1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/coresight.h> 9 #include <linux/coresight-pmu.h> 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/perf_event.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/stringhash.h> 19 #include <linux/types.h> 20 #include <linux/workqueue.h> 21 22 #include "coresight-config.h" 23 #include "coresight-etm-perf.h" 24 #include "coresight-priv.h" 25 #include "coresight-syscfg.h" 26 #include "coresight-trace-id.h" 27 28 static struct pmu etm_pmu; 29 static bool etm_perf_up; 30 31 /* 32 * An ETM context for a running event includes the perf aux handle 33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of 34 * the trace path and the sink configuration. The event data is accessible 35 * via perf_get_aux(handle). However, a sink could "end" a perf output 36 * handle via the IRQ handler. And if the "sink" encounters a failure 37 * to "begin" another session (e.g due to lack of space in the buffer), 38 * the handle will be cleared. Thus, the event_data may not be accessible 39 * from the handle when we get to the etm_event_stop(), which is required 40 * for stopping the trace path. The event_data is guaranteed to stay alive 41 * until "free_aux()", which cannot happen as long as the event is active on 42 * the ETM. Thus the event_data for the session must be part of the ETM context 43 * to make sure we can disable the trace path. 44 */ 45 struct etm_ctxt { 46 struct perf_output_handle handle; 47 struct etm_event_data *event_data; 48 }; 49 50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); 51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src); 52 53 /* 54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; 55 * now take them as general formats and apply on all ETMs. 56 */ 57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST)); 58 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); 59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ 60 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); 61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ 62 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); 63 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); 64 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); 65 /* preset - if sink ID is used as a configuration selector */ 66 PMU_FORMAT_ATTR(preset, "config:0-3"); 67 /* Sink ID - same for all ETMs */ 68 PMU_FORMAT_ATTR(sinkid, "config2:0-31"); 69 /* config ID - set if a system configuration is selected */ 70 PMU_FORMAT_ATTR(configid, "config2:32-63"); 71 72 73 /* 74 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 75 * when the kernel is running at EL1; when the kernel is at EL2, 76 * the PID is in CONTEXTIDR_EL2. 77 */ 78 static ssize_t format_attr_contextid_show(struct device *dev, 79 struct device_attribute *attr, 80 char *page) 81 { 82 int pid_fmt = ETM_OPT_CTXTID; 83 84 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) 85 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; 86 #endif 87 return sprintf(page, "config:%d\n", pid_fmt); 88 } 89 90 static struct device_attribute format_attr_contextid = 91 __ATTR(contextid, 0444, format_attr_contextid_show, NULL); 92 93 static struct attribute *etm_config_formats_attr[] = { 94 &format_attr_cycacc.attr, 95 &format_attr_contextid.attr, 96 &format_attr_contextid1.attr, 97 &format_attr_contextid2.attr, 98 &format_attr_timestamp.attr, 99 &format_attr_retstack.attr, 100 &format_attr_sinkid.attr, 101 &format_attr_preset.attr, 102 &format_attr_configid.attr, 103 &format_attr_branch_broadcast.attr, 104 NULL, 105 }; 106 107 static const struct attribute_group etm_pmu_format_group = { 108 .name = "format", 109 .attrs = etm_config_formats_attr, 110 }; 111 112 static struct attribute *etm_config_sinks_attr[] = { 113 NULL, 114 }; 115 116 static const struct attribute_group etm_pmu_sinks_group = { 117 .name = "sinks", 118 .attrs = etm_config_sinks_attr, 119 }; 120 121 static struct attribute *etm_config_events_attr[] = { 122 NULL, 123 }; 124 125 static const struct attribute_group etm_pmu_events_group = { 126 .name = "events", 127 .attrs = etm_config_events_attr, 128 }; 129 130 static const struct attribute_group *etm_pmu_attr_groups[] = { 131 &etm_pmu_format_group, 132 &etm_pmu_sinks_group, 133 &etm_pmu_events_group, 134 NULL, 135 }; 136 137 static inline struct list_head ** 138 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) 139 { 140 return per_cpu_ptr(data->path, cpu); 141 } 142 143 static inline struct list_head * 144 etm_event_cpu_path(struct etm_event_data *data, int cpu) 145 { 146 return *etm_event_cpu_path_ptr(data, cpu); 147 } 148 149 static void etm_event_read(struct perf_event *event) {} 150 151 static int etm_addr_filters_alloc(struct perf_event *event) 152 { 153 struct etm_filters *filters; 154 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 155 156 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); 157 if (!filters) 158 return -ENOMEM; 159 160 if (event->parent) 161 memcpy(filters, event->parent->hw.addr_filters, 162 sizeof(*filters)); 163 164 event->hw.addr_filters = filters; 165 166 return 0; 167 } 168 169 static void etm_event_destroy(struct perf_event *event) 170 { 171 kfree(event->hw.addr_filters); 172 event->hw.addr_filters = NULL; 173 } 174 175 static int etm_event_init(struct perf_event *event) 176 { 177 int ret = 0; 178 179 if (event->attr.type != etm_pmu.type) { 180 ret = -ENOENT; 181 goto out; 182 } 183 184 ret = etm_addr_filters_alloc(event); 185 if (ret) 186 goto out; 187 188 event->destroy = etm_event_destroy; 189 out: 190 return ret; 191 } 192 193 static void free_sink_buffer(struct etm_event_data *event_data) 194 { 195 int cpu; 196 cpumask_t *mask = &event_data->mask; 197 struct coresight_device *sink; 198 199 if (!event_data->snk_config) 200 return; 201 202 if (WARN_ON(cpumask_empty(mask))) 203 return; 204 205 cpu = cpumask_first(mask); 206 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); 207 sink_ops(sink)->free_buffer(event_data->snk_config); 208 } 209 210 static void free_event_data(struct work_struct *work) 211 { 212 int cpu; 213 cpumask_t *mask; 214 struct etm_event_data *event_data; 215 216 event_data = container_of(work, struct etm_event_data, work); 217 mask = &event_data->mask; 218 219 /* Free the sink buffers, if there are any */ 220 free_sink_buffer(event_data); 221 222 /* clear any configuration we were using */ 223 if (event_data->cfg_hash) 224 cscfg_deactivate_config(event_data->cfg_hash); 225 226 for_each_cpu(cpu, mask) { 227 struct list_head **ppath; 228 229 ppath = etm_event_cpu_path_ptr(event_data, cpu); 230 if (!(IS_ERR_OR_NULL(*ppath))) 231 coresight_release_path(*ppath); 232 *ppath = NULL; 233 coresight_trace_id_put_cpu_id(cpu); 234 } 235 236 /* mark perf event as done for trace id allocator */ 237 coresight_trace_id_perf_stop(); 238 239 free_percpu(event_data->path); 240 kfree(event_data); 241 } 242 243 static void *alloc_event_data(int cpu) 244 { 245 cpumask_t *mask; 246 struct etm_event_data *event_data; 247 248 /* First get memory for the session's data */ 249 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); 250 if (!event_data) 251 return NULL; 252 253 254 mask = &event_data->mask; 255 if (cpu != -1) 256 cpumask_set_cpu(cpu, mask); 257 else 258 cpumask_copy(mask, cpu_present_mask); 259 260 /* 261 * Each CPU has a single path between source and destination. As such 262 * allocate an array using CPU numbers as indexes. That way a path 263 * for any CPU can easily be accessed at any given time. We proceed 264 * the same way for sessions involving a single CPU. The cost of 265 * unused memory when dealing with single CPU trace scenarios is small 266 * compared to the cost of searching through an optimized array. 267 */ 268 event_data->path = alloc_percpu(struct list_head *); 269 270 if (!event_data->path) { 271 kfree(event_data); 272 return NULL; 273 } 274 275 return event_data; 276 } 277 278 static void etm_free_aux(void *data) 279 { 280 struct etm_event_data *event_data = data; 281 282 schedule_work(&event_data->work); 283 } 284 285 /* 286 * Check if two given sinks are compatible with each other, 287 * so that they can use the same sink buffers, when an event 288 * moves around. 289 */ 290 static bool sinks_compatible(struct coresight_device *a, 291 struct coresight_device *b) 292 { 293 if (!a || !b) 294 return false; 295 /* 296 * If the sinks are of the same subtype and driven 297 * by the same driver, we can use the same buffer 298 * on these sinks. 299 */ 300 return (a->subtype.sink_subtype == b->subtype.sink_subtype) && 301 (sink_ops(a) == sink_ops(b)); 302 } 303 304 static void *etm_setup_aux(struct perf_event *event, void **pages, 305 int nr_pages, bool overwrite) 306 { 307 u32 id, cfg_hash; 308 int cpu = event->cpu; 309 int trace_id; 310 cpumask_t *mask; 311 struct coresight_device *sink = NULL; 312 struct coresight_device *user_sink = NULL, *last_sink = NULL; 313 struct etm_event_data *event_data = NULL; 314 315 event_data = alloc_event_data(cpu); 316 if (!event_data) 317 return NULL; 318 INIT_WORK(&event_data->work, free_event_data); 319 320 /* First get the selected sink from user space. */ 321 if (event->attr.config2 & GENMASK_ULL(31, 0)) { 322 id = (u32)event->attr.config2; 323 sink = user_sink = coresight_get_sink_by_id(id); 324 } 325 326 /* tell the trace ID allocator that a perf event is starting up */ 327 coresight_trace_id_perf_start(); 328 329 /* check if user wants a coresight configuration selected */ 330 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32); 331 if (cfg_hash) { 332 if (cscfg_activate_config(cfg_hash)) 333 goto err; 334 event_data->cfg_hash = cfg_hash; 335 } 336 337 mask = &event_data->mask; 338 339 /* 340 * Setup the path for each CPU in a trace session. We try to build 341 * trace path for each CPU in the mask. If we don't find an ETM 342 * for the CPU or fail to build a path, we clear the CPU from the 343 * mask and continue with the rest. If ever we try to trace on those 344 * CPUs, we can handle it and fail the session. 345 */ 346 for_each_cpu(cpu, mask) { 347 struct list_head *path; 348 struct coresight_device *csdev; 349 350 csdev = per_cpu(csdev_src, cpu); 351 /* 352 * If there is no ETM associated with this CPU clear it from 353 * the mask and continue with the rest. If ever we try to trace 354 * on this CPU, we handle it accordingly. 355 */ 356 if (!csdev) { 357 cpumask_clear_cpu(cpu, mask); 358 continue; 359 } 360 361 /* 362 * No sink provided - look for a default sink for all the ETMs, 363 * where this event can be scheduled. 364 * We allocate the sink specific buffers only once for this 365 * event. If the ETMs have different default sink devices, we 366 * can only use a single "type" of sink as the event can carry 367 * only one sink specific buffer. Thus we have to make sure 368 * that the sinks are of the same type and driven by the same 369 * driver, as the one we allocate the buffer for. As such 370 * we choose the first sink and check if the remaining ETMs 371 * have a compatible default sink. We don't trace on a CPU 372 * if the sink is not compatible. 373 */ 374 if (!user_sink) { 375 /* Find the default sink for this ETM */ 376 sink = coresight_find_default_sink(csdev); 377 if (!sink) { 378 cpumask_clear_cpu(cpu, mask); 379 continue; 380 } 381 382 /* Check if this sink compatible with the last sink */ 383 if (last_sink && !sinks_compatible(last_sink, sink)) { 384 cpumask_clear_cpu(cpu, mask); 385 continue; 386 } 387 last_sink = sink; 388 } 389 390 /* 391 * Building a path doesn't enable it, it simply builds a 392 * list of devices from source to sink that can be 393 * referenced later when the path is actually needed. 394 */ 395 path = coresight_build_path(csdev, sink); 396 if (IS_ERR(path)) { 397 cpumask_clear_cpu(cpu, mask); 398 continue; 399 } 400 401 /* ensure we can allocate a trace ID for this CPU */ 402 trace_id = coresight_trace_id_get_cpu_id(cpu); 403 if (!IS_VALID_CS_TRACE_ID(trace_id)) { 404 cpumask_clear_cpu(cpu, mask); 405 coresight_release_path(path); 406 continue; 407 } 408 409 *etm_event_cpu_path_ptr(event_data, cpu) = path; 410 } 411 412 /* no sink found for any CPU - cannot trace */ 413 if (!sink) 414 goto err; 415 416 /* If we don't have any CPUs ready for tracing, abort */ 417 cpu = cpumask_first(mask); 418 if (cpu >= nr_cpu_ids) 419 goto err; 420 421 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) 422 goto err; 423 424 /* 425 * Allocate the sink buffer for this session. All the sinks 426 * where this event can be scheduled are ensured to be of the 427 * same type. Thus the same sink configuration is used by the 428 * sinks. 429 */ 430 event_data->snk_config = 431 sink_ops(sink)->alloc_buffer(sink, event, pages, 432 nr_pages, overwrite); 433 if (!event_data->snk_config) 434 goto err; 435 436 out: 437 return event_data; 438 439 err: 440 etm_free_aux(event_data); 441 event_data = NULL; 442 goto out; 443 } 444 445 static void etm_event_start(struct perf_event *event, int flags) 446 { 447 int cpu = smp_processor_id(); 448 struct etm_event_data *event_data; 449 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 450 struct perf_output_handle *handle = &ctxt->handle; 451 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 452 struct list_head *path; 453 u64 hw_id; 454 455 if (!csdev) 456 goto fail; 457 458 /* Have we messed up our tracking ? */ 459 if (WARN_ON(ctxt->event_data)) 460 goto fail; 461 462 /* 463 * Deal with the ring buffer API and get a handle on the 464 * session's information. 465 */ 466 event_data = perf_aux_output_begin(handle, event); 467 if (!event_data) 468 goto fail; 469 470 /* 471 * Check if this ETM is allowed to trace, as decided 472 * at etm_setup_aux(). This could be due to an unreachable 473 * sink from this ETM. We can't do much in this case if 474 * the sink was specified or hinted to the driver. For 475 * now, simply don't record anything on this ETM. 476 * 477 * As such we pretend that everything is fine, and let 478 * it continue without actually tracing. The event could 479 * continue tracing when it moves to a CPU where it is 480 * reachable to a sink. 481 */ 482 if (!cpumask_test_cpu(cpu, &event_data->mask)) 483 goto out; 484 485 path = etm_event_cpu_path(event_data, cpu); 486 /* We need a sink, no need to continue without one */ 487 sink = coresight_get_sink(path); 488 if (WARN_ON_ONCE(!sink)) 489 goto fail_end_stop; 490 491 /* Nothing will happen without a path */ 492 if (coresight_enable_path(path, CS_MODE_PERF, handle)) 493 goto fail_end_stop; 494 495 /* Finally enable the tracer */ 496 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF)) 497 goto fail_disable_path; 498 499 /* 500 * output cpu / trace ID in perf record, once for the lifetime 501 * of the event. 502 */ 503 if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) { 504 cpumask_set_cpu(cpu, &event_data->aux_hwid_done); 505 hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK, 506 CS_AUX_HW_ID_CURR_VERSION); 507 hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, 508 coresight_trace_id_read_cpu_id(cpu)); 509 perf_report_aux_output_id(event, hw_id); 510 } 511 512 out: 513 /* Tell the perf core the event is alive */ 514 event->hw.state = 0; 515 /* Save the event_data for this ETM */ 516 ctxt->event_data = event_data; 517 return; 518 519 fail_disable_path: 520 coresight_disable_path(path); 521 fail_end_stop: 522 /* 523 * Check if the handle is still associated with the event, 524 * to handle cases where if the sink failed to start the 525 * trace and TRUNCATED the handle already. 526 */ 527 if (READ_ONCE(handle->event)) { 528 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 529 perf_aux_output_end(handle, 0); 530 } 531 fail: 532 event->hw.state = PERF_HES_STOPPED; 533 return; 534 } 535 536 static void etm_event_stop(struct perf_event *event, int mode) 537 { 538 int cpu = smp_processor_id(); 539 unsigned long size; 540 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 541 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 542 struct perf_output_handle *handle = &ctxt->handle; 543 struct etm_event_data *event_data; 544 struct list_head *path; 545 546 /* 547 * If we still have access to the event_data via handle, 548 * confirm that we haven't messed up the tracking. 549 */ 550 if (handle->event && 551 WARN_ON(perf_get_aux(handle) != ctxt->event_data)) 552 return; 553 554 event_data = ctxt->event_data; 555 /* Clear the event_data as this ETM is stopping the trace. */ 556 ctxt->event_data = NULL; 557 558 if (event->hw.state == PERF_HES_STOPPED) 559 return; 560 561 /* We must have a valid event_data for a running event */ 562 if (WARN_ON(!event_data)) 563 return; 564 565 /* 566 * Check if this ETM was allowed to trace, as decided at 567 * etm_setup_aux(). If it wasn't allowed to trace, then 568 * nothing needs to be torn down other than outputting a 569 * zero sized record. 570 */ 571 if (handle->event && (mode & PERF_EF_UPDATE) && 572 !cpumask_test_cpu(cpu, &event_data->mask)) { 573 event->hw.state = PERF_HES_STOPPED; 574 perf_aux_output_end(handle, 0); 575 return; 576 } 577 578 if (!csdev) 579 return; 580 581 path = etm_event_cpu_path(event_data, cpu); 582 if (!path) 583 return; 584 585 sink = coresight_get_sink(path); 586 if (!sink) 587 return; 588 589 /* stop tracer */ 590 coresight_disable_source(csdev, event); 591 592 /* tell the core */ 593 event->hw.state = PERF_HES_STOPPED; 594 595 /* 596 * If the handle is not bound to an event anymore 597 * (e.g, the sink driver was unable to restart the 598 * handle due to lack of buffer space), we don't 599 * have to do anything here. 600 */ 601 if (handle->event && (mode & PERF_EF_UPDATE)) { 602 if (WARN_ON_ONCE(handle->event != event)) 603 return; 604 605 /* update trace information */ 606 if (!sink_ops(sink)->update_buffer) 607 return; 608 609 size = sink_ops(sink)->update_buffer(sink, handle, 610 event_data->snk_config); 611 /* 612 * Make sure the handle is still valid as the 613 * sink could have closed it from an IRQ. 614 * The sink driver must handle the race with 615 * update_buffer() and IRQ. Thus either we 616 * should get a valid handle and valid size 617 * (which may be 0). 618 * 619 * But we should never get a non-zero size with 620 * an invalid handle. 621 */ 622 if (READ_ONCE(handle->event)) 623 perf_aux_output_end(handle, size); 624 else 625 WARN_ON(size); 626 } 627 628 /* Disabling the path make its elements available to other sessions */ 629 coresight_disable_path(path); 630 } 631 632 static int etm_event_add(struct perf_event *event, int mode) 633 { 634 int ret = 0; 635 struct hw_perf_event *hwc = &event->hw; 636 637 if (mode & PERF_EF_START) { 638 etm_event_start(event, 0); 639 if (hwc->state & PERF_HES_STOPPED) 640 ret = -EINVAL; 641 } else { 642 hwc->state = PERF_HES_STOPPED; 643 } 644 645 return ret; 646 } 647 648 static void etm_event_del(struct perf_event *event, int mode) 649 { 650 etm_event_stop(event, PERF_EF_UPDATE); 651 } 652 653 static int etm_addr_filters_validate(struct list_head *filters) 654 { 655 bool range = false, address = false; 656 int index = 0; 657 struct perf_addr_filter *filter; 658 659 list_for_each_entry(filter, filters, entry) { 660 /* 661 * No need to go further if there's no more 662 * room for filters. 663 */ 664 if (++index > ETM_ADDR_CMP_MAX) 665 return -EOPNOTSUPP; 666 667 /* filter::size==0 means single address trigger */ 668 if (filter->size) { 669 /* 670 * The existing code relies on START/STOP filters 671 * being address filters. 672 */ 673 if (filter->action == PERF_ADDR_FILTER_ACTION_START || 674 filter->action == PERF_ADDR_FILTER_ACTION_STOP) 675 return -EOPNOTSUPP; 676 677 range = true; 678 } else 679 address = true; 680 681 /* 682 * At this time we don't allow range and start/stop filtering 683 * to cohabitate, they have to be mutually exclusive. 684 */ 685 if (range && address) 686 return -EOPNOTSUPP; 687 } 688 689 return 0; 690 } 691 692 static void etm_addr_filters_sync(struct perf_event *event) 693 { 694 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 695 unsigned long start, stop; 696 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 697 struct etm_filters *filters = event->hw.addr_filters; 698 struct etm_filter *etm_filter; 699 struct perf_addr_filter *filter; 700 int i = 0; 701 702 list_for_each_entry(filter, &head->list, entry) { 703 start = fr[i].start; 704 stop = start + fr[i].size; 705 etm_filter = &filters->etm_filter[i]; 706 707 switch (filter->action) { 708 case PERF_ADDR_FILTER_ACTION_FILTER: 709 etm_filter->start_addr = start; 710 etm_filter->stop_addr = stop; 711 etm_filter->type = ETM_ADDR_TYPE_RANGE; 712 break; 713 case PERF_ADDR_FILTER_ACTION_START: 714 etm_filter->start_addr = start; 715 etm_filter->type = ETM_ADDR_TYPE_START; 716 break; 717 case PERF_ADDR_FILTER_ACTION_STOP: 718 etm_filter->stop_addr = stop; 719 etm_filter->type = ETM_ADDR_TYPE_STOP; 720 break; 721 } 722 i++; 723 } 724 725 filters->nr_filters = i; 726 } 727 728 int etm_perf_symlink(struct coresight_device *csdev, bool link) 729 { 730 char entry[sizeof("cpu9999999")]; 731 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); 732 struct device *pmu_dev = etm_pmu.dev; 733 struct device *cs_dev = &csdev->dev; 734 735 sprintf(entry, "cpu%d", cpu); 736 737 if (!etm_perf_up) 738 return -EPROBE_DEFER; 739 740 if (link) { 741 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); 742 if (ret) 743 return ret; 744 per_cpu(csdev_src, cpu) = csdev; 745 } else { 746 sysfs_remove_link(&pmu_dev->kobj, entry); 747 per_cpu(csdev_src, cpu) = NULL; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(etm_perf_symlink); 753 754 static ssize_t etm_perf_sink_name_show(struct device *dev, 755 struct device_attribute *dattr, 756 char *buf) 757 { 758 struct dev_ext_attribute *ea; 759 760 ea = container_of(dattr, struct dev_ext_attribute, attr); 761 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); 762 } 763 764 static struct dev_ext_attribute * 765 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name) 766 { 767 struct dev_ext_attribute *ea; 768 unsigned long hash; 769 int ret; 770 struct device *pmu_dev = etm_pmu.dev; 771 772 if (!etm_perf_up) 773 return ERR_PTR(-EPROBE_DEFER); 774 775 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); 776 if (!ea) 777 return ERR_PTR(-ENOMEM); 778 779 /* 780 * If this function is called adding a sink then the hash is used for 781 * sink selection - see function coresight_get_sink_by_id(). 782 * If adding a configuration then the hash is used for selection in 783 * cscfg_activate_config() 784 */ 785 hash = hashlen_hash(hashlen_string(NULL, name)); 786 787 sysfs_attr_init(&ea->attr.attr); 788 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); 789 if (!ea->attr.attr.name) 790 return ERR_PTR(-ENOMEM); 791 792 ea->attr.attr.mode = 0444; 793 ea->var = (unsigned long *)hash; 794 795 ret = sysfs_add_file_to_group(&pmu_dev->kobj, 796 &ea->attr.attr, group_name); 797 798 return ret ? ERR_PTR(ret) : ea; 799 } 800 801 int etm_perf_add_symlink_sink(struct coresight_device *csdev) 802 { 803 const char *name; 804 struct device *dev = &csdev->dev; 805 int err = 0; 806 807 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 808 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 809 return -EINVAL; 810 811 if (csdev->ea != NULL) 812 return -EINVAL; 813 814 name = dev_name(dev); 815 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks"); 816 if (IS_ERR(csdev->ea)) { 817 err = PTR_ERR(csdev->ea); 818 csdev->ea = NULL; 819 } else 820 csdev->ea->attr.show = etm_perf_sink_name_show; 821 822 return err; 823 } 824 825 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name) 826 { 827 struct device *pmu_dev = etm_pmu.dev; 828 829 sysfs_remove_file_from_group(&pmu_dev->kobj, 830 &ea->attr.attr, group_name); 831 } 832 833 void etm_perf_del_symlink_sink(struct coresight_device *csdev) 834 { 835 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 836 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 837 return; 838 839 if (!csdev->ea) 840 return; 841 842 etm_perf_del_symlink_group(csdev->ea, "sinks"); 843 csdev->ea = NULL; 844 } 845 846 static ssize_t etm_perf_cscfg_event_show(struct device *dev, 847 struct device_attribute *dattr, 848 char *buf) 849 { 850 struct dev_ext_attribute *ea; 851 852 ea = container_of(dattr, struct dev_ext_attribute, attr); 853 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var)); 854 } 855 856 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc) 857 { 858 int err = 0; 859 860 if (config_desc->event_ea != NULL) 861 return 0; 862 863 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events"); 864 865 /* set the show function to the custom cscfg event */ 866 if (!IS_ERR(config_desc->event_ea)) 867 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show; 868 else { 869 err = PTR_ERR(config_desc->event_ea); 870 config_desc->event_ea = NULL; 871 } 872 873 return err; 874 } 875 876 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc) 877 { 878 if (!config_desc->event_ea) 879 return; 880 881 etm_perf_del_symlink_group(config_desc->event_ea, "events"); 882 config_desc->event_ea = NULL; 883 } 884 885 int __init etm_perf_init(void) 886 { 887 int ret; 888 889 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | 890 PERF_PMU_CAP_ITRACE); 891 892 etm_pmu.attr_groups = etm_pmu_attr_groups; 893 etm_pmu.task_ctx_nr = perf_sw_context; 894 etm_pmu.read = etm_event_read; 895 etm_pmu.event_init = etm_event_init; 896 etm_pmu.setup_aux = etm_setup_aux; 897 etm_pmu.free_aux = etm_free_aux; 898 etm_pmu.start = etm_event_start; 899 etm_pmu.stop = etm_event_stop; 900 etm_pmu.add = etm_event_add; 901 etm_pmu.del = etm_event_del; 902 etm_pmu.addr_filters_sync = etm_addr_filters_sync; 903 etm_pmu.addr_filters_validate = etm_addr_filters_validate; 904 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; 905 etm_pmu.module = THIS_MODULE; 906 907 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); 908 if (ret == 0) 909 etm_perf_up = true; 910 911 return ret; 912 } 913 914 void etm_perf_exit(void) 915 { 916 perf_pmu_unregister(&etm_pmu); 917 } 918