xref: /openbmc/linux/drivers/hwtracing/coresight/coresight-etm-perf.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
21 
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
27 
28 static struct pmu etm_pmu;
29 static bool etm_perf_up;
30 
31 /*
32  * An ETM context for a running event includes the perf aux handle
33  * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34  * the trace path and the sink configuration. The event data is accessible
35  * via perf_get_aux(handle). However, a sink could "end" a perf output
36  * handle via the IRQ handler. And if the "sink" encounters a failure
37  * to "begin" another session (e.g due to lack of space in the buffer),
38  * the handle will be cleared. Thus, the event_data may not be accessible
39  * from the handle when we get to the etm_event_stop(), which is required
40  * for stopping the trace path. The event_data is guaranteed to stay alive
41  * until "free_aux()", which cannot happen as long as the event is active on
42  * the ETM. Thus the event_data for the session must be part of the ETM context
43  * to make sure we can disable the trace path.
44  */
45 struct etm_ctxt {
46 	struct perf_output_handle handle;
47 	struct etm_event_data *event_data;
48 };
49 
50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
52 
53 /*
54  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55  * now take them as general formats and apply on all ETMs.
56  */
57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
58 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
63 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
64 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset,		"config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid,	"config2:32-63");
71 
72 
73 /*
74  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
75  * when the kernel is running at EL1; when the kernel is at EL2,
76  * the PID is in CONTEXTIDR_EL2.
77  */
78 static ssize_t format_attr_contextid_show(struct device *dev,
79 					  struct device_attribute *attr,
80 					  char *page)
81 {
82 	int pid_fmt = ETM_OPT_CTXTID;
83 
84 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
85 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
86 #endif
87 	return sprintf(page, "config:%d\n", pid_fmt);
88 }
89 
90 static struct device_attribute format_attr_contextid =
91 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
92 
93 static struct attribute *etm_config_formats_attr[] = {
94 	&format_attr_cycacc.attr,
95 	&format_attr_contextid.attr,
96 	&format_attr_contextid1.attr,
97 	&format_attr_contextid2.attr,
98 	&format_attr_timestamp.attr,
99 	&format_attr_retstack.attr,
100 	&format_attr_sinkid.attr,
101 	&format_attr_preset.attr,
102 	&format_attr_configid.attr,
103 	&format_attr_branch_broadcast.attr,
104 	NULL,
105 };
106 
107 static const struct attribute_group etm_pmu_format_group = {
108 	.name   = "format",
109 	.attrs  = etm_config_formats_attr,
110 };
111 
112 static struct attribute *etm_config_sinks_attr[] = {
113 	NULL,
114 };
115 
116 static const struct attribute_group etm_pmu_sinks_group = {
117 	.name   = "sinks",
118 	.attrs  = etm_config_sinks_attr,
119 };
120 
121 static struct attribute *etm_config_events_attr[] = {
122 	NULL,
123 };
124 
125 static const struct attribute_group etm_pmu_events_group = {
126 	.name   = "events",
127 	.attrs  = etm_config_events_attr,
128 };
129 
130 static const struct attribute_group *etm_pmu_attr_groups[] = {
131 	&etm_pmu_format_group,
132 	&etm_pmu_sinks_group,
133 	&etm_pmu_events_group,
134 	NULL,
135 };
136 
137 static inline struct list_head **
138 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
139 {
140 	return per_cpu_ptr(data->path, cpu);
141 }
142 
143 static inline struct list_head *
144 etm_event_cpu_path(struct etm_event_data *data, int cpu)
145 {
146 	return *etm_event_cpu_path_ptr(data, cpu);
147 }
148 
149 static void etm_event_read(struct perf_event *event) {}
150 
151 static int etm_addr_filters_alloc(struct perf_event *event)
152 {
153 	struct etm_filters *filters;
154 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
155 
156 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
157 	if (!filters)
158 		return -ENOMEM;
159 
160 	if (event->parent)
161 		memcpy(filters, event->parent->hw.addr_filters,
162 		       sizeof(*filters));
163 
164 	event->hw.addr_filters = filters;
165 
166 	return 0;
167 }
168 
169 static void etm_event_destroy(struct perf_event *event)
170 {
171 	kfree(event->hw.addr_filters);
172 	event->hw.addr_filters = NULL;
173 }
174 
175 static int etm_event_init(struct perf_event *event)
176 {
177 	int ret = 0;
178 
179 	if (event->attr.type != etm_pmu.type) {
180 		ret = -ENOENT;
181 		goto out;
182 	}
183 
184 	ret = etm_addr_filters_alloc(event);
185 	if (ret)
186 		goto out;
187 
188 	event->destroy = etm_event_destroy;
189 out:
190 	return ret;
191 }
192 
193 static void free_sink_buffer(struct etm_event_data *event_data)
194 {
195 	int cpu;
196 	cpumask_t *mask = &event_data->mask;
197 	struct coresight_device *sink;
198 
199 	if (!event_data->snk_config)
200 		return;
201 
202 	if (WARN_ON(cpumask_empty(mask)))
203 		return;
204 
205 	cpu = cpumask_first(mask);
206 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
207 	sink_ops(sink)->free_buffer(event_data->snk_config);
208 }
209 
210 static void free_event_data(struct work_struct *work)
211 {
212 	int cpu;
213 	cpumask_t *mask;
214 	struct etm_event_data *event_data;
215 
216 	event_data = container_of(work, struct etm_event_data, work);
217 	mask = &event_data->mask;
218 
219 	/* Free the sink buffers, if there are any */
220 	free_sink_buffer(event_data);
221 
222 	/* clear any configuration we were using */
223 	if (event_data->cfg_hash)
224 		cscfg_deactivate_config(event_data->cfg_hash);
225 
226 	for_each_cpu(cpu, mask) {
227 		struct list_head **ppath;
228 
229 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
230 		if (!(IS_ERR_OR_NULL(*ppath)))
231 			coresight_release_path(*ppath);
232 		*ppath = NULL;
233 		coresight_trace_id_put_cpu_id(cpu);
234 	}
235 
236 	/* mark perf event as done for trace id allocator */
237 	coresight_trace_id_perf_stop();
238 
239 	free_percpu(event_data->path);
240 	kfree(event_data);
241 }
242 
243 static void *alloc_event_data(int cpu)
244 {
245 	cpumask_t *mask;
246 	struct etm_event_data *event_data;
247 
248 	/* First get memory for the session's data */
249 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
250 	if (!event_data)
251 		return NULL;
252 
253 
254 	mask = &event_data->mask;
255 	if (cpu != -1)
256 		cpumask_set_cpu(cpu, mask);
257 	else
258 		cpumask_copy(mask, cpu_present_mask);
259 
260 	/*
261 	 * Each CPU has a single path between source and destination.  As such
262 	 * allocate an array using CPU numbers as indexes.  That way a path
263 	 * for any CPU can easily be accessed at any given time.  We proceed
264 	 * the same way for sessions involving a single CPU.  The cost of
265 	 * unused memory when dealing with single CPU trace scenarios is small
266 	 * compared to the cost of searching through an optimized array.
267 	 */
268 	event_data->path = alloc_percpu(struct list_head *);
269 
270 	if (!event_data->path) {
271 		kfree(event_data);
272 		return NULL;
273 	}
274 
275 	return event_data;
276 }
277 
278 static void etm_free_aux(void *data)
279 {
280 	struct etm_event_data *event_data = data;
281 
282 	schedule_work(&event_data->work);
283 }
284 
285 /*
286  * Check if two given sinks are compatible with each other,
287  * so that they can use the same sink buffers, when an event
288  * moves around.
289  */
290 static bool sinks_compatible(struct coresight_device *a,
291 			     struct coresight_device *b)
292 {
293 	if (!a || !b)
294 		return false;
295 	/*
296 	 * If the sinks are of the same subtype and driven
297 	 * by the same driver, we can use the same buffer
298 	 * on these sinks.
299 	 */
300 	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
301 	       (sink_ops(a) == sink_ops(b));
302 }
303 
304 static void *etm_setup_aux(struct perf_event *event, void **pages,
305 			   int nr_pages, bool overwrite)
306 {
307 	u32 id, cfg_hash;
308 	int cpu = event->cpu;
309 	int trace_id;
310 	cpumask_t *mask;
311 	struct coresight_device *sink = NULL;
312 	struct coresight_device *user_sink = NULL, *last_sink = NULL;
313 	struct etm_event_data *event_data = NULL;
314 
315 	event_data = alloc_event_data(cpu);
316 	if (!event_data)
317 		return NULL;
318 	INIT_WORK(&event_data->work, free_event_data);
319 
320 	/* First get the selected sink from user space. */
321 	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
322 		id = (u32)event->attr.config2;
323 		sink = user_sink = coresight_get_sink_by_id(id);
324 	}
325 
326 	/* tell the trace ID allocator that a perf event is starting up */
327 	coresight_trace_id_perf_start();
328 
329 	/* check if user wants a coresight configuration selected */
330 	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
331 	if (cfg_hash) {
332 		if (cscfg_activate_config(cfg_hash))
333 			goto err;
334 		event_data->cfg_hash = cfg_hash;
335 	}
336 
337 	mask = &event_data->mask;
338 
339 	/*
340 	 * Setup the path for each CPU in a trace session. We try to build
341 	 * trace path for each CPU in the mask. If we don't find an ETM
342 	 * for the CPU or fail to build a path, we clear the CPU from the
343 	 * mask and continue with the rest. If ever we try to trace on those
344 	 * CPUs, we can handle it and fail the session.
345 	 */
346 	for_each_cpu(cpu, mask) {
347 		struct list_head *path;
348 		struct coresight_device *csdev;
349 
350 		csdev = per_cpu(csdev_src, cpu);
351 		/*
352 		 * If there is no ETM associated with this CPU clear it from
353 		 * the mask and continue with the rest. If ever we try to trace
354 		 * on this CPU, we handle it accordingly.
355 		 */
356 		if (!csdev) {
357 			cpumask_clear_cpu(cpu, mask);
358 			continue;
359 		}
360 
361 		/*
362 		 * No sink provided - look for a default sink for all the ETMs,
363 		 * where this event can be scheduled.
364 		 * We allocate the sink specific buffers only once for this
365 		 * event. If the ETMs have different default sink devices, we
366 		 * can only use a single "type" of sink as the event can carry
367 		 * only one sink specific buffer. Thus we have to make sure
368 		 * that the sinks are of the same type and driven by the same
369 		 * driver, as the one we allocate the buffer for. As such
370 		 * we choose the first sink and check if the remaining ETMs
371 		 * have a compatible default sink. We don't trace on a CPU
372 		 * if the sink is not compatible.
373 		 */
374 		if (!user_sink) {
375 			/* Find the default sink for this ETM */
376 			sink = coresight_find_default_sink(csdev);
377 			if (!sink) {
378 				cpumask_clear_cpu(cpu, mask);
379 				continue;
380 			}
381 
382 			/* Check if this sink compatible with the last sink */
383 			if (last_sink && !sinks_compatible(last_sink, sink)) {
384 				cpumask_clear_cpu(cpu, mask);
385 				continue;
386 			}
387 			last_sink = sink;
388 		}
389 
390 		/*
391 		 * Building a path doesn't enable it, it simply builds a
392 		 * list of devices from source to sink that can be
393 		 * referenced later when the path is actually needed.
394 		 */
395 		path = coresight_build_path(csdev, sink);
396 		if (IS_ERR(path)) {
397 			cpumask_clear_cpu(cpu, mask);
398 			continue;
399 		}
400 
401 		/* ensure we can allocate a trace ID for this CPU */
402 		trace_id = coresight_trace_id_get_cpu_id(cpu);
403 		if (!IS_VALID_CS_TRACE_ID(trace_id)) {
404 			cpumask_clear_cpu(cpu, mask);
405 			coresight_release_path(path);
406 			continue;
407 		}
408 
409 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
410 	}
411 
412 	/* no sink found for any CPU - cannot trace */
413 	if (!sink)
414 		goto err;
415 
416 	/* If we don't have any CPUs ready for tracing, abort */
417 	cpu = cpumask_first(mask);
418 	if (cpu >= nr_cpu_ids)
419 		goto err;
420 
421 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
422 		goto err;
423 
424 	/*
425 	 * Allocate the sink buffer for this session. All the sinks
426 	 * where this event can be scheduled are ensured to be of the
427 	 * same type. Thus the same sink configuration is used by the
428 	 * sinks.
429 	 */
430 	event_data->snk_config =
431 			sink_ops(sink)->alloc_buffer(sink, event, pages,
432 						     nr_pages, overwrite);
433 	if (!event_data->snk_config)
434 		goto err;
435 
436 out:
437 	return event_data;
438 
439 err:
440 	etm_free_aux(event_data);
441 	event_data = NULL;
442 	goto out;
443 }
444 
445 static void etm_event_start(struct perf_event *event, int flags)
446 {
447 	int cpu = smp_processor_id();
448 	struct etm_event_data *event_data;
449 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
450 	struct perf_output_handle *handle = &ctxt->handle;
451 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
452 	struct list_head *path;
453 	u64 hw_id;
454 
455 	if (!csdev)
456 		goto fail;
457 
458 	/* Have we messed up our tracking ? */
459 	if (WARN_ON(ctxt->event_data))
460 		goto fail;
461 
462 	/*
463 	 * Deal with the ring buffer API and get a handle on the
464 	 * session's information.
465 	 */
466 	event_data = perf_aux_output_begin(handle, event);
467 	if (!event_data)
468 		goto fail;
469 
470 	/*
471 	 * Check if this ETM is allowed to trace, as decided
472 	 * at etm_setup_aux(). This could be due to an unreachable
473 	 * sink from this ETM. We can't do much in this case if
474 	 * the sink was specified or hinted to the driver. For
475 	 * now, simply don't record anything on this ETM.
476 	 *
477 	 * As such we pretend that everything is fine, and let
478 	 * it continue without actually tracing. The event could
479 	 * continue tracing when it moves to a CPU where it is
480 	 * reachable to a sink.
481 	 */
482 	if (!cpumask_test_cpu(cpu, &event_data->mask))
483 		goto out;
484 
485 	path = etm_event_cpu_path(event_data, cpu);
486 	/* We need a sink, no need to continue without one */
487 	sink = coresight_get_sink(path);
488 	if (WARN_ON_ONCE(!sink))
489 		goto fail_end_stop;
490 
491 	/* Nothing will happen without a path */
492 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
493 		goto fail_end_stop;
494 
495 	/* Finally enable the tracer */
496 	if (coresight_enable_source(csdev, CS_MODE_PERF, event))
497 		goto fail_disable_path;
498 
499 	/*
500 	 * output cpu / trace ID in perf record, once for the lifetime
501 	 * of the event.
502 	 */
503 	if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
504 		cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
505 		hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK,
506 				   CS_AUX_HW_ID_CURR_VERSION);
507 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK,
508 				    coresight_trace_id_read_cpu_id(cpu));
509 		perf_report_aux_output_id(event, hw_id);
510 	}
511 
512 out:
513 	/* Tell the perf core the event is alive */
514 	event->hw.state = 0;
515 	/* Save the event_data for this ETM */
516 	ctxt->event_data = event_data;
517 	return;
518 
519 fail_disable_path:
520 	coresight_disable_path(path);
521 fail_end_stop:
522 	/*
523 	 * Check if the handle is still associated with the event,
524 	 * to handle cases where if the sink failed to start the
525 	 * trace and TRUNCATED the handle already.
526 	 */
527 	if (READ_ONCE(handle->event)) {
528 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
529 		perf_aux_output_end(handle, 0);
530 	}
531 fail:
532 	event->hw.state = PERF_HES_STOPPED;
533 	return;
534 }
535 
536 static void etm_event_stop(struct perf_event *event, int mode)
537 {
538 	int cpu = smp_processor_id();
539 	unsigned long size;
540 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
541 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
542 	struct perf_output_handle *handle = &ctxt->handle;
543 	struct etm_event_data *event_data;
544 	struct list_head *path;
545 
546 	/*
547 	 * If we still have access to the event_data via handle,
548 	 * confirm that we haven't messed up the tracking.
549 	 */
550 	if (handle->event &&
551 	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
552 		return;
553 
554 	event_data = ctxt->event_data;
555 	/* Clear the event_data as this ETM is stopping the trace. */
556 	ctxt->event_data = NULL;
557 
558 	if (event->hw.state == PERF_HES_STOPPED)
559 		return;
560 
561 	/* We must have a valid event_data for a running event */
562 	if (WARN_ON(!event_data))
563 		return;
564 
565 	/*
566 	 * Check if this ETM was allowed to trace, as decided at
567 	 * etm_setup_aux(). If it wasn't allowed to trace, then
568 	 * nothing needs to be torn down other than outputting a
569 	 * zero sized record.
570 	 */
571 	if (handle->event && (mode & PERF_EF_UPDATE) &&
572 	    !cpumask_test_cpu(cpu, &event_data->mask)) {
573 		event->hw.state = PERF_HES_STOPPED;
574 		perf_aux_output_end(handle, 0);
575 		return;
576 	}
577 
578 	if (!csdev)
579 		return;
580 
581 	path = etm_event_cpu_path(event_data, cpu);
582 	if (!path)
583 		return;
584 
585 	sink = coresight_get_sink(path);
586 	if (!sink)
587 		return;
588 
589 	/* stop tracer */
590 	coresight_disable_source(csdev, event);
591 
592 	/* tell the core */
593 	event->hw.state = PERF_HES_STOPPED;
594 
595 	/*
596 	 * If the handle is not bound to an event anymore
597 	 * (e.g, the sink driver was unable to restart the
598 	 * handle due to lack of buffer space), we don't
599 	 * have to do anything here.
600 	 */
601 	if (handle->event && (mode & PERF_EF_UPDATE)) {
602 		if (WARN_ON_ONCE(handle->event != event))
603 			return;
604 
605 		/* update trace information */
606 		if (!sink_ops(sink)->update_buffer)
607 			return;
608 
609 		size = sink_ops(sink)->update_buffer(sink, handle,
610 					      event_data->snk_config);
611 		/*
612 		 * Make sure the handle is still valid as the
613 		 * sink could have closed it from an IRQ.
614 		 * The sink driver must handle the race with
615 		 * update_buffer() and IRQ. Thus either we
616 		 * should get a valid handle and valid size
617 		 * (which may be 0).
618 		 *
619 		 * But we should never get a non-zero size with
620 		 * an invalid handle.
621 		 */
622 		if (READ_ONCE(handle->event))
623 			perf_aux_output_end(handle, size);
624 		else
625 			WARN_ON(size);
626 	}
627 
628 	/* Disabling the path make its elements available to other sessions */
629 	coresight_disable_path(path);
630 }
631 
632 static int etm_event_add(struct perf_event *event, int mode)
633 {
634 	int ret = 0;
635 	struct hw_perf_event *hwc = &event->hw;
636 
637 	if (mode & PERF_EF_START) {
638 		etm_event_start(event, 0);
639 		if (hwc->state & PERF_HES_STOPPED)
640 			ret = -EINVAL;
641 	} else {
642 		hwc->state = PERF_HES_STOPPED;
643 	}
644 
645 	return ret;
646 }
647 
648 static void etm_event_del(struct perf_event *event, int mode)
649 {
650 	etm_event_stop(event, PERF_EF_UPDATE);
651 }
652 
653 static int etm_addr_filters_validate(struct list_head *filters)
654 {
655 	bool range = false, address = false;
656 	int index = 0;
657 	struct perf_addr_filter *filter;
658 
659 	list_for_each_entry(filter, filters, entry) {
660 		/*
661 		 * No need to go further if there's no more
662 		 * room for filters.
663 		 */
664 		if (++index > ETM_ADDR_CMP_MAX)
665 			return -EOPNOTSUPP;
666 
667 		/* filter::size==0 means single address trigger */
668 		if (filter->size) {
669 			/*
670 			 * The existing code relies on START/STOP filters
671 			 * being address filters.
672 			 */
673 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
674 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
675 				return -EOPNOTSUPP;
676 
677 			range = true;
678 		} else
679 			address = true;
680 
681 		/*
682 		 * At this time we don't allow range and start/stop filtering
683 		 * to cohabitate, they have to be mutually exclusive.
684 		 */
685 		if (range && address)
686 			return -EOPNOTSUPP;
687 	}
688 
689 	return 0;
690 }
691 
692 static void etm_addr_filters_sync(struct perf_event *event)
693 {
694 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
695 	unsigned long start, stop;
696 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
697 	struct etm_filters *filters = event->hw.addr_filters;
698 	struct etm_filter *etm_filter;
699 	struct perf_addr_filter *filter;
700 	int i = 0;
701 
702 	list_for_each_entry(filter, &head->list, entry) {
703 		start = fr[i].start;
704 		stop = start + fr[i].size;
705 		etm_filter = &filters->etm_filter[i];
706 
707 		switch (filter->action) {
708 		case PERF_ADDR_FILTER_ACTION_FILTER:
709 			etm_filter->start_addr = start;
710 			etm_filter->stop_addr = stop;
711 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
712 			break;
713 		case PERF_ADDR_FILTER_ACTION_START:
714 			etm_filter->start_addr = start;
715 			etm_filter->type = ETM_ADDR_TYPE_START;
716 			break;
717 		case PERF_ADDR_FILTER_ACTION_STOP:
718 			etm_filter->stop_addr = stop;
719 			etm_filter->type = ETM_ADDR_TYPE_STOP;
720 			break;
721 		}
722 		i++;
723 	}
724 
725 	filters->nr_filters = i;
726 }
727 
728 int etm_perf_symlink(struct coresight_device *csdev, bool link)
729 {
730 	char entry[sizeof("cpu9999999")];
731 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
732 	struct device *pmu_dev = etm_pmu.dev;
733 	struct device *cs_dev = &csdev->dev;
734 
735 	sprintf(entry, "cpu%d", cpu);
736 
737 	if (!etm_perf_up)
738 		return -EPROBE_DEFER;
739 
740 	if (link) {
741 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
742 		if (ret)
743 			return ret;
744 		per_cpu(csdev_src, cpu) = csdev;
745 	} else {
746 		sysfs_remove_link(&pmu_dev->kobj, entry);
747 		per_cpu(csdev_src, cpu) = NULL;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(etm_perf_symlink);
753 
754 static ssize_t etm_perf_sink_name_show(struct device *dev,
755 				       struct device_attribute *dattr,
756 				       char *buf)
757 {
758 	struct dev_ext_attribute *ea;
759 
760 	ea = container_of(dattr, struct dev_ext_attribute, attr);
761 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
762 }
763 
764 static struct dev_ext_attribute *
765 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
766 {
767 	struct dev_ext_attribute *ea;
768 	unsigned long hash;
769 	int ret;
770 	struct device *pmu_dev = etm_pmu.dev;
771 
772 	if (!etm_perf_up)
773 		return ERR_PTR(-EPROBE_DEFER);
774 
775 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
776 	if (!ea)
777 		return ERR_PTR(-ENOMEM);
778 
779 	/*
780 	 * If this function is called adding a sink then the hash is used for
781 	 * sink selection - see function coresight_get_sink_by_id().
782 	 * If adding a configuration then the hash is used for selection in
783 	 * cscfg_activate_config()
784 	 */
785 	hash = hashlen_hash(hashlen_string(NULL, name));
786 
787 	sysfs_attr_init(&ea->attr.attr);
788 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
789 	if (!ea->attr.attr.name)
790 		return ERR_PTR(-ENOMEM);
791 
792 	ea->attr.attr.mode = 0444;
793 	ea->var = (unsigned long *)hash;
794 
795 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
796 				      &ea->attr.attr, group_name);
797 
798 	return ret ? ERR_PTR(ret) : ea;
799 }
800 
801 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
802 {
803 	const char *name;
804 	struct device *dev = &csdev->dev;
805 	int err = 0;
806 
807 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
808 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
809 		return -EINVAL;
810 
811 	if (csdev->ea != NULL)
812 		return -EINVAL;
813 
814 	name = dev_name(dev);
815 	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
816 	if (IS_ERR(csdev->ea)) {
817 		err = PTR_ERR(csdev->ea);
818 		csdev->ea = NULL;
819 	} else
820 		csdev->ea->attr.show = etm_perf_sink_name_show;
821 
822 	return err;
823 }
824 
825 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
826 {
827 	struct device *pmu_dev = etm_pmu.dev;
828 
829 	sysfs_remove_file_from_group(&pmu_dev->kobj,
830 				     &ea->attr.attr, group_name);
831 }
832 
833 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
834 {
835 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
836 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
837 		return;
838 
839 	if (!csdev->ea)
840 		return;
841 
842 	etm_perf_del_symlink_group(csdev->ea, "sinks");
843 	csdev->ea = NULL;
844 }
845 
846 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
847 					 struct device_attribute *dattr,
848 					 char *buf)
849 {
850 	struct dev_ext_attribute *ea;
851 
852 	ea = container_of(dattr, struct dev_ext_attribute, attr);
853 	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
854 }
855 
856 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
857 {
858 	int err = 0;
859 
860 	if (config_desc->event_ea != NULL)
861 		return 0;
862 
863 	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
864 
865 	/* set the show function to the custom cscfg event */
866 	if (!IS_ERR(config_desc->event_ea))
867 		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
868 	else {
869 		err = PTR_ERR(config_desc->event_ea);
870 		config_desc->event_ea = NULL;
871 	}
872 
873 	return err;
874 }
875 
876 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
877 {
878 	if (!config_desc->event_ea)
879 		return;
880 
881 	etm_perf_del_symlink_group(config_desc->event_ea, "events");
882 	config_desc->event_ea = NULL;
883 }
884 
885 int __init etm_perf_init(void)
886 {
887 	int ret;
888 
889 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
890 					   PERF_PMU_CAP_ITRACE);
891 
892 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
893 	etm_pmu.task_ctx_nr		= perf_sw_context;
894 	etm_pmu.read			= etm_event_read;
895 	etm_pmu.event_init		= etm_event_init;
896 	etm_pmu.setup_aux		= etm_setup_aux;
897 	etm_pmu.free_aux		= etm_free_aux;
898 	etm_pmu.start			= etm_event_start;
899 	etm_pmu.stop			= etm_event_stop;
900 	etm_pmu.add			= etm_event_add;
901 	etm_pmu.del			= etm_event_del;
902 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
903 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
904 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
905 	etm_pmu.module			= THIS_MODULE;
906 
907 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
908 	if (ret == 0)
909 		etm_perf_up = true;
910 
911 	return ret;
912 }
913 
914 void etm_perf_exit(void)
915 {
916 	perf_pmu_unregister(&etm_pmu);
917 }
918