xref: /openbmc/linux/drivers/hwtracing/coresight/coresight-etm-perf.c (revision c496daeb863093a046e0bb8db7265bf45d91775a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
21 
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
27 
28 static struct pmu etm_pmu;
29 static bool etm_perf_up;
30 
31 /*
32  * An ETM context for a running event includes the perf aux handle
33  * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34  * the trace path and the sink configuration. The event data is accessible
35  * via perf_get_aux(handle). However, a sink could "end" a perf output
36  * handle via the IRQ handler. And if the "sink" encounters a failure
37  * to "begin" another session (e.g due to lack of space in the buffer),
38  * the handle will be cleared. Thus, the event_data may not be accessible
39  * from the handle when we get to the etm_event_stop(), which is required
40  * for stopping the trace path. The event_data is guaranteed to stay alive
41  * until "free_aux()", which cannot happen as long as the event is active on
42  * the ETM. Thus the event_data for the session must be part of the ETM context
43  * to make sure we can disable the trace path.
44  */
45 struct etm_ctxt {
46 	struct perf_output_handle handle;
47 	struct etm_event_data *event_data;
48 };
49 
50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
52 
53 /*
54  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55  * now take them as general formats and apply on all ETMs.
56  */
57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
58 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
63 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
64 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset,		"config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid,	"config2:32-63");
71 
72 
73 /*
74  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
75  * when the kernel is running at EL1; when the kernel is at EL2,
76  * the PID is in CONTEXTIDR_EL2.
77  */
78 static ssize_t format_attr_contextid_show(struct device *dev,
79 					  struct device_attribute *attr,
80 					  char *page)
81 {
82 	int pid_fmt = ETM_OPT_CTXTID;
83 
84 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
85 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
86 #endif
87 	return sprintf(page, "config:%d\n", pid_fmt);
88 }
89 
90 static struct device_attribute format_attr_contextid =
91 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
92 
93 static struct attribute *etm_config_formats_attr[] = {
94 	&format_attr_cycacc.attr,
95 	&format_attr_contextid.attr,
96 	&format_attr_contextid1.attr,
97 	&format_attr_contextid2.attr,
98 	&format_attr_timestamp.attr,
99 	&format_attr_retstack.attr,
100 	&format_attr_sinkid.attr,
101 	&format_attr_preset.attr,
102 	&format_attr_configid.attr,
103 	&format_attr_branch_broadcast.attr,
104 	NULL,
105 };
106 
107 static const struct attribute_group etm_pmu_format_group = {
108 	.name   = "format",
109 	.attrs  = etm_config_formats_attr,
110 };
111 
112 static struct attribute *etm_config_sinks_attr[] = {
113 	NULL,
114 };
115 
116 static const struct attribute_group etm_pmu_sinks_group = {
117 	.name   = "sinks",
118 	.attrs  = etm_config_sinks_attr,
119 };
120 
121 static struct attribute *etm_config_events_attr[] = {
122 	NULL,
123 };
124 
125 static const struct attribute_group etm_pmu_events_group = {
126 	.name   = "events",
127 	.attrs  = etm_config_events_attr,
128 };
129 
130 static const struct attribute_group *etm_pmu_attr_groups[] = {
131 	&etm_pmu_format_group,
132 	&etm_pmu_sinks_group,
133 	&etm_pmu_events_group,
134 	NULL,
135 };
136 
137 static inline struct list_head **
138 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
139 {
140 	return per_cpu_ptr(data->path, cpu);
141 }
142 
143 static inline struct list_head *
144 etm_event_cpu_path(struct etm_event_data *data, int cpu)
145 {
146 	return *etm_event_cpu_path_ptr(data, cpu);
147 }
148 
149 static void etm_event_read(struct perf_event *event) {}
150 
151 static int etm_addr_filters_alloc(struct perf_event *event)
152 {
153 	struct etm_filters *filters;
154 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
155 
156 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
157 	if (!filters)
158 		return -ENOMEM;
159 
160 	if (event->parent)
161 		memcpy(filters, event->parent->hw.addr_filters,
162 		       sizeof(*filters));
163 
164 	event->hw.addr_filters = filters;
165 
166 	return 0;
167 }
168 
169 static void etm_event_destroy(struct perf_event *event)
170 {
171 	kfree(event->hw.addr_filters);
172 	event->hw.addr_filters = NULL;
173 }
174 
175 static int etm_event_init(struct perf_event *event)
176 {
177 	int ret = 0;
178 
179 	if (event->attr.type != etm_pmu.type) {
180 		ret = -ENOENT;
181 		goto out;
182 	}
183 
184 	ret = etm_addr_filters_alloc(event);
185 	if (ret)
186 		goto out;
187 
188 	event->destroy = etm_event_destroy;
189 out:
190 	return ret;
191 }
192 
193 static void free_sink_buffer(struct etm_event_data *event_data)
194 {
195 	int cpu;
196 	cpumask_t *mask = &event_data->mask;
197 	struct coresight_device *sink;
198 
199 	if (!event_data->snk_config)
200 		return;
201 
202 	if (WARN_ON(cpumask_empty(mask)))
203 		return;
204 
205 	cpu = cpumask_first(mask);
206 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
207 	sink_ops(sink)->free_buffer(event_data->snk_config);
208 }
209 
210 static void free_event_data(struct work_struct *work)
211 {
212 	int cpu;
213 	cpumask_t *mask;
214 	struct etm_event_data *event_data;
215 
216 	event_data = container_of(work, struct etm_event_data, work);
217 	mask = &event_data->mask;
218 
219 	/* Free the sink buffers, if there are any */
220 	free_sink_buffer(event_data);
221 
222 	/* clear any configuration we were using */
223 	if (event_data->cfg_hash)
224 		cscfg_deactivate_config(event_data->cfg_hash);
225 
226 	for_each_cpu(cpu, mask) {
227 		struct list_head **ppath;
228 
229 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
230 		if (!(IS_ERR_OR_NULL(*ppath)))
231 			coresight_release_path(*ppath);
232 		*ppath = NULL;
233 		coresight_trace_id_put_cpu_id(cpu);
234 	}
235 
236 	/* mark perf event as done for trace id allocator */
237 	coresight_trace_id_perf_stop();
238 
239 	free_percpu(event_data->path);
240 	kfree(event_data);
241 }
242 
243 static void *alloc_event_data(int cpu)
244 {
245 	cpumask_t *mask;
246 	struct etm_event_data *event_data;
247 
248 	/* First get memory for the session's data */
249 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
250 	if (!event_data)
251 		return NULL;
252 
253 
254 	mask = &event_data->mask;
255 	if (cpu != -1)
256 		cpumask_set_cpu(cpu, mask);
257 	else
258 		cpumask_copy(mask, cpu_present_mask);
259 
260 	/*
261 	 * Each CPU has a single path between source and destination.  As such
262 	 * allocate an array using CPU numbers as indexes.  That way a path
263 	 * for any CPU can easily be accessed at any given time.  We proceed
264 	 * the same way for sessions involving a single CPU.  The cost of
265 	 * unused memory when dealing with single CPU trace scenarios is small
266 	 * compared to the cost of searching through an optimized array.
267 	 */
268 	event_data->path = alloc_percpu(struct list_head *);
269 
270 	if (!event_data->path) {
271 		kfree(event_data);
272 		return NULL;
273 	}
274 
275 	return event_data;
276 }
277 
278 static void etm_free_aux(void *data)
279 {
280 	struct etm_event_data *event_data = data;
281 
282 	schedule_work(&event_data->work);
283 }
284 
285 /*
286  * Check if two given sinks are compatible with each other,
287  * so that they can use the same sink buffers, when an event
288  * moves around.
289  */
290 static bool sinks_compatible(struct coresight_device *a,
291 			     struct coresight_device *b)
292 {
293 	if (!a || !b)
294 		return false;
295 	/*
296 	 * If the sinks are of the same subtype and driven
297 	 * by the same driver, we can use the same buffer
298 	 * on these sinks.
299 	 */
300 	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
301 	       (sink_ops(a) == sink_ops(b));
302 }
303 
304 static void *etm_setup_aux(struct perf_event *event, void **pages,
305 			   int nr_pages, bool overwrite)
306 {
307 	u32 id, cfg_hash;
308 	int cpu = event->cpu;
309 	int trace_id;
310 	cpumask_t *mask;
311 	struct coresight_device *sink = NULL;
312 	struct coresight_device *user_sink = NULL, *last_sink = NULL;
313 	struct etm_event_data *event_data = NULL;
314 
315 	event_data = alloc_event_data(cpu);
316 	if (!event_data)
317 		return NULL;
318 	INIT_WORK(&event_data->work, free_event_data);
319 
320 	/* First get the selected sink from user space. */
321 	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
322 		id = (u32)event->attr.config2;
323 		sink = user_sink = coresight_get_sink_by_id(id);
324 	}
325 
326 	/* tell the trace ID allocator that a perf event is starting up */
327 	coresight_trace_id_perf_start();
328 
329 	/* check if user wants a coresight configuration selected */
330 	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
331 	if (cfg_hash) {
332 		if (cscfg_activate_config(cfg_hash))
333 			goto err;
334 		event_data->cfg_hash = cfg_hash;
335 	}
336 
337 	mask = &event_data->mask;
338 
339 	/*
340 	 * Setup the path for each CPU in a trace session. We try to build
341 	 * trace path for each CPU in the mask. If we don't find an ETM
342 	 * for the CPU or fail to build a path, we clear the CPU from the
343 	 * mask and continue with the rest. If ever we try to trace on those
344 	 * CPUs, we can handle it and fail the session.
345 	 */
346 	for_each_cpu(cpu, mask) {
347 		struct list_head *path;
348 		struct coresight_device *csdev;
349 
350 		csdev = per_cpu(csdev_src, cpu);
351 		/*
352 		 * If there is no ETM associated with this CPU clear it from
353 		 * the mask and continue with the rest. If ever we try to trace
354 		 * on this CPU, we handle it accordingly.
355 		 */
356 		if (!csdev) {
357 			cpumask_clear_cpu(cpu, mask);
358 			continue;
359 		}
360 
361 		/*
362 		 * No sink provided - look for a default sink for all the ETMs,
363 		 * where this event can be scheduled.
364 		 * We allocate the sink specific buffers only once for this
365 		 * event. If the ETMs have different default sink devices, we
366 		 * can only use a single "type" of sink as the event can carry
367 		 * only one sink specific buffer. Thus we have to make sure
368 		 * that the sinks are of the same type and driven by the same
369 		 * driver, as the one we allocate the buffer for. As such
370 		 * we choose the first sink and check if the remaining ETMs
371 		 * have a compatible default sink. We don't trace on a CPU
372 		 * if the sink is not compatible.
373 		 */
374 		if (!user_sink) {
375 			/* Find the default sink for this ETM */
376 			sink = coresight_find_default_sink(csdev);
377 			if (!sink) {
378 				cpumask_clear_cpu(cpu, mask);
379 				continue;
380 			}
381 
382 			/* Check if this sink compatible with the last sink */
383 			if (last_sink && !sinks_compatible(last_sink, sink)) {
384 				cpumask_clear_cpu(cpu, mask);
385 				continue;
386 			}
387 			last_sink = sink;
388 		}
389 
390 		/*
391 		 * Building a path doesn't enable it, it simply builds a
392 		 * list of devices from source to sink that can be
393 		 * referenced later when the path is actually needed.
394 		 */
395 		path = coresight_build_path(csdev, sink);
396 		if (IS_ERR(path)) {
397 			cpumask_clear_cpu(cpu, mask);
398 			continue;
399 		}
400 
401 		/* ensure we can allocate a trace ID for this CPU */
402 		trace_id = coresight_trace_id_get_cpu_id(cpu);
403 		if (!IS_VALID_CS_TRACE_ID(trace_id)) {
404 			cpumask_clear_cpu(cpu, mask);
405 			continue;
406 		}
407 
408 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
409 	}
410 
411 	/* no sink found for any CPU - cannot trace */
412 	if (!sink)
413 		goto err;
414 
415 	/* If we don't have any CPUs ready for tracing, abort */
416 	cpu = cpumask_first(mask);
417 	if (cpu >= nr_cpu_ids)
418 		goto err;
419 
420 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
421 		goto err;
422 
423 	/*
424 	 * Allocate the sink buffer for this session. All the sinks
425 	 * where this event can be scheduled are ensured to be of the
426 	 * same type. Thus the same sink configuration is used by the
427 	 * sinks.
428 	 */
429 	event_data->snk_config =
430 			sink_ops(sink)->alloc_buffer(sink, event, pages,
431 						     nr_pages, overwrite);
432 	if (!event_data->snk_config)
433 		goto err;
434 
435 out:
436 	return event_data;
437 
438 err:
439 	etm_free_aux(event_data);
440 	event_data = NULL;
441 	goto out;
442 }
443 
444 static void etm_event_start(struct perf_event *event, int flags)
445 {
446 	int cpu = smp_processor_id();
447 	struct etm_event_data *event_data;
448 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
449 	struct perf_output_handle *handle = &ctxt->handle;
450 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
451 	struct list_head *path;
452 	u64 hw_id;
453 
454 	if (!csdev)
455 		goto fail;
456 
457 	/* Have we messed up our tracking ? */
458 	if (WARN_ON(ctxt->event_data))
459 		goto fail;
460 
461 	/*
462 	 * Deal with the ring buffer API and get a handle on the
463 	 * session's information.
464 	 */
465 	event_data = perf_aux_output_begin(handle, event);
466 	if (!event_data)
467 		goto fail;
468 
469 	/*
470 	 * Check if this ETM is allowed to trace, as decided
471 	 * at etm_setup_aux(). This could be due to an unreachable
472 	 * sink from this ETM. We can't do much in this case if
473 	 * the sink was specified or hinted to the driver. For
474 	 * now, simply don't record anything on this ETM.
475 	 *
476 	 * As such we pretend that everything is fine, and let
477 	 * it continue without actually tracing. The event could
478 	 * continue tracing when it moves to a CPU where it is
479 	 * reachable to a sink.
480 	 */
481 	if (!cpumask_test_cpu(cpu, &event_data->mask))
482 		goto out;
483 
484 	path = etm_event_cpu_path(event_data, cpu);
485 	/* We need a sink, no need to continue without one */
486 	sink = coresight_get_sink(path);
487 	if (WARN_ON_ONCE(!sink))
488 		goto fail_end_stop;
489 
490 	/* Nothing will happen without a path */
491 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
492 		goto fail_end_stop;
493 
494 	/* Finally enable the tracer */
495 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
496 		goto fail_disable_path;
497 
498 	/*
499 	 * output cpu / trace ID in perf record, once for the lifetime
500 	 * of the event.
501 	 */
502 	if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
503 		cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
504 		hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK,
505 				   CS_AUX_HW_ID_CURR_VERSION);
506 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK,
507 				    coresight_trace_id_read_cpu_id(cpu));
508 		perf_report_aux_output_id(event, hw_id);
509 	}
510 
511 out:
512 	/* Tell the perf core the event is alive */
513 	event->hw.state = 0;
514 	/* Save the event_data for this ETM */
515 	ctxt->event_data = event_data;
516 	return;
517 
518 fail_disable_path:
519 	coresight_disable_path(path);
520 fail_end_stop:
521 	/*
522 	 * Check if the handle is still associated with the event,
523 	 * to handle cases where if the sink failed to start the
524 	 * trace and TRUNCATED the handle already.
525 	 */
526 	if (READ_ONCE(handle->event)) {
527 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
528 		perf_aux_output_end(handle, 0);
529 	}
530 fail:
531 	event->hw.state = PERF_HES_STOPPED;
532 	return;
533 }
534 
535 static void etm_event_stop(struct perf_event *event, int mode)
536 {
537 	int cpu = smp_processor_id();
538 	unsigned long size;
539 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
540 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
541 	struct perf_output_handle *handle = &ctxt->handle;
542 	struct etm_event_data *event_data;
543 	struct list_head *path;
544 
545 	/*
546 	 * If we still have access to the event_data via handle,
547 	 * confirm that we haven't messed up the tracking.
548 	 */
549 	if (handle->event &&
550 	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
551 		return;
552 
553 	event_data = ctxt->event_data;
554 	/* Clear the event_data as this ETM is stopping the trace. */
555 	ctxt->event_data = NULL;
556 
557 	if (event->hw.state == PERF_HES_STOPPED)
558 		return;
559 
560 	/* We must have a valid event_data for a running event */
561 	if (WARN_ON(!event_data))
562 		return;
563 
564 	/*
565 	 * Check if this ETM was allowed to trace, as decided at
566 	 * etm_setup_aux(). If it wasn't allowed to trace, then
567 	 * nothing needs to be torn down other than outputting a
568 	 * zero sized record.
569 	 */
570 	if (handle->event && (mode & PERF_EF_UPDATE) &&
571 	    !cpumask_test_cpu(cpu, &event_data->mask)) {
572 		event->hw.state = PERF_HES_STOPPED;
573 		perf_aux_output_end(handle, 0);
574 		return;
575 	}
576 
577 	if (!csdev)
578 		return;
579 
580 	path = etm_event_cpu_path(event_data, cpu);
581 	if (!path)
582 		return;
583 
584 	sink = coresight_get_sink(path);
585 	if (!sink)
586 		return;
587 
588 	/* stop tracer */
589 	source_ops(csdev)->disable(csdev, event);
590 
591 	/* tell the core */
592 	event->hw.state = PERF_HES_STOPPED;
593 
594 	/*
595 	 * If the handle is not bound to an event anymore
596 	 * (e.g, the sink driver was unable to restart the
597 	 * handle due to lack of buffer space), we don't
598 	 * have to do anything here.
599 	 */
600 	if (handle->event && (mode & PERF_EF_UPDATE)) {
601 		if (WARN_ON_ONCE(handle->event != event))
602 			return;
603 
604 		/* update trace information */
605 		if (!sink_ops(sink)->update_buffer)
606 			return;
607 
608 		size = sink_ops(sink)->update_buffer(sink, handle,
609 					      event_data->snk_config);
610 		/*
611 		 * Make sure the handle is still valid as the
612 		 * sink could have closed it from an IRQ.
613 		 * The sink driver must handle the race with
614 		 * update_buffer() and IRQ. Thus either we
615 		 * should get a valid handle and valid size
616 		 * (which may be 0).
617 		 *
618 		 * But we should never get a non-zero size with
619 		 * an invalid handle.
620 		 */
621 		if (READ_ONCE(handle->event))
622 			perf_aux_output_end(handle, size);
623 		else
624 			WARN_ON(size);
625 	}
626 
627 	/* Disabling the path make its elements available to other sessions */
628 	coresight_disable_path(path);
629 }
630 
631 static int etm_event_add(struct perf_event *event, int mode)
632 {
633 	int ret = 0;
634 	struct hw_perf_event *hwc = &event->hw;
635 
636 	if (mode & PERF_EF_START) {
637 		etm_event_start(event, 0);
638 		if (hwc->state & PERF_HES_STOPPED)
639 			ret = -EINVAL;
640 	} else {
641 		hwc->state = PERF_HES_STOPPED;
642 	}
643 
644 	return ret;
645 }
646 
647 static void etm_event_del(struct perf_event *event, int mode)
648 {
649 	etm_event_stop(event, PERF_EF_UPDATE);
650 }
651 
652 static int etm_addr_filters_validate(struct list_head *filters)
653 {
654 	bool range = false, address = false;
655 	int index = 0;
656 	struct perf_addr_filter *filter;
657 
658 	list_for_each_entry(filter, filters, entry) {
659 		/*
660 		 * No need to go further if there's no more
661 		 * room for filters.
662 		 */
663 		if (++index > ETM_ADDR_CMP_MAX)
664 			return -EOPNOTSUPP;
665 
666 		/* filter::size==0 means single address trigger */
667 		if (filter->size) {
668 			/*
669 			 * The existing code relies on START/STOP filters
670 			 * being address filters.
671 			 */
672 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
673 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
674 				return -EOPNOTSUPP;
675 
676 			range = true;
677 		} else
678 			address = true;
679 
680 		/*
681 		 * At this time we don't allow range and start/stop filtering
682 		 * to cohabitate, they have to be mutually exclusive.
683 		 */
684 		if (range && address)
685 			return -EOPNOTSUPP;
686 	}
687 
688 	return 0;
689 }
690 
691 static void etm_addr_filters_sync(struct perf_event *event)
692 {
693 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
694 	unsigned long start, stop;
695 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
696 	struct etm_filters *filters = event->hw.addr_filters;
697 	struct etm_filter *etm_filter;
698 	struct perf_addr_filter *filter;
699 	int i = 0;
700 
701 	list_for_each_entry(filter, &head->list, entry) {
702 		start = fr[i].start;
703 		stop = start + fr[i].size;
704 		etm_filter = &filters->etm_filter[i];
705 
706 		switch (filter->action) {
707 		case PERF_ADDR_FILTER_ACTION_FILTER:
708 			etm_filter->start_addr = start;
709 			etm_filter->stop_addr = stop;
710 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
711 			break;
712 		case PERF_ADDR_FILTER_ACTION_START:
713 			etm_filter->start_addr = start;
714 			etm_filter->type = ETM_ADDR_TYPE_START;
715 			break;
716 		case PERF_ADDR_FILTER_ACTION_STOP:
717 			etm_filter->stop_addr = stop;
718 			etm_filter->type = ETM_ADDR_TYPE_STOP;
719 			break;
720 		}
721 		i++;
722 	}
723 
724 	filters->nr_filters = i;
725 }
726 
727 int etm_perf_symlink(struct coresight_device *csdev, bool link)
728 {
729 	char entry[sizeof("cpu9999999")];
730 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
731 	struct device *pmu_dev = etm_pmu.dev;
732 	struct device *cs_dev = &csdev->dev;
733 
734 	sprintf(entry, "cpu%d", cpu);
735 
736 	if (!etm_perf_up)
737 		return -EPROBE_DEFER;
738 
739 	if (link) {
740 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
741 		if (ret)
742 			return ret;
743 		per_cpu(csdev_src, cpu) = csdev;
744 	} else {
745 		sysfs_remove_link(&pmu_dev->kobj, entry);
746 		per_cpu(csdev_src, cpu) = NULL;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(etm_perf_symlink);
752 
753 static ssize_t etm_perf_sink_name_show(struct device *dev,
754 				       struct device_attribute *dattr,
755 				       char *buf)
756 {
757 	struct dev_ext_attribute *ea;
758 
759 	ea = container_of(dattr, struct dev_ext_attribute, attr);
760 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
761 }
762 
763 static struct dev_ext_attribute *
764 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
765 {
766 	struct dev_ext_attribute *ea;
767 	unsigned long hash;
768 	int ret;
769 	struct device *pmu_dev = etm_pmu.dev;
770 
771 	if (!etm_perf_up)
772 		return ERR_PTR(-EPROBE_DEFER);
773 
774 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
775 	if (!ea)
776 		return ERR_PTR(-ENOMEM);
777 
778 	/*
779 	 * If this function is called adding a sink then the hash is used for
780 	 * sink selection - see function coresight_get_sink_by_id().
781 	 * If adding a configuration then the hash is used for selection in
782 	 * cscfg_activate_config()
783 	 */
784 	hash = hashlen_hash(hashlen_string(NULL, name));
785 
786 	sysfs_attr_init(&ea->attr.attr);
787 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
788 	if (!ea->attr.attr.name)
789 		return ERR_PTR(-ENOMEM);
790 
791 	ea->attr.attr.mode = 0444;
792 	ea->var = (unsigned long *)hash;
793 
794 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
795 				      &ea->attr.attr, group_name);
796 
797 	return ret ? ERR_PTR(ret) : ea;
798 }
799 
800 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
801 {
802 	const char *name;
803 	struct device *dev = &csdev->dev;
804 	int err = 0;
805 
806 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
807 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
808 		return -EINVAL;
809 
810 	if (csdev->ea != NULL)
811 		return -EINVAL;
812 
813 	name = dev_name(dev);
814 	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
815 	if (IS_ERR(csdev->ea)) {
816 		err = PTR_ERR(csdev->ea);
817 		csdev->ea = NULL;
818 	} else
819 		csdev->ea->attr.show = etm_perf_sink_name_show;
820 
821 	return err;
822 }
823 
824 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
825 {
826 	struct device *pmu_dev = etm_pmu.dev;
827 
828 	sysfs_remove_file_from_group(&pmu_dev->kobj,
829 				     &ea->attr.attr, group_name);
830 }
831 
832 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
833 {
834 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
835 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
836 		return;
837 
838 	if (!csdev->ea)
839 		return;
840 
841 	etm_perf_del_symlink_group(csdev->ea, "sinks");
842 	csdev->ea = NULL;
843 }
844 
845 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
846 					 struct device_attribute *dattr,
847 					 char *buf)
848 {
849 	struct dev_ext_attribute *ea;
850 
851 	ea = container_of(dattr, struct dev_ext_attribute, attr);
852 	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
853 }
854 
855 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
856 {
857 	int err = 0;
858 
859 	if (config_desc->event_ea != NULL)
860 		return 0;
861 
862 	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
863 
864 	/* set the show function to the custom cscfg event */
865 	if (!IS_ERR(config_desc->event_ea))
866 		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
867 	else {
868 		err = PTR_ERR(config_desc->event_ea);
869 		config_desc->event_ea = NULL;
870 	}
871 
872 	return err;
873 }
874 
875 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
876 {
877 	if (!config_desc->event_ea)
878 		return;
879 
880 	etm_perf_del_symlink_group(config_desc->event_ea, "events");
881 	config_desc->event_ea = NULL;
882 }
883 
884 int __init etm_perf_init(void)
885 {
886 	int ret;
887 
888 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
889 					   PERF_PMU_CAP_ITRACE);
890 
891 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
892 	etm_pmu.task_ctx_nr		= perf_sw_context;
893 	etm_pmu.read			= etm_event_read;
894 	etm_pmu.event_init		= etm_event_init;
895 	etm_pmu.setup_aux		= etm_setup_aux;
896 	etm_pmu.free_aux		= etm_free_aux;
897 	etm_pmu.start			= etm_event_start;
898 	etm_pmu.stop			= etm_event_stop;
899 	etm_pmu.add			= etm_event_add;
900 	etm_pmu.del			= etm_event_del;
901 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
902 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
903 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
904 	etm_pmu.module			= THIS_MODULE;
905 
906 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
907 	if (ret == 0)
908 		etm_perf_up = true;
909 
910 	return ret;
911 }
912 
913 void etm_perf_exit(void)
914 {
915 	perf_pmu_unregister(&etm_pmu);
916 }
917