xref: /openbmc/linux/drivers/hwtracing/coresight/coresight-etm-perf.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/coresight.h>
8 #include <linux/coresight-pmu.h>
9 #include <linux/cpumask.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu-defs.h>
16 #include <linux/slab.h>
17 #include <linux/stringhash.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 
21 #include "coresight-etm-perf.h"
22 #include "coresight-priv.h"
23 
24 static struct pmu etm_pmu;
25 static bool etm_perf_up;
26 
27 static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
28 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
29 
30 /*
31  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
32  * now take them as general formats and apply on all ETMs.
33  */
34 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
35 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
36 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
37 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
38 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
39 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
40 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
41 /* Sink ID - same for all ETMs */
42 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
43 
44 /*
45  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
46  * when the kernel is running at EL1; when the kernel is at EL2,
47  * the PID is in CONTEXTIDR_EL2.
48  */
49 static ssize_t format_attr_contextid_show(struct device *dev,
50 					  struct device_attribute *attr,
51 					  char *page)
52 {
53 	int pid_fmt = ETM_OPT_CTXTID;
54 
55 #if defined(CONFIG_CORESIGHT_SOURCE_ETM4X)
56 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
57 #endif
58 	return sprintf(page, "config:%d\n", pid_fmt);
59 }
60 
61 struct device_attribute format_attr_contextid =
62 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
63 
64 static struct attribute *etm_config_formats_attr[] = {
65 	&format_attr_cycacc.attr,
66 	&format_attr_contextid.attr,
67 	&format_attr_contextid1.attr,
68 	&format_attr_contextid2.attr,
69 	&format_attr_timestamp.attr,
70 	&format_attr_retstack.attr,
71 	&format_attr_sinkid.attr,
72 	NULL,
73 };
74 
75 static const struct attribute_group etm_pmu_format_group = {
76 	.name   = "format",
77 	.attrs  = etm_config_formats_attr,
78 };
79 
80 static struct attribute *etm_config_sinks_attr[] = {
81 	NULL,
82 };
83 
84 static const struct attribute_group etm_pmu_sinks_group = {
85 	.name   = "sinks",
86 	.attrs  = etm_config_sinks_attr,
87 };
88 
89 static const struct attribute_group *etm_pmu_attr_groups[] = {
90 	&etm_pmu_format_group,
91 	&etm_pmu_sinks_group,
92 	NULL,
93 };
94 
95 static inline struct list_head **
96 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
97 {
98 	return per_cpu_ptr(data->path, cpu);
99 }
100 
101 static inline struct list_head *
102 etm_event_cpu_path(struct etm_event_data *data, int cpu)
103 {
104 	return *etm_event_cpu_path_ptr(data, cpu);
105 }
106 
107 static void etm_event_read(struct perf_event *event) {}
108 
109 static int etm_addr_filters_alloc(struct perf_event *event)
110 {
111 	struct etm_filters *filters;
112 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
113 
114 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
115 	if (!filters)
116 		return -ENOMEM;
117 
118 	if (event->parent)
119 		memcpy(filters, event->parent->hw.addr_filters,
120 		       sizeof(*filters));
121 
122 	event->hw.addr_filters = filters;
123 
124 	return 0;
125 }
126 
127 static void etm_event_destroy(struct perf_event *event)
128 {
129 	kfree(event->hw.addr_filters);
130 	event->hw.addr_filters = NULL;
131 }
132 
133 static int etm_event_init(struct perf_event *event)
134 {
135 	int ret = 0;
136 
137 	if (event->attr.type != etm_pmu.type) {
138 		ret = -ENOENT;
139 		goto out;
140 	}
141 
142 	ret = etm_addr_filters_alloc(event);
143 	if (ret)
144 		goto out;
145 
146 	event->destroy = etm_event_destroy;
147 out:
148 	return ret;
149 }
150 
151 static void free_sink_buffer(struct etm_event_data *event_data)
152 {
153 	int cpu;
154 	cpumask_t *mask = &event_data->mask;
155 	struct coresight_device *sink;
156 
157 	if (!event_data->snk_config)
158 		return;
159 
160 	if (WARN_ON(cpumask_empty(mask)))
161 		return;
162 
163 	cpu = cpumask_first(mask);
164 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
165 	sink_ops(sink)->free_buffer(event_data->snk_config);
166 }
167 
168 static void free_event_data(struct work_struct *work)
169 {
170 	int cpu;
171 	cpumask_t *mask;
172 	struct etm_event_data *event_data;
173 
174 	event_data = container_of(work, struct etm_event_data, work);
175 	mask = &event_data->mask;
176 
177 	/* Free the sink buffers, if there are any */
178 	free_sink_buffer(event_data);
179 
180 	for_each_cpu(cpu, mask) {
181 		struct list_head **ppath;
182 
183 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
184 		if (!(IS_ERR_OR_NULL(*ppath)))
185 			coresight_release_path(*ppath);
186 		*ppath = NULL;
187 	}
188 
189 	free_percpu(event_data->path);
190 	kfree(event_data);
191 }
192 
193 static void *alloc_event_data(int cpu)
194 {
195 	cpumask_t *mask;
196 	struct etm_event_data *event_data;
197 
198 	/* First get memory for the session's data */
199 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
200 	if (!event_data)
201 		return NULL;
202 
203 
204 	mask = &event_data->mask;
205 	if (cpu != -1)
206 		cpumask_set_cpu(cpu, mask);
207 	else
208 		cpumask_copy(mask, cpu_present_mask);
209 
210 	/*
211 	 * Each CPU has a single path between source and destination.  As such
212 	 * allocate an array using CPU numbers as indexes.  That way a path
213 	 * for any CPU can easily be accessed at any given time.  We proceed
214 	 * the same way for sessions involving a single CPU.  The cost of
215 	 * unused memory when dealing with single CPU trace scenarios is small
216 	 * compared to the cost of searching through an optimized array.
217 	 */
218 	event_data->path = alloc_percpu(struct list_head *);
219 
220 	if (!event_data->path) {
221 		kfree(event_data);
222 		return NULL;
223 	}
224 
225 	return event_data;
226 }
227 
228 static void etm_free_aux(void *data)
229 {
230 	struct etm_event_data *event_data = data;
231 
232 	schedule_work(&event_data->work);
233 }
234 
235 static void *etm_setup_aux(struct perf_event *event, void **pages,
236 			   int nr_pages, bool overwrite)
237 {
238 	u32 id;
239 	int cpu = event->cpu;
240 	cpumask_t *mask;
241 	struct coresight_device *sink = NULL;
242 	struct etm_event_data *event_data = NULL;
243 
244 	event_data = alloc_event_data(cpu);
245 	if (!event_data)
246 		return NULL;
247 	INIT_WORK(&event_data->work, free_event_data);
248 
249 	/* First get the selected sink from user space. */
250 	if (event->attr.config2) {
251 		id = (u32)event->attr.config2;
252 		sink = coresight_get_sink_by_id(id);
253 	}
254 
255 	mask = &event_data->mask;
256 
257 	/*
258 	 * Setup the path for each CPU in a trace session. We try to build
259 	 * trace path for each CPU in the mask. If we don't find an ETM
260 	 * for the CPU or fail to build a path, we clear the CPU from the
261 	 * mask and continue with the rest. If ever we try to trace on those
262 	 * CPUs, we can handle it and fail the session.
263 	 */
264 	for_each_cpu(cpu, mask) {
265 		struct list_head *path;
266 		struct coresight_device *csdev;
267 
268 		csdev = per_cpu(csdev_src, cpu);
269 		/*
270 		 * If there is no ETM associated with this CPU clear it from
271 		 * the mask and continue with the rest. If ever we try to trace
272 		 * on this CPU, we handle it accordingly.
273 		 */
274 		if (!csdev) {
275 			cpumask_clear_cpu(cpu, mask);
276 			continue;
277 		}
278 
279 		/*
280 		 * No sink provided - look for a default sink for one of the
281 		 * devices. At present we only support topology where all CPUs
282 		 * use the same sink [N:1], so only need to find one sink. The
283 		 * coresight_build_path later will remove any CPU that does not
284 		 * attach to the sink, or if we have not found a sink.
285 		 */
286 		if (!sink)
287 			sink = coresight_find_default_sink(csdev);
288 
289 		/*
290 		 * Building a path doesn't enable it, it simply builds a
291 		 * list of devices from source to sink that can be
292 		 * referenced later when the path is actually needed.
293 		 */
294 		path = coresight_build_path(csdev, sink);
295 		if (IS_ERR(path)) {
296 			cpumask_clear_cpu(cpu, mask);
297 			continue;
298 		}
299 
300 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
301 	}
302 
303 	/* no sink found for any CPU - cannot trace */
304 	if (!sink)
305 		goto err;
306 
307 	/* If we don't have any CPUs ready for tracing, abort */
308 	cpu = cpumask_first(mask);
309 	if (cpu >= nr_cpu_ids)
310 		goto err;
311 
312 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
313 		goto err;
314 
315 	/* Allocate the sink buffer for this session */
316 	event_data->snk_config =
317 			sink_ops(sink)->alloc_buffer(sink, event, pages,
318 						     nr_pages, overwrite);
319 	if (!event_data->snk_config)
320 		goto err;
321 
322 out:
323 	return event_data;
324 
325 err:
326 	etm_free_aux(event_data);
327 	event_data = NULL;
328 	goto out;
329 }
330 
331 static void etm_event_start(struct perf_event *event, int flags)
332 {
333 	int cpu = smp_processor_id();
334 	struct etm_event_data *event_data;
335 	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
336 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
337 	struct list_head *path;
338 
339 	if (!csdev)
340 		goto fail;
341 
342 	/*
343 	 * Deal with the ring buffer API and get a handle on the
344 	 * session's information.
345 	 */
346 	event_data = perf_aux_output_begin(handle, event);
347 	if (!event_data)
348 		goto fail;
349 
350 	/*
351 	 * Check if this ETM is allowed to trace, as decided
352 	 * at etm_setup_aux(). This could be due to an unreachable
353 	 * sink from this ETM. We can't do much in this case if
354 	 * the sink was specified or hinted to the driver. For
355 	 * now, simply don't record anything on this ETM.
356 	 */
357 	if (!cpumask_test_cpu(cpu, &event_data->mask))
358 		goto fail_end_stop;
359 
360 	path = etm_event_cpu_path(event_data, cpu);
361 	/* We need a sink, no need to continue without one */
362 	sink = coresight_get_sink(path);
363 	if (WARN_ON_ONCE(!sink))
364 		goto fail_end_stop;
365 
366 	/* Nothing will happen without a path */
367 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
368 		goto fail_end_stop;
369 
370 	/* Tell the perf core the event is alive */
371 	event->hw.state = 0;
372 
373 	/* Finally enable the tracer */
374 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
375 		goto fail_disable_path;
376 
377 out:
378 	return;
379 
380 fail_disable_path:
381 	coresight_disable_path(path);
382 fail_end_stop:
383 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
384 	perf_aux_output_end(handle, 0);
385 fail:
386 	event->hw.state = PERF_HES_STOPPED;
387 	goto out;
388 }
389 
390 static void etm_event_stop(struct perf_event *event, int mode)
391 {
392 	int cpu = smp_processor_id();
393 	unsigned long size;
394 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
395 	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
396 	struct etm_event_data *event_data = perf_get_aux(handle);
397 	struct list_head *path;
398 
399 	if (event->hw.state == PERF_HES_STOPPED)
400 		return;
401 
402 	if (!csdev)
403 		return;
404 
405 	path = etm_event_cpu_path(event_data, cpu);
406 	if (!path)
407 		return;
408 
409 	sink = coresight_get_sink(path);
410 	if (!sink)
411 		return;
412 
413 	/* stop tracer */
414 	source_ops(csdev)->disable(csdev, event);
415 
416 	/* tell the core */
417 	event->hw.state = PERF_HES_STOPPED;
418 
419 	if (mode & PERF_EF_UPDATE) {
420 		if (WARN_ON_ONCE(handle->event != event))
421 			return;
422 
423 		/* update trace information */
424 		if (!sink_ops(sink)->update_buffer)
425 			return;
426 
427 		size = sink_ops(sink)->update_buffer(sink, handle,
428 					      event_data->snk_config);
429 		perf_aux_output_end(handle, size);
430 	}
431 
432 	/* Disabling the path make its elements available to other sessions */
433 	coresight_disable_path(path);
434 }
435 
436 static int etm_event_add(struct perf_event *event, int mode)
437 {
438 	int ret = 0;
439 	struct hw_perf_event *hwc = &event->hw;
440 
441 	if (mode & PERF_EF_START) {
442 		etm_event_start(event, 0);
443 		if (hwc->state & PERF_HES_STOPPED)
444 			ret = -EINVAL;
445 	} else {
446 		hwc->state = PERF_HES_STOPPED;
447 	}
448 
449 	return ret;
450 }
451 
452 static void etm_event_del(struct perf_event *event, int mode)
453 {
454 	etm_event_stop(event, PERF_EF_UPDATE);
455 }
456 
457 static int etm_addr_filters_validate(struct list_head *filters)
458 {
459 	bool range = false, address = false;
460 	int index = 0;
461 	struct perf_addr_filter *filter;
462 
463 	list_for_each_entry(filter, filters, entry) {
464 		/*
465 		 * No need to go further if there's no more
466 		 * room for filters.
467 		 */
468 		if (++index > ETM_ADDR_CMP_MAX)
469 			return -EOPNOTSUPP;
470 
471 		/* filter::size==0 means single address trigger */
472 		if (filter->size) {
473 			/*
474 			 * The existing code relies on START/STOP filters
475 			 * being address filters.
476 			 */
477 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
478 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
479 				return -EOPNOTSUPP;
480 
481 			range = true;
482 		} else
483 			address = true;
484 
485 		/*
486 		 * At this time we don't allow range and start/stop filtering
487 		 * to cohabitate, they have to be mutually exclusive.
488 		 */
489 		if (range && address)
490 			return -EOPNOTSUPP;
491 	}
492 
493 	return 0;
494 }
495 
496 static void etm_addr_filters_sync(struct perf_event *event)
497 {
498 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
499 	unsigned long start, stop;
500 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
501 	struct etm_filters *filters = event->hw.addr_filters;
502 	struct etm_filter *etm_filter;
503 	struct perf_addr_filter *filter;
504 	int i = 0;
505 
506 	list_for_each_entry(filter, &head->list, entry) {
507 		start = fr[i].start;
508 		stop = start + fr[i].size;
509 		etm_filter = &filters->etm_filter[i];
510 
511 		switch (filter->action) {
512 		case PERF_ADDR_FILTER_ACTION_FILTER:
513 			etm_filter->start_addr = start;
514 			etm_filter->stop_addr = stop;
515 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
516 			break;
517 		case PERF_ADDR_FILTER_ACTION_START:
518 			etm_filter->start_addr = start;
519 			etm_filter->type = ETM_ADDR_TYPE_START;
520 			break;
521 		case PERF_ADDR_FILTER_ACTION_STOP:
522 			etm_filter->stop_addr = stop;
523 			etm_filter->type = ETM_ADDR_TYPE_STOP;
524 			break;
525 		}
526 		i++;
527 	}
528 
529 	filters->nr_filters = i;
530 }
531 
532 int etm_perf_symlink(struct coresight_device *csdev, bool link)
533 {
534 	char entry[sizeof("cpu9999999")];
535 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
536 	struct device *pmu_dev = etm_pmu.dev;
537 	struct device *cs_dev = &csdev->dev;
538 
539 	sprintf(entry, "cpu%d", cpu);
540 
541 	if (!etm_perf_up)
542 		return -EPROBE_DEFER;
543 
544 	if (link) {
545 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
546 		if (ret)
547 			return ret;
548 		per_cpu(csdev_src, cpu) = csdev;
549 	} else {
550 		sysfs_remove_link(&pmu_dev->kobj, entry);
551 		per_cpu(csdev_src, cpu) = NULL;
552 	}
553 
554 	return 0;
555 }
556 EXPORT_SYMBOL_GPL(etm_perf_symlink);
557 
558 static ssize_t etm_perf_sink_name_show(struct device *dev,
559 				       struct device_attribute *dattr,
560 				       char *buf)
561 {
562 	struct dev_ext_attribute *ea;
563 
564 	ea = container_of(dattr, struct dev_ext_attribute, attr);
565 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
566 }
567 
568 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
569 {
570 	int ret;
571 	unsigned long hash;
572 	const char *name;
573 	struct device *pmu_dev = etm_pmu.dev;
574 	struct device *dev = &csdev->dev;
575 	struct dev_ext_attribute *ea;
576 
577 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
578 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
579 		return -EINVAL;
580 
581 	if (csdev->ea != NULL)
582 		return -EINVAL;
583 
584 	if (!etm_perf_up)
585 		return -EPROBE_DEFER;
586 
587 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
588 	if (!ea)
589 		return -ENOMEM;
590 
591 	name = dev_name(dev);
592 	/* See function coresight_get_sink_by_id() to know where this is used */
593 	hash = hashlen_hash(hashlen_string(NULL, name));
594 
595 	sysfs_attr_init(&ea->attr.attr);
596 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
597 	if (!ea->attr.attr.name)
598 		return -ENOMEM;
599 
600 	ea->attr.attr.mode = 0444;
601 	ea->attr.show = etm_perf_sink_name_show;
602 	ea->var = (unsigned long *)hash;
603 
604 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
605 				      &ea->attr.attr, "sinks");
606 
607 	if (!ret)
608 		csdev->ea = ea;
609 
610 	return ret;
611 }
612 
613 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
614 {
615 	struct device *pmu_dev = etm_pmu.dev;
616 	struct dev_ext_attribute *ea = csdev->ea;
617 
618 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
619 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
620 		return;
621 
622 	if (!ea)
623 		return;
624 
625 	sysfs_remove_file_from_group(&pmu_dev->kobj,
626 				     &ea->attr.attr, "sinks");
627 	csdev->ea = NULL;
628 }
629 
630 int __init etm_perf_init(void)
631 {
632 	int ret;
633 
634 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
635 					   PERF_PMU_CAP_ITRACE);
636 
637 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
638 	etm_pmu.task_ctx_nr		= perf_sw_context;
639 	etm_pmu.read			= etm_event_read;
640 	etm_pmu.event_init		= etm_event_init;
641 	etm_pmu.setup_aux		= etm_setup_aux;
642 	etm_pmu.free_aux		= etm_free_aux;
643 	etm_pmu.start			= etm_event_start;
644 	etm_pmu.stop			= etm_event_stop;
645 	etm_pmu.add			= etm_event_add;
646 	etm_pmu.del			= etm_event_del;
647 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
648 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
649 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
650 
651 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
652 	if (ret == 0)
653 		etm_perf_up = true;
654 
655 	return ret;
656 }
657 
658 void __exit etm_perf_exit(void)
659 {
660 	perf_pmu_unregister(&etm_pmu);
661 }
662