->idr_mutex); 1267 1268 /* Another event with this session ID has allocated this buffer. */ 1269 if (ret == -ENOSPC) { 1270 tmc_free_etr_buf(etr_buf); 1271 goto retry; 1272 } 1273 1274 /* The IDR can't allocate room for a new session, abandon ship. */ 1275 if (ret == -ENOMEM) { 1276 tmc_free_etr_buf(etr_buf); 1277 return ERR_PTR(ret); 1278 } 1279 1280 1281 return etr_buf; 1282 } 1283 1284 static struct etr_buf * 1285 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, 1286 struct perf_event *event, int nr_pages, 1287 void **pages, bool snapshot) 1288 { 1289 struct etr_buf *etr_buf; 1290 1291 /* 1292 * In per-thread mode the etr_buf isn't shared, so just go ahead 1293 * with memory allocation. 1294 */ 1295 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1296 if (IS_ERR(etr_buf)) 1297 goto out; 1298 1299 refcount_set(&etr_buf->refcount, 1); 1300 out: 1301 return etr_buf; 1302 } 1303 1304 static struct etr_buf * 1305 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1306 int nr_pages, void **pages, bool snapshot) 1307 { 1308 if (event->cpu == -1) 1309 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, 1310 pages, snapshot); 1311 1312 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, 1313 pages, snapshot); 1314 } 1315 1316 static struct etr_perf_buffer * 1317 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, 1318 int nr_pages, void **pages, bool snapshot) 1319 { 1320 int node, cpu = event->cpu; 1321 struct etr_buf *etr_buf; 1322 struct etr_perf_buffer *etr_perf; 1323 1324 if (cpu == -1) 1325 cpu = smp_processor_id(); 1326 node = cpu_to_node(cpu); 1327 1328 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); 1329 if (!etr_perf) 1330 return ERR_PTR(-ENOMEM); 1331 1332 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); 1333 if (!IS_ERR(etr_buf)) 1334 goto done; 1335 1336 kfree(etr_perf); 1337 return ERR_PTR(-ENOMEM); 1338 1339 done: 1340 /* 1341 * Keep a reference to the ETR this buffer has been allocated for 1342 * in order to have access to the IDR in tmc_free_etr_buffer(). 1343 */ 1344 etr_perf->drvdata = drvdata; 1345 etr_perf->etr_buf = etr_buf; 1346 1347 return etr_perf; 1348 } 1349 1350 1351 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, 1352 struct perf_event *event, void **pages, 1353 int nr_pages, bool snapshot) 1354 { 1355 struct etr_perf_buffer *etr_perf; 1356 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1357 1358 etr_perf = tmc_etr_setup_perf_buf(drvdata, event, 1359 nr_pages, pages, snapshot); 1360 if (IS_ERR(etr_perf)) { 1361 dev_dbg(drvdata->dev, "Unable to allocate ETR buffer\n"); 1362 return NULL; 1363 } 1364 1365 etr_perf->pid = task_pid_nr(event->owner); 1366 etr_perf->snapshot = snapshot; 1367 etr_perf->nr_pages = nr_pages; 1368 etr_perf->pages = pages; 1369 1370 return etr_perf; 1371 } 1372 1373 static void tmc_free_etr_buffer(void *config) 1374 { 1375 struct etr_perf_buffer *etr_perf = config; 1376 struct tmc_drvdata *drvdata = etr_perf->drvdata; 1377 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; 1378 1379 if (!etr_buf) 1380 goto free_etr_perf_buffer; 1381 1382 mutex_lock(&drvdata->idr_mutex); 1383 /* If we are not the last one to use the buffer, don't touch it. */ 1384 if (!refcount_dec_and_test(&etr_buf->refcount)) { 1385 mutex_unlock(&drvdata->idr_mutex); 1386 goto free_etr_perf_buffer; 1387 } 1388 1389 /* We are the last one, remove from the IDR and free the buffer. */ 1390 buf = idr_remove(&drvdata->idr, etr_perf->pid); 1391 mutex_unlock(&drvdata->idr_mutex); 1392 1393 /* 1394 * Something went very wrong if the buffer associated with this ID 1395 * is not the same in the IDR. Leak to avoid use after free. 1396 */ 1397 if (buf && WARN_ON(buf != etr_buf)) 1398 goto free_etr_perf_buffer; 1399 1400 tmc_free_etr_buf(etr_perf->etr_buf); 1401 1402 free_etr_perf_buffer: 1403 kfree(etr_perf); 1404 } 1405 1406 /* 1407 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware 1408 * buffer to the perf ring buffer. 1409 */ 1410 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf) 1411 { 1412 long bytes, to_copy; 1413 long pg_idx, pg_offset, src_offset; 1414 unsigned long head = etr_perf->head; 1415 char **dst_pages, *src_buf; 1416 struct etr_buf *etr_buf = etr_perf->etr_buf; 1417 1418 head = etr_perf->head; 1419 pg_idx = head >> PAGE_SHIFT; 1420 pg_offset = head & (PAGE_SIZE - 1); 1421 dst_pages = (char **)etr_perf->pages; 1422 src_offset = etr_buf->offset; 1423 to_copy = etr_buf->len; 1424 1425 while (to_copy > 0) { 1426 /* 1427 * In one iteration, we can copy minimum of : 1428 * 1) what is available in the source buffer, 1429 * 2) what is available in the source buffer, before it 1430 * wraps around. 1431 * 3) what is available in the destination page. 1432 * in one iteration. 1433 */ 1434 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, 1435 &src_buf); 1436 if (WARN_ON_ONCE(bytes <= 0)) 1437 break; 1438 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); 1439 1440 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); 1441 1442 to_copy -= bytes; 1443 1444 /* Move destination pointers */ 1445 pg_offset += bytes; 1446 if (pg_offset == PAGE_SIZE) { 1447 pg_offset = 0; 1448 if (++pg_idx == etr_perf->nr_pages) 1449 pg_idx = 0; 1450 } 1451 1452 /* Move source pointers */ 1453 src_offset += bytes; 1454 if (src_offset >= etr_buf->size) 1455 src_offset -= etr_buf->size; 1456 } 1457 } 1458 1459 /* 1460 * tmc_update_etr_buffer : Update the perf ring buffer with the 1461 * available trace data. We use software double buffering at the moment. 1462 * 1463 * TODO: Add support for reusing the perf ring buffer. 1464 */ 1465 static unsigned long 1466 tmc_update_etr_buffer(struct coresight_device *csdev, 1467 struct perf_output_handle *handle, 1468 void *config) 1469 { 1470 bool lost = false; 1471 unsigned long flags, size = 0; 1472 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1473 struct etr_perf_buffer *etr_perf = config; 1474 struct etr_buf *etr_buf = etr_perf->etr_buf; 1475 1476 spin_lock_irqsave(&drvdata->spinlock, flags); 1477 1478 /* Don't do anything if another tracer is using this sink */ 1479 if (atomic_read(csdev->refcnt) != 1) { 1480 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1481 goto out; 1482 } 1483 1484 if (WARN_ON(drvdata->perf_data != etr_perf)) { 1485 lost = true; 1486 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1487 goto out; 1488 } 1489 1490 CS_UNLOCK(drvdata->base); 1491 1492 tmc_flush_and_stop(drvdata); 1493 tmc_sync_etr_buf(drvdata); 1494 1495 CS_LOCK(drvdata->base); 1496 /* Reset perf specific data */ 1497 drvdata->perf_data = NULL; 1498 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1499 1500 size = etr_buf->len; 1501 tmc_etr_sync_perf_buffer(etr_perf); 1502 1503 /* 1504 * Update handle->head in snapshot mode. Also update the size to the 1505 * hardware buffer size if there was an overflow. 1506 */ 1507 if (etr_perf->snapshot) { 1508 handle->head += size; 1509 if (etr_buf->full) 1510 size = etr_buf->size; 1511 } 1512 1513 lost |= etr_buf->full; 1514 out: 1515 if (lost) 1516 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1517 return size; 1518 } 1519 1520 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) 1521 { 1522 int rc = 0; 1523 pid_t pid; 1524 unsigned long flags; 1525 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1526 struct perf_output_handle *handle = data; 1527 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); 1528 1529 spin_lock_irqsave(&drvdata->spinlock, flags); 1530 /* Don't use this sink if it is already claimed by sysFS */ 1531 if (drvdata->mode == CS_MODE_SYSFS) { 1532 rc = -EBUSY; 1533 goto unlock_out; 1534 } 1535 1536 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { 1537 rc = -EINVAL; 1538 goto unlock_out; 1539 } 1540 1541 /* Get a handle on the pid of the process to monitor */ 1542 pid = etr_perf->pid; 1543 1544 /* Do not proceed if this device is associated with another session */ 1545 if (drvdata->pid != -1 && drvdata->pid != pid) { 1546 rc = -EBUSY; 1547 goto unlock_out; 1548 } 1549 1550 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf); 1551 drvdata->perf_data = etr_perf; 1552 1553 /* 1554 * No HW configuration is needed if the sink is already in 1555 * use for this session. 1556 */ 1557 if (drvdata->pid == pid) { 1558 atomic_inc(csdev->refcnt); 1559 goto unlock_out; 1560 } 1561 1562 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); 1563 if (!rc) { 1564 /* Associate with monitored process. */ 1565 drvdata->pid = pid; 1566 drvdata->mode = CS_MODE_PERF; 1567 atomic_inc(csdev->refcnt); 1568 } 1569 1570 unlock_out: 1571 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1572 return rc; 1573 } 1574 1575 static int tmc_enable_etr_sink(struct coresight_device *csdev, 1576 u32 mode, void *data) 1577 { 1578 switch (mode) { 1579 case CS_MODE_SYSFS: 1580 return tmc_enable_etr_sink_sysfs(csdev); 1581 case CS_MODE_PERF: 1582 return tmc_enable_etr_sink_perf(csdev, data); 1583 } 1584 1585 /* We shouldn't be here */ 1586 return -EINVAL; 1587 } 1588 1589 static int tmc_disable_etr_sink(struct coresight_device *csdev) 1590 { 1591 unsigned long flags; 1592 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); 1593 1594 spin_lock_irqsave(&drvdata->spinlock, flags); 1595 1596 if (drvdata->reading) { 1597 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1598 return -EBUSY; 1599 } 1600 1601 if (atomic_dec_return(csdev->refcnt)) { 1602 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1603 return -EBUSY; 1604 } 1605 1606 /* Complain if we (somehow) got out of sync */ 1607 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); 1608 tmc_etr_disable_hw(drvdata); 1609 /* Dissociate from monitored process. */ 1610 drvdata->pid = -1; 1611 drvdata->mode = CS_MODE_DISABLED; 1612 1613 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1614 1615 dev_dbg(drvdata->dev, "TMC-ETR disabled\n"); 1616 return 0; 1617 } 1618 1619 static const struct coresight_ops_sink tmc_etr_sink_ops = { 1620 .enable = tmc_enable_etr_sink, 1621 .disable = tmc_disable_etr_sink, 1622 .alloc_buffer = tmc_alloc_etr_buffer, 1623 .update_buffer = tmc_update_etr_buffer, 1624 .free_buffer = tmc_free_etr_buffer, 1625 }; 1626 1627 const struct coresight_ops tmc_etr_cs_ops = { 1628 .sink_ops = &tmc_etr_sink_ops, 1629 }; 1630 1631 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) 1632 { 1633 int ret = 0; 1634 unsigned long flags; 1635 1636 /* config types are set a boot time and never change */ 1637 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1638 return -EINVAL; 1639 1640 spin_lock_irqsave(&drvdata->spinlock, flags); 1641 if (drvdata->reading) { 1642 ret = -EBUSY; 1643 goto out; 1644 } 1645 1646 /* 1647 * We can safely allow reads even if the ETR is operating in PERF mode, 1648 * since the sysfs session is captured in mode specific data. 1649 * If drvdata::sysfs_data is NULL the trace data has been read already. 1650 */ 1651 if (!drvdata->sysfs_buf) { 1652 ret = -EINVAL; 1653 goto out; 1654 } 1655 1656 /* Disable the TMC if we are trying to read from a running session. */ 1657 if (drvdata->mode == CS_MODE_SYSFS) 1658 __tmc_etr_disable_hw(drvdata); 1659 1660 drvdata->reading = true; 1661 out: 1662 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1663 1664 return ret; 1665 } 1666 1667 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) 1668 { 1669 unsigned long flags; 1670 struct etr_buf *sysfs_buf = NULL; 1671 1672 /* config types are set a boot time and never change */ 1673 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) 1674 return -EINVAL; 1675 1676 spin_lock_irqsave(&drvdata->spinlock, flags); 1677 1678 /* RE-enable the TMC if need be */ 1679 if (drvdata->mode == CS_MODE_SYSFS) { 1680 /* 1681 * The trace run will continue with the same allocated trace 1682 * buffer. Since the tracer is still enabled drvdata::buf can't 1683 * be NULL. 1684 */ 1685 __tmc_etr_enable_hw(drvdata); 1686 } else { 1687 /* 1688 * The ETR is not tracing and the buffer was just read. 1689 * As such prepare to free the trace buffer. 1690 */ 1691 sysfs_buf = drvdata->sysfs_buf; 1692 drvdata->sysfs_buf = NULL; 1693 } 1694 1695 drvdata->reading = false; 1696 spin_unlock_irqrestore(&drvdata->spinlock, flags); 1697 1698 /* Free allocated memory out side of the spinlock */ 1699 if (sysfs_buf) 1700 tmc_etr_free_sysfs_buf(sysfs_buf); 1701 1702 return 0; 1703 } 1704