1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/coresight.h> 9 #include <linux/coresight-pmu.h> 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/perf_event.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/stringhash.h> 19 #include <linux/types.h> 20 #include <linux/workqueue.h> 21 22 #include "coresight-config.h" 23 #include "coresight-etm-perf.h" 24 #include "coresight-priv.h" 25 #include "coresight-syscfg.h" 26 #include "coresight-trace-id.h" 27 28 static struct pmu etm_pmu; 29 static bool etm_perf_up; 30 31 /* 32 * An ETM context for a running event includes the perf aux handle 33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of 34 * the trace path and the sink configuration. The event data is accessible 35 * via perf_get_aux(handle). However, a sink could "end" a perf output 36 * handle via the IRQ handler. And if the "sink" encounters a failure 37 * to "begin" another session (e.g due to lack of space in the buffer), 38 * the handle will be cleared. Thus, the event_data may not be accessible 39 * from the handle when we get to the etm_event_stop(), which is required 40 * for stopping the trace path. The event_data is guaranteed to stay alive 41 * until "free_aux()", which cannot happen as long as the event is active on 42 * the ETM. Thus the event_data for the session must be part of the ETM context 43 * to make sure we can disable the trace path. 44 */ 45 struct etm_ctxt { 46 struct perf_output_handle handle; 47 struct etm_event_data *event_data; 48 }; 49 50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); 51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src); 52 53 /* 54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; 55 * now take them as general formats and apply on all ETMs. 56 */ 57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST)); 58 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); 59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ 60 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); 61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ 62 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); 63 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); 64 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); 65 /* preset - if sink ID is used as a configuration selector */ 66 PMU_FORMAT_ATTR(preset, "config:0-3"); 67 /* Sink ID - same for all ETMs */ 68 PMU_FORMAT_ATTR(sinkid, "config2:0-31"); 69 /* config ID - set if a system configuration is selected */ 70 PMU_FORMAT_ATTR(configid, "config2:32-63"); 71 72 73 /* 74 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 75 * when the kernel is running at EL1; when the kernel is at EL2, 76 * the PID is in CONTEXTIDR_EL2. 77 */ 78 static ssize_t format_attr_contextid_show(struct device *dev, 79 struct device_attribute *attr, 80 char *page) 81 { 82 int pid_fmt = ETM_OPT_CTXTID; 83 84 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) 85 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; 86 #endif 87 return sprintf(page, "config:%d\n", pid_fmt); 88 } 89 90 static struct device_attribute format_attr_contextid = 91 __ATTR(contextid, 0444, format_attr_contextid_show, NULL); 92 93 static struct attribute *etm_config_formats_attr[] = { 94 &format_attr_cycacc.attr, 95 &format_attr_contextid.attr, 96 &format_attr_contextid1.attr, 97 &format_attr_contextid2.attr, 98 &format_attr_timestamp.attr, 99 &format_attr_retstack.attr, 100 &format_attr_sinkid.attr, 101 &format_attr_preset.attr, 102 &format_attr_configid.attr, 103 &format_attr_branch_broadcast.attr, 104 NULL, 105 }; 106 107 static const struct attribute_group etm_pmu_format_group = { 108 .name = "format", 109 .attrs = etm_config_formats_attr, 110 }; 111 112 static struct attribute *etm_config_sinks_attr[] = { 113 NULL, 114 }; 115 116 static const struct attribute_group etm_pmu_sinks_group = { 117 .name = "sinks", 118 .attrs = etm_config_sinks_attr, 119 }; 120 121 static struct attribute *etm_config_events_attr[] = { 122 NULL, 123 }; 124 125 static const struct attribute_group etm_pmu_events_group = { 126 .name = "events", 127 .attrs = etm_config_events_attr, 128 }; 129 130 static const struct attribute_group *etm_pmu_attr_groups[] = { 131 &etm_pmu_format_group, 132 &etm_pmu_sinks_group, 133 &etm_pmu_events_group, 134 NULL, 135 }; 136 137 static inline struct list_head ** 138 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) 139 { 140 return per_cpu_ptr(data->path, cpu); 141 } 142 143 static inline struct list_head * 144 etm_event_cpu_path(struct etm_event_data *data, int cpu) 145 { 146 return *etm_event_cpu_path_ptr(data, cpu); 147 } 148 149 static void etm_event_read(struct perf_event *event) {} 150 151 static int etm_addr_filters_alloc(struct perf_event *event) 152 { 153 struct etm_filters *filters; 154 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 155 156 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); 157 if (!filters) 158 return -ENOMEM; 159 160 if (event->parent) 161 memcpy(filters, event->parent->hw.addr_filters, 162 sizeof(*filters)); 163 164 event->hw.addr_filters = filters; 165 166 return 0; 167 } 168 169 static void etm_event_destroy(struct perf_event *event) 170 { 171 kfree(event->hw.addr_filters); 172 event->hw.addr_filters = NULL; 173 } 174 175 static int etm_event_init(struct perf_event *event) 176 { 177 int ret = 0; 178 179 if (event->attr.type != etm_pmu.type) { 180 ret = -ENOENT; 181 goto out; 182 } 183 184 ret = etm_addr_filters_alloc(event); 185 if (ret) 186 goto out; 187 188 event->destroy = etm_event_destroy; 189 out: 190 return ret; 191 } 192 193 static void free_sink_buffer(struct etm_event_data *event_data) 194 { 195 int cpu; 196 cpumask_t *mask = &event_data->mask; 197 struct coresight_device *sink; 198 199 if (!event_data->snk_config) 200 return; 201 202 if (WARN_ON(cpumask_empty(mask))) 203 return; 204 205 cpu = cpumask_first(mask); 206 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); 207 sink_ops(sink)->free_buffer(event_data->snk_config); 208 } 209 210 static void free_event_data(struct work_struct *work) 211 { 212 int cpu; 213 cpumask_t *mask; 214 struct etm_event_data *event_data; 215 216 event_data = container_of(work, struct etm_event_data, work); 217 mask = &event_data->mask; 218 219 /* Free the sink buffers, if there are any */ 220 free_sink_buffer(event_data); 221 222 /* clear any configuration we were using */ 223 if (event_data->cfg_hash) 224 cscfg_deactivate_config(event_data->cfg_hash); 225 226 for_each_cpu(cpu, mask) { 227 struct list_head **ppath; 228 229 ppath = etm_event_cpu_path_ptr(event_data, cpu); 230 if (!(IS_ERR_OR_NULL(*ppath))) 231 coresight_release_path(*ppath); 232 *ppath = NULL; 233 coresight_trace_id_put_cpu_id(cpu); 234 } 235 236 /* mark perf event as done for trace id allocator */ 237 coresight_trace_id_perf_stop(); 238 239 free_percpu(event_data->path); 240 kfree(event_data); 241 } 242 243 static void *alloc_event_data(int cpu) 244 { 245 cpumask_t *mask; 246 struct etm_event_data *event_data; 247 248 /* First get memory for the session's data */ 249 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); 250 if (!event_data) 251 return NULL; 252 253 254 mask = &event_data->mask; 255 if (cpu != -1) 256 cpumask_set_cpu(cpu, mask); 257 else 258 cpumask_copy(mask, cpu_present_mask); 259 260 /* 261 * Each CPU has a single path between source and destination. As such 262 * allocate an array using CPU numbers as indexes. That way a path 263 * for any CPU can easily be accessed at any given time. We proceed 264 * the same way for sessions involving a single CPU. The cost of 265 * unused memory when dealing with single CPU trace scenarios is small 266 * compared to the cost of searching through an optimized array. 267 */ 268 event_data->path = alloc_percpu(struct list_head *); 269 270 if (!event_data->path) { 271 kfree(event_data); 272 return NULL; 273 } 274 275 return event_data; 276 } 277 278 static void etm_free_aux(void *data) 279 { 280 struct etm_event_data *event_data = data; 281 282 schedule_work(&event_data->work); 283 } 284 285 /* 286 * Check if two given sinks are compatible with each other, 287 * so that they can use the same sink buffers, when an event 288 * moves around. 289 */ 290 static bool sinks_compatible(struct coresight_device *a, 291 struct coresight_device *b) 292 { 293 if (!a || !b) 294 return false; 295 /* 296 * If the sinks are of the same subtype and driven 297 * by the same driver, we can use the same buffer 298 * on these sinks. 299 */ 300 return (a->subtype.sink_subtype == b->subtype.sink_subtype) && 301 (sink_ops(a) == sink_ops(b)); 302 } 303 304 static void *etm_setup_aux(struct perf_event *event, void **pages, 305 int nr_pages, bool overwrite) 306 { 307 u32 id, cfg_hash; 308 int cpu = event->cpu; 309 int trace_id; 310 cpumask_t *mask; 311 struct coresight_device *sink = NULL; 312 struct coresight_device *user_sink = NULL, *last_sink = NULL; 313 struct etm_event_data *event_data = NULL; 314 315 event_data = alloc_event_data(cpu); 316 if (!event_data) 317 return NULL; 318 INIT_WORK(&event_data->work, free_event_data); 319 320 /* First get the selected sink from user space. */ 321 if (event->attr.config2 & GENMASK_ULL(31, 0)) { 322 id = (u32)event->attr.config2; 323 sink = user_sink = coresight_get_sink_by_id(id); 324 } 325 326 /* tell the trace ID allocator that a perf event is starting up */ 327 coresight_trace_id_perf_start(); 328 329 /* check if user wants a coresight configuration selected */ 330 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32); 331 if (cfg_hash) { 332 if (cscfg_activate_config(cfg_hash)) 333 goto err; 334 event_data->cfg_hash = cfg_hash; 335 } 336 337 mask = &event_data->mask; 338 339 /* 340 * Setup the path for each CPU in a trace session. We try to build 341 * trace path for each CPU in the mask. If we don't find an ETM 342 * for the CPU or fail to build a path, we clear the CPU from the 343 * mask and continue with the rest. If ever we try to trace on those 344 * CPUs, we can handle it and fail the session. 345 */ 346 for_each_cpu(cpu, mask) { 347 struct list_head *path; 348 struct coresight_device *csdev; 349 350 csdev = per_cpu(csdev_src, cpu); 351 /* 352 * If there is no ETM associated with this CPU clear it from 353 * the mask and continue with the rest. If ever we try to trace 354 * on this CPU, we handle it accordingly. 355 */ 356 if (!csdev) { 357 cpumask_clear_cpu(cpu, mask); 358 continue; 359 } 360 361 /* 362 * No sink provided - look for a default sink for all the ETMs, 363 * where this event can be scheduled. 364 * We allocate the sink specific buffers only once for this 365 * event. If the ETMs have different default sink devices, we 366 * can only use a single "type" of sink as the event can carry 367 * only one sink specific buffer. Thus we have to make sure 368 * that the sinks are of the same type and driven by the same 369 * driver, as the one we allocate the buffer for. As such 370 * we choose the first sink and check if the remaining ETMs 371 * have a compatible default sink. We don't trace on a CPU 372 * if the sink is not compatible. 373 */ 374 if (!user_sink) { 375 /* Find the default sink for this ETM */ 376 sink = coresight_find_default_sink(csdev); 377 if (!sink) { 378 cpumask_clear_cpu(cpu, mask); 379 continue; 380 } 381 382 /* Check if this sink compatible with the last sink */ 383 if (last_sink && !sinks_compatible(last_sink, sink)) { 384 cpumask_clear_cpu(cpu, mask); 385 continue; 386 } 387 last_sink = sink; 388 } 389 390 /* 391 * Building a path doesn't enable it, it simply builds a 392 * list of devices from source to sink that can be 393 * referenced later when the path is actually needed. 394 */ 395 path = coresight_build_path(csdev, sink); 396 if (IS_ERR(path)) { 397 cpumask_clear_cpu(cpu, mask); 398 continue; 399 } 400 401 /* ensure we can allocate a trace ID for this CPU */ 402 trace_id = coresight_trace_id_get_cpu_id(cpu); 403 if (!IS_VALID_CS_TRACE_ID(trace_id)) { 404 cpumask_clear_cpu(cpu, mask); 405 continue; 406 } 407 408 *etm_event_cpu_path_ptr(event_data, cpu) = path; 409 } 410 411 /* no sink found for any CPU - cannot trace */ 412 if (!sink) 413 goto err; 414 415 /* If we don't have any CPUs ready for tracing, abort */ 416 cpu = cpumask_first(mask); 417 if (cpu >= nr_cpu_ids) 418 goto err; 419 420 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) 421 goto err; 422 423 /* 424 * Allocate the sink buffer for this session. All the sinks 425 * where this event can be scheduled are ensured to be of the 426 * same type. Thus the same sink configuration is used by the 427 * sinks. 428 */ 429 event_data->snk_config = 430 sink_ops(sink)->alloc_buffer(sink, event, pages, 431 nr_pages, overwrite); 432 if (!event_data->snk_config) 433 goto err; 434 435 out: 436 return event_data; 437 438 err: 439 etm_free_aux(event_data); 440 event_data = NULL; 441 goto out; 442 } 443 444 static void etm_event_start(struct perf_event *event, int flags) 445 { 446 int cpu = smp_processor_id(); 447 struct etm_event_data *event_data; 448 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 449 struct perf_output_handle *handle = &ctxt->handle; 450 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 451 struct list_head *path; 452 u64 hw_id; 453 454 if (!csdev) 455 goto fail; 456 457 /* Have we messed up our tracking ? */ 458 if (WARN_ON(ctxt->event_data)) 459 goto fail; 460 461 /* 462 * Deal with the ring buffer API and get a handle on the 463 * session's information. 464 */ 465 event_data = perf_aux_output_begin(handle, event); 466 if (!event_data) 467 goto fail; 468 469 /* 470 * Check if this ETM is allowed to trace, as decided 471 * at etm_setup_aux(). This could be due to an unreachable 472 * sink from this ETM. We can't do much in this case if 473 * the sink was specified or hinted to the driver. For 474 * now, simply don't record anything on this ETM. 475 * 476 * As such we pretend that everything is fine, and let 477 * it continue without actually tracing. The event could 478 * continue tracing when it moves to a CPU where it is 479 * reachable to a sink. 480 */ 481 if (!cpumask_test_cpu(cpu, &event_data->mask)) 482 goto out; 483 484 path = etm_event_cpu_path(event_data, cpu); 485 /* We need a sink, no need to continue without one */ 486 sink = coresight_get_sink(path); 487 if (WARN_ON_ONCE(!sink)) 488 goto fail_end_stop; 489 490 /* Nothing will happen without a path */ 491 if (coresight_enable_path(path, CS_MODE_PERF, handle)) 492 goto fail_end_stop; 493 494 /* Finally enable the tracer */ 495 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF)) 496 goto fail_disable_path; 497 498 /* 499 * output cpu / trace ID in perf record, once for the lifetime 500 * of the event. 501 */ 502 if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) { 503 cpumask_set_cpu(cpu, &event_data->aux_hwid_done); 504 hw_id = FIELD_PREP(CS_AUX_HW_ID_VERSION_MASK, 505 CS_AUX_HW_ID_CURR_VERSION); 506 hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, 507 coresight_trace_id_read_cpu_id(cpu)); 508 perf_report_aux_output_id(event, hw_id); 509 } 510 511 out: 512 /* Tell the perf core the event is alive */ 513 event->hw.state = 0; 514 /* Save the event_data for this ETM */ 515 ctxt->event_data = event_data; 516 return; 517 518 fail_disable_path: 519 coresight_disable_path(path); 520 fail_end_stop: 521 /* 522 * Check if the handle is still associated with the event, 523 * to handle cases where if the sink failed to start the 524 * trace and TRUNCATED the handle already. 525 */ 526 if (READ_ONCE(handle->event)) { 527 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 528 perf_aux_output_end(handle, 0); 529 } 530 fail: 531 event->hw.state = PERF_HES_STOPPED; 532 return; 533 } 534 535 static void etm_event_stop(struct perf_event *event, int mode) 536 { 537 int cpu = smp_processor_id(); 538 unsigned long size; 539 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 540 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 541 struct perf_output_handle *handle = &ctxt->handle; 542 struct etm_event_data *event_data; 543 struct list_head *path; 544 545 /* 546 * If we still have access to the event_data via handle, 547 * confirm that we haven't messed up the tracking. 548 */ 549 if (handle->event && 550 WARN_ON(perf_get_aux(handle) != ctxt->event_data)) 551 return; 552 553 event_data = ctxt->event_data; 554 /* Clear the event_data as this ETM is stopping the trace. */ 555 ctxt->event_data = NULL; 556 557 if (event->hw.state == PERF_HES_STOPPED) 558 return; 559 560 /* We must have a valid event_data for a running event */ 561 if (WARN_ON(!event_data)) 562 return; 563 564 /* 565 * Check if this ETM was allowed to trace, as decided at 566 * etm_setup_aux(). If it wasn't allowed to trace, then 567 * nothing needs to be torn down other than outputting a 568 * zero sized record. 569 */ 570 if (handle->event && (mode & PERF_EF_UPDATE) && 571 !cpumask_test_cpu(cpu, &event_data->mask)) { 572 event->hw.state = PERF_HES_STOPPED; 573 perf_aux_output_end(handle, 0); 574 return; 575 } 576 577 if (!csdev) 578 return; 579 580 path = etm_event_cpu_path(event_data, cpu); 581 if (!path) 582 return; 583 584 sink = coresight_get_sink(path); 585 if (!sink) 586 return; 587 588 /* stop tracer */ 589 source_ops(csdev)->disable(csdev, event); 590 591 /* tell the core */ 592 event->hw.state = PERF_HES_STOPPED; 593 594 /* 595 * If the handle is not bound to an event anymore 596 * (e.g, the sink driver was unable to restart the 597 * handle due to lack of buffer space), we don't 598 * have to do anything here. 599 */ 600 if (handle->event && (mode & PERF_EF_UPDATE)) { 601 if (WARN_ON_ONCE(handle->event != event)) 602 return; 603 604 /* update trace information */ 605 if (!sink_ops(sink)->update_buffer) 606 return; 607 608 size = sink_ops(sink)->update_buffer(sink, handle, 609 event_data->snk_config); 610 /* 611 * Make sure the handle is still valid as the 612 * sink could have closed it from an IRQ. 613 * The sink driver must handle the race with 614 * update_buffer() and IRQ. Thus either we 615 * should get a valid handle and valid size 616 * (which may be 0). 617 * 618 * But we should never get a non-zero size with 619 * an invalid handle. 620 */ 621 if (READ_ONCE(handle->event)) 622 perf_aux_output_end(handle, size); 623 else 624 WARN_ON(size); 625 } 626 627 /* Disabling the path make its elements available to other sessions */ 628 coresight_disable_path(path); 629 } 630 631 static int etm_event_add(struct perf_event *event, int mode) 632 { 633 int ret = 0; 634 struct hw_perf_event *hwc = &event->hw; 635 636 if (mode & PERF_EF_START) { 637 etm_event_start(event, 0); 638 if (hwc->state & PERF_HES_STOPPED) 639 ret = -EINVAL; 640 } else { 641 hwc->state = PERF_HES_STOPPED; 642 } 643 644 return ret; 645 } 646 647 static void etm_event_del(struct perf_event *event, int mode) 648 { 649 etm_event_stop(event, PERF_EF_UPDATE); 650 } 651 652 static int etm_addr_filters_validate(struct list_head *filters) 653 { 654 bool range = false, address = false; 655 int index = 0; 656 struct perf_addr_filter *filter; 657 658 list_for_each_entry(filter, filters, entry) { 659 /* 660 * No need to go further if there's no more 661 * room for filters. 662 */ 663 if (++index > ETM_ADDR_CMP_MAX) 664 return -EOPNOTSUPP; 665 666 /* filter::size==0 means single address trigger */ 667 if (filter->size) { 668 /* 669 * The existing code relies on START/STOP filters 670 * being address filters. 671 */ 672 if (filter->action == PERF_ADDR_FILTER_ACTION_START || 673 filter->action == PERF_ADDR_FILTER_ACTION_STOP) 674 return -EOPNOTSUPP; 675 676 range = true; 677 } else 678 address = true; 679 680 /* 681 * At this time we don't allow range and start/stop filtering 682 * to cohabitate, they have to be mutually exclusive. 683 */ 684 if (range && address) 685 return -EOPNOTSUPP; 686 } 687 688 return 0; 689 } 690 691 static void etm_addr_filters_sync(struct perf_event *event) 692 { 693 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 694 unsigned long start, stop; 695 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 696 struct etm_filters *filters = event->hw.addr_filters; 697 struct etm_filter *etm_filter; 698 struct perf_addr_filter *filter; 699 int i = 0; 700 701 list_for_each_entry(filter, &head->list, entry) { 702 start = fr[i].start; 703 stop = start + fr[i].size; 704 etm_filter = &filters->etm_filter[i]; 705 706 switch (filter->action) { 707 case PERF_ADDR_FILTER_ACTION_FILTER: 708 etm_filter->start_addr = start; 709 etm_filter->stop_addr = stop; 710 etm_filter->type = ETM_ADDR_TYPE_RANGE; 711 break; 712 case PERF_ADDR_FILTER_ACTION_START: 713 etm_filter->start_addr = start; 714 etm_filter->type = ETM_ADDR_TYPE_START; 715 break; 716 case PERF_ADDR_FILTER_ACTION_STOP: 717 etm_filter->stop_addr = stop; 718 etm_filter->type = ETM_ADDR_TYPE_STOP; 719 break; 720 } 721 i++; 722 } 723 724 filters->nr_filters = i; 725 } 726 727 int etm_perf_symlink(struct coresight_device *csdev, bool link) 728 { 729 char entry[sizeof("cpu9999999")]; 730 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); 731 struct device *pmu_dev = etm_pmu.dev; 732 struct device *cs_dev = &csdev->dev; 733 734 sprintf(entry, "cpu%d", cpu); 735 736 if (!etm_perf_up) 737 return -EPROBE_DEFER; 738 739 if (link) { 740 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); 741 if (ret) 742 return ret; 743 per_cpu(csdev_src, cpu) = csdev; 744 } else { 745 sysfs_remove_link(&pmu_dev->kobj, entry); 746 per_cpu(csdev_src, cpu) = NULL; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(etm_perf_symlink); 752 753 static ssize_t etm_perf_sink_name_show(struct device *dev, 754 struct device_attribute *dattr, 755 char *buf) 756 { 757 struct dev_ext_attribute *ea; 758 759 ea = container_of(dattr, struct dev_ext_attribute, attr); 760 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); 761 } 762 763 static struct dev_ext_attribute * 764 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name) 765 { 766 struct dev_ext_attribute *ea; 767 unsigned long hash; 768 int ret; 769 struct device *pmu_dev = etm_pmu.dev; 770 771 if (!etm_perf_up) 772 return ERR_PTR(-EPROBE_DEFER); 773 774 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); 775 if (!ea) 776 return ERR_PTR(-ENOMEM); 777 778 /* 779 * If this function is called adding a sink then the hash is used for 780 * sink selection - see function coresight_get_sink_by_id(). 781 * If adding a configuration then the hash is used for selection in 782 * cscfg_activate_config() 783 */ 784 hash = hashlen_hash(hashlen_string(NULL, name)); 785 786 sysfs_attr_init(&ea->attr.attr); 787 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); 788 if (!ea->attr.attr.name) 789 return ERR_PTR(-ENOMEM); 790 791 ea->attr.attr.mode = 0444; 792 ea->var = (unsigned long *)hash; 793 794 ret = sysfs_add_file_to_group(&pmu_dev->kobj, 795 &ea->attr.attr, group_name); 796 797 return ret ? ERR_PTR(ret) : ea; 798 } 799 800 int etm_perf_add_symlink_sink(struct coresight_device *csdev) 801 { 802 const char *name; 803 struct device *dev = &csdev->dev; 804 int err = 0; 805 806 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 807 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 808 return -EINVAL; 809 810 if (csdev->ea != NULL) 811 return -EINVAL; 812 813 name = dev_name(dev); 814 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks"); 815 if (IS_ERR(csdev->ea)) { 816 err = PTR_ERR(csdev->ea); 817 csdev->ea = NULL; 818 } else 819 csdev->ea->attr.show = etm_perf_sink_name_show; 820 821 return err; 822 } 823 824 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name) 825 { 826 struct device *pmu_dev = etm_pmu.dev; 827 828 sysfs_remove_file_from_group(&pmu_dev->kobj, 829 &ea->attr.attr, group_name); 830 } 831 832 void etm_perf_del_symlink_sink(struct coresight_device *csdev) 833 { 834 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 835 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 836 return; 837 838 if (!csdev->ea) 839 return; 840 841 etm_perf_del_symlink_group(csdev->ea, "sinks"); 842 csdev->ea = NULL; 843 } 844 845 static ssize_t etm_perf_cscfg_event_show(struct device *dev, 846 struct device_attribute *dattr, 847 char *buf) 848 { 849 struct dev_ext_attribute *ea; 850 851 ea = container_of(dattr, struct dev_ext_attribute, attr); 852 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var)); 853 } 854 855 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc) 856 { 857 int err = 0; 858 859 if (config_desc->event_ea != NULL) 860 return 0; 861 862 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events"); 863 864 /* set the show function to the custom cscfg event */ 865 if (!IS_ERR(config_desc->event_ea)) 866 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show; 867 else { 868 err = PTR_ERR(config_desc->event_ea); 869 config_desc->event_ea = NULL; 870 } 871 872 return err; 873 } 874 875 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc) 876 { 877 if (!config_desc->event_ea) 878 return; 879 880 etm_perf_del_symlink_group(config_desc->event_ea, "events"); 881 config_desc->event_ea = NULL; 882 } 883 884 int __init etm_perf_init(void) 885 { 886 int ret; 887 888 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | 889 PERF_PMU_CAP_ITRACE); 890 891 etm_pmu.attr_groups = etm_pmu_attr_groups; 892 etm_pmu.task_ctx_nr = perf_sw_context; 893 etm_pmu.read = etm_event_read; 894 etm_pmu.event_init = etm_event_init; 895 etm_pmu.setup_aux = etm_setup_aux; 896 etm_pmu.free_aux = etm_free_aux; 897 etm_pmu.start = etm_event_start; 898 etm_pmu.stop = etm_event_stop; 899 etm_pmu.add = etm_event_add; 900 etm_pmu.del = etm_event_del; 901 etm_pmu.addr_filters_sync = etm_addr_filters_sync; 902 etm_pmu.addr_filters_validate = etm_addr_filters_validate; 903 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; 904 905 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); 906 if (ret == 0) 907 etm_perf_up = true; 908 909 return ret; 910 } 911 912 void etm_perf_exit(void) 913 { 914 perf_pmu_unregister(&etm_pmu); 915 } 916