1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015 Linaro Limited. All rights reserved. 4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 5 */ 6 7 #include <linux/coresight.h> 8 #include <linux/coresight-pmu.h> 9 #include <linux/cpumask.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/perf_event.h> 15 #include <linux/percpu-defs.h> 16 #include <linux/slab.h> 17 #include <linux/stringhash.h> 18 #include <linux/types.h> 19 #include <linux/workqueue.h> 20 21 #include "coresight-config.h" 22 #include "coresight-etm-perf.h" 23 #include "coresight-priv.h" 24 #include "coresight-syscfg.h" 25 26 static struct pmu etm_pmu; 27 static bool etm_perf_up; 28 29 /* 30 * An ETM context for a running event includes the perf aux handle 31 * and aux_data. For ETM, the aux_data (etm_event_data), consists of 32 * the trace path and the sink configuration. The event data is accessible 33 * via perf_get_aux(handle). However, a sink could "end" a perf output 34 * handle via the IRQ handler. And if the "sink" encounters a failure 35 * to "begin" another session (e.g due to lack of space in the buffer), 36 * the handle will be cleared. Thus, the event_data may not be accessible 37 * from the handle when we get to the etm_event_stop(), which is required 38 * for stopping the trace path. The event_data is guaranteed to stay alive 39 * until "free_aux()", which cannot happen as long as the event is active on 40 * the ETM. Thus the event_data for the session must be part of the ETM context 41 * to make sure we can disable the trace path. 42 */ 43 struct etm_ctxt { 44 struct perf_output_handle handle; 45 struct etm_event_data *event_data; 46 }; 47 48 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt); 49 static DEFINE_PER_CPU(struct coresight_device *, csdev_src); 50 51 /* 52 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config'; 53 * now take them as general formats and apply on all ETMs. 54 */ 55 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC)); 56 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */ 57 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID)); 58 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */ 59 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2)); 60 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS)); 61 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK)); 62 /* preset - if sink ID is used as a configuration selector */ 63 PMU_FORMAT_ATTR(preset, "config:0-3"); 64 /* Sink ID - same for all ETMs */ 65 PMU_FORMAT_ATTR(sinkid, "config2:0-31"); 66 /* config ID - set if a system configuration is selected */ 67 PMU_FORMAT_ATTR(configid, "config2:32-63"); 68 69 70 /* 71 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1 72 * when the kernel is running at EL1; when the kernel is at EL2, 73 * the PID is in CONTEXTIDR_EL2. 74 */ 75 static ssize_t format_attr_contextid_show(struct device *dev, 76 struct device_attribute *attr, 77 char *page) 78 { 79 int pid_fmt = ETM_OPT_CTXTID; 80 81 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X) 82 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID; 83 #endif 84 return sprintf(page, "config:%d\n", pid_fmt); 85 } 86 87 static struct device_attribute format_attr_contextid = 88 __ATTR(contextid, 0444, format_attr_contextid_show, NULL); 89 90 static struct attribute *etm_config_formats_attr[] = { 91 &format_attr_cycacc.attr, 92 &format_attr_contextid.attr, 93 &format_attr_contextid1.attr, 94 &format_attr_contextid2.attr, 95 &format_attr_timestamp.attr, 96 &format_attr_retstack.attr, 97 &format_attr_sinkid.attr, 98 &format_attr_preset.attr, 99 &format_attr_configid.attr, 100 NULL, 101 }; 102 103 static const struct attribute_group etm_pmu_format_group = { 104 .name = "format", 105 .attrs = etm_config_formats_attr, 106 }; 107 108 static struct attribute *etm_config_sinks_attr[] = { 109 NULL, 110 }; 111 112 static const struct attribute_group etm_pmu_sinks_group = { 113 .name = "sinks", 114 .attrs = etm_config_sinks_attr, 115 }; 116 117 static struct attribute *etm_config_events_attr[] = { 118 NULL, 119 }; 120 121 static const struct attribute_group etm_pmu_events_group = { 122 .name = "events", 123 .attrs = etm_config_events_attr, 124 }; 125 126 static const struct attribute_group *etm_pmu_attr_groups[] = { 127 &etm_pmu_format_group, 128 &etm_pmu_sinks_group, 129 &etm_pmu_events_group, 130 NULL, 131 }; 132 133 static inline struct list_head ** 134 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu) 135 { 136 return per_cpu_ptr(data->path, cpu); 137 } 138 139 static inline struct list_head * 140 etm_event_cpu_path(struct etm_event_data *data, int cpu) 141 { 142 return *etm_event_cpu_path_ptr(data, cpu); 143 } 144 145 static void etm_event_read(struct perf_event *event) {} 146 147 static int etm_addr_filters_alloc(struct perf_event *event) 148 { 149 struct etm_filters *filters; 150 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 151 152 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node); 153 if (!filters) 154 return -ENOMEM; 155 156 if (event->parent) 157 memcpy(filters, event->parent->hw.addr_filters, 158 sizeof(*filters)); 159 160 event->hw.addr_filters = filters; 161 162 return 0; 163 } 164 165 static void etm_event_destroy(struct perf_event *event) 166 { 167 kfree(event->hw.addr_filters); 168 event->hw.addr_filters = NULL; 169 } 170 171 static int etm_event_init(struct perf_event *event) 172 { 173 int ret = 0; 174 175 if (event->attr.type != etm_pmu.type) { 176 ret = -ENOENT; 177 goto out; 178 } 179 180 ret = etm_addr_filters_alloc(event); 181 if (ret) 182 goto out; 183 184 event->destroy = etm_event_destroy; 185 out: 186 return ret; 187 } 188 189 static void free_sink_buffer(struct etm_event_data *event_data) 190 { 191 int cpu; 192 cpumask_t *mask = &event_data->mask; 193 struct coresight_device *sink; 194 195 if (!event_data->snk_config) 196 return; 197 198 if (WARN_ON(cpumask_empty(mask))) 199 return; 200 201 cpu = cpumask_first(mask); 202 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu)); 203 sink_ops(sink)->free_buffer(event_data->snk_config); 204 } 205 206 static void free_event_data(struct work_struct *work) 207 { 208 int cpu; 209 cpumask_t *mask; 210 struct etm_event_data *event_data; 211 212 event_data = container_of(work, struct etm_event_data, work); 213 mask = &event_data->mask; 214 215 /* Free the sink buffers, if there are any */ 216 free_sink_buffer(event_data); 217 218 /* clear any configuration we were using */ 219 if (event_data->cfg_hash) 220 cscfg_deactivate_config(event_data->cfg_hash); 221 222 for_each_cpu(cpu, mask) { 223 struct list_head **ppath; 224 225 ppath = etm_event_cpu_path_ptr(event_data, cpu); 226 if (!(IS_ERR_OR_NULL(*ppath))) 227 coresight_release_path(*ppath); 228 *ppath = NULL; 229 } 230 231 free_percpu(event_data->path); 232 kfree(event_data); 233 } 234 235 static void *alloc_event_data(int cpu) 236 { 237 cpumask_t *mask; 238 struct etm_event_data *event_data; 239 240 /* First get memory for the session's data */ 241 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL); 242 if (!event_data) 243 return NULL; 244 245 246 mask = &event_data->mask; 247 if (cpu != -1) 248 cpumask_set_cpu(cpu, mask); 249 else 250 cpumask_copy(mask, cpu_present_mask); 251 252 /* 253 * Each CPU has a single path between source and destination. As such 254 * allocate an array using CPU numbers as indexes. That way a path 255 * for any CPU can easily be accessed at any given time. We proceed 256 * the same way for sessions involving a single CPU. The cost of 257 * unused memory when dealing with single CPU trace scenarios is small 258 * compared to the cost of searching through an optimized array. 259 */ 260 event_data->path = alloc_percpu(struct list_head *); 261 262 if (!event_data->path) { 263 kfree(event_data); 264 return NULL; 265 } 266 267 return event_data; 268 } 269 270 static void etm_free_aux(void *data) 271 { 272 struct etm_event_data *event_data = data; 273 274 schedule_work(&event_data->work); 275 } 276 277 /* 278 * Check if two given sinks are compatible with each other, 279 * so that they can use the same sink buffers, when an event 280 * moves around. 281 */ 282 static bool sinks_compatible(struct coresight_device *a, 283 struct coresight_device *b) 284 { 285 if (!a || !b) 286 return false; 287 /* 288 * If the sinks are of the same subtype and driven 289 * by the same driver, we can use the same buffer 290 * on these sinks. 291 */ 292 return (a->subtype.sink_subtype == b->subtype.sink_subtype) && 293 (sink_ops(a) == sink_ops(b)); 294 } 295 296 static void *etm_setup_aux(struct perf_event *event, void **pages, 297 int nr_pages, bool overwrite) 298 { 299 u32 id, cfg_hash; 300 int cpu = event->cpu; 301 cpumask_t *mask; 302 struct coresight_device *sink = NULL; 303 struct coresight_device *user_sink = NULL, *last_sink = NULL; 304 struct etm_event_data *event_data = NULL; 305 306 event_data = alloc_event_data(cpu); 307 if (!event_data) 308 return NULL; 309 INIT_WORK(&event_data->work, free_event_data); 310 311 /* First get the selected sink from user space. */ 312 if (event->attr.config2 & GENMASK_ULL(31, 0)) { 313 id = (u32)event->attr.config2; 314 sink = user_sink = coresight_get_sink_by_id(id); 315 } 316 317 /* check if user wants a coresight configuration selected */ 318 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32); 319 if (cfg_hash) { 320 if (cscfg_activate_config(cfg_hash)) 321 goto err; 322 event_data->cfg_hash = cfg_hash; 323 } 324 325 mask = &event_data->mask; 326 327 /* 328 * Setup the path for each CPU in a trace session. We try to build 329 * trace path for each CPU in the mask. If we don't find an ETM 330 * for the CPU or fail to build a path, we clear the CPU from the 331 * mask and continue with the rest. If ever we try to trace on those 332 * CPUs, we can handle it and fail the session. 333 */ 334 for_each_cpu(cpu, mask) { 335 struct list_head *path; 336 struct coresight_device *csdev; 337 338 csdev = per_cpu(csdev_src, cpu); 339 /* 340 * If there is no ETM associated with this CPU clear it from 341 * the mask and continue with the rest. If ever we try to trace 342 * on this CPU, we handle it accordingly. 343 */ 344 if (!csdev) { 345 cpumask_clear_cpu(cpu, mask); 346 continue; 347 } 348 349 /* 350 * No sink provided - look for a default sink for all the ETMs, 351 * where this event can be scheduled. 352 * We allocate the sink specific buffers only once for this 353 * event. If the ETMs have different default sink devices, we 354 * can only use a single "type" of sink as the event can carry 355 * only one sink specific buffer. Thus we have to make sure 356 * that the sinks are of the same type and driven by the same 357 * driver, as the one we allocate the buffer for. As such 358 * we choose the first sink and check if the remaining ETMs 359 * have a compatible default sink. We don't trace on a CPU 360 * if the sink is not compatible. 361 */ 362 if (!user_sink) { 363 /* Find the default sink for this ETM */ 364 sink = coresight_find_default_sink(csdev); 365 if (!sink) { 366 cpumask_clear_cpu(cpu, mask); 367 continue; 368 } 369 370 /* Check if this sink compatible with the last sink */ 371 if (last_sink && !sinks_compatible(last_sink, sink)) { 372 cpumask_clear_cpu(cpu, mask); 373 continue; 374 } 375 last_sink = sink; 376 } 377 378 /* 379 * Building a path doesn't enable it, it simply builds a 380 * list of devices from source to sink that can be 381 * referenced later when the path is actually needed. 382 */ 383 path = coresight_build_path(csdev, sink); 384 if (IS_ERR(path)) { 385 cpumask_clear_cpu(cpu, mask); 386 continue; 387 } 388 389 *etm_event_cpu_path_ptr(event_data, cpu) = path; 390 } 391 392 /* no sink found for any CPU - cannot trace */ 393 if (!sink) 394 goto err; 395 396 /* If we don't have any CPUs ready for tracing, abort */ 397 cpu = cpumask_first(mask); 398 if (cpu >= nr_cpu_ids) 399 goto err; 400 401 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer) 402 goto err; 403 404 /* 405 * Allocate the sink buffer for this session. All the sinks 406 * where this event can be scheduled are ensured to be of the 407 * same type. Thus the same sink configuration is used by the 408 * sinks. 409 */ 410 event_data->snk_config = 411 sink_ops(sink)->alloc_buffer(sink, event, pages, 412 nr_pages, overwrite); 413 if (!event_data->snk_config) 414 goto err; 415 416 out: 417 return event_data; 418 419 err: 420 etm_free_aux(event_data); 421 event_data = NULL; 422 goto out; 423 } 424 425 static void etm_event_start(struct perf_event *event, int flags) 426 { 427 int cpu = smp_processor_id(); 428 struct etm_event_data *event_data; 429 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 430 struct perf_output_handle *handle = &ctxt->handle; 431 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 432 struct list_head *path; 433 434 if (!csdev) 435 goto fail; 436 437 /* Have we messed up our tracking ? */ 438 if (WARN_ON(ctxt->event_data)) 439 goto fail; 440 441 /* 442 * Deal with the ring buffer API and get a handle on the 443 * session's information. 444 */ 445 event_data = perf_aux_output_begin(handle, event); 446 if (!event_data) 447 goto fail; 448 449 /* 450 * Check if this ETM is allowed to trace, as decided 451 * at etm_setup_aux(). This could be due to an unreachable 452 * sink from this ETM. We can't do much in this case if 453 * the sink was specified or hinted to the driver. For 454 * now, simply don't record anything on this ETM. 455 * 456 * As such we pretend that everything is fine, and let 457 * it continue without actually tracing. The event could 458 * continue tracing when it moves to a CPU where it is 459 * reachable to a sink. 460 */ 461 if (!cpumask_test_cpu(cpu, &event_data->mask)) 462 goto out; 463 464 path = etm_event_cpu_path(event_data, cpu); 465 /* We need a sink, no need to continue without one */ 466 sink = coresight_get_sink(path); 467 if (WARN_ON_ONCE(!sink)) 468 goto fail_end_stop; 469 470 /* Nothing will happen without a path */ 471 if (coresight_enable_path(path, CS_MODE_PERF, handle)) 472 goto fail_end_stop; 473 474 /* Finally enable the tracer */ 475 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF)) 476 goto fail_disable_path; 477 478 out: 479 /* Tell the perf core the event is alive */ 480 event->hw.state = 0; 481 /* Save the event_data for this ETM */ 482 ctxt->event_data = event_data; 483 return; 484 485 fail_disable_path: 486 coresight_disable_path(path); 487 fail_end_stop: 488 /* 489 * Check if the handle is still associated with the event, 490 * to handle cases where if the sink failed to start the 491 * trace and TRUNCATED the handle already. 492 */ 493 if (READ_ONCE(handle->event)) { 494 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 495 perf_aux_output_end(handle, 0); 496 } 497 fail: 498 event->hw.state = PERF_HES_STOPPED; 499 return; 500 } 501 502 static void etm_event_stop(struct perf_event *event, int mode) 503 { 504 int cpu = smp_processor_id(); 505 unsigned long size; 506 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu); 507 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt); 508 struct perf_output_handle *handle = &ctxt->handle; 509 struct etm_event_data *event_data; 510 struct list_head *path; 511 512 /* 513 * If we still have access to the event_data via handle, 514 * confirm that we haven't messed up the tracking. 515 */ 516 if (handle->event && 517 WARN_ON(perf_get_aux(handle) != ctxt->event_data)) 518 return; 519 520 event_data = ctxt->event_data; 521 /* Clear the event_data as this ETM is stopping the trace. */ 522 ctxt->event_data = NULL; 523 524 if (event->hw.state == PERF_HES_STOPPED) 525 return; 526 527 /* We must have a valid event_data for a running event */ 528 if (WARN_ON(!event_data)) 529 return; 530 531 /* 532 * Check if this ETM was allowed to trace, as decided at 533 * etm_setup_aux(). If it wasn't allowed to trace, then 534 * nothing needs to be torn down other than outputting a 535 * zero sized record. 536 */ 537 if (handle->event && (mode & PERF_EF_UPDATE) && 538 !cpumask_test_cpu(cpu, &event_data->mask)) { 539 event->hw.state = PERF_HES_STOPPED; 540 perf_aux_output_end(handle, 0); 541 return; 542 } 543 544 if (!csdev) 545 return; 546 547 path = etm_event_cpu_path(event_data, cpu); 548 if (!path) 549 return; 550 551 sink = coresight_get_sink(path); 552 if (!sink) 553 return; 554 555 /* stop tracer */ 556 source_ops(csdev)->disable(csdev, event); 557 558 /* tell the core */ 559 event->hw.state = PERF_HES_STOPPED; 560 561 /* 562 * If the handle is not bound to an event anymore 563 * (e.g, the sink driver was unable to restart the 564 * handle due to lack of buffer space), we don't 565 * have to do anything here. 566 */ 567 if (handle->event && (mode & PERF_EF_UPDATE)) { 568 if (WARN_ON_ONCE(handle->event != event)) 569 return; 570 571 /* update trace information */ 572 if (!sink_ops(sink)->update_buffer) 573 return; 574 575 size = sink_ops(sink)->update_buffer(sink, handle, 576 event_data->snk_config); 577 /* 578 * Make sure the handle is still valid as the 579 * sink could have closed it from an IRQ. 580 * The sink driver must handle the race with 581 * update_buffer() and IRQ. Thus either we 582 * should get a valid handle and valid size 583 * (which may be 0). 584 * 585 * But we should never get a non-zero size with 586 * an invalid handle. 587 */ 588 if (READ_ONCE(handle->event)) 589 perf_aux_output_end(handle, size); 590 else 591 WARN_ON(size); 592 } 593 594 /* Disabling the path make its elements available to other sessions */ 595 coresight_disable_path(path); 596 } 597 598 static int etm_event_add(struct perf_event *event, int mode) 599 { 600 int ret = 0; 601 struct hw_perf_event *hwc = &event->hw; 602 603 if (mode & PERF_EF_START) { 604 etm_event_start(event, 0); 605 if (hwc->state & PERF_HES_STOPPED) 606 ret = -EINVAL; 607 } else { 608 hwc->state = PERF_HES_STOPPED; 609 } 610 611 return ret; 612 } 613 614 static void etm_event_del(struct perf_event *event, int mode) 615 { 616 etm_event_stop(event, PERF_EF_UPDATE); 617 } 618 619 static int etm_addr_filters_validate(struct list_head *filters) 620 { 621 bool range = false, address = false; 622 int index = 0; 623 struct perf_addr_filter *filter; 624 625 list_for_each_entry(filter, filters, entry) { 626 /* 627 * No need to go further if there's no more 628 * room for filters. 629 */ 630 if (++index > ETM_ADDR_CMP_MAX) 631 return -EOPNOTSUPP; 632 633 /* filter::size==0 means single address trigger */ 634 if (filter->size) { 635 /* 636 * The existing code relies on START/STOP filters 637 * being address filters. 638 */ 639 if (filter->action == PERF_ADDR_FILTER_ACTION_START || 640 filter->action == PERF_ADDR_FILTER_ACTION_STOP) 641 return -EOPNOTSUPP; 642 643 range = true; 644 } else 645 address = true; 646 647 /* 648 * At this time we don't allow range and start/stop filtering 649 * to cohabitate, they have to be mutually exclusive. 650 */ 651 if (range && address) 652 return -EOPNOTSUPP; 653 } 654 655 return 0; 656 } 657 658 static void etm_addr_filters_sync(struct perf_event *event) 659 { 660 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 661 unsigned long start, stop; 662 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 663 struct etm_filters *filters = event->hw.addr_filters; 664 struct etm_filter *etm_filter; 665 struct perf_addr_filter *filter; 666 int i = 0; 667 668 list_for_each_entry(filter, &head->list, entry) { 669 start = fr[i].start; 670 stop = start + fr[i].size; 671 etm_filter = &filters->etm_filter[i]; 672 673 switch (filter->action) { 674 case PERF_ADDR_FILTER_ACTION_FILTER: 675 etm_filter->start_addr = start; 676 etm_filter->stop_addr = stop; 677 etm_filter->type = ETM_ADDR_TYPE_RANGE; 678 break; 679 case PERF_ADDR_FILTER_ACTION_START: 680 etm_filter->start_addr = start; 681 etm_filter->type = ETM_ADDR_TYPE_START; 682 break; 683 case PERF_ADDR_FILTER_ACTION_STOP: 684 etm_filter->stop_addr = stop; 685 etm_filter->type = ETM_ADDR_TYPE_STOP; 686 break; 687 } 688 i++; 689 } 690 691 filters->nr_filters = i; 692 } 693 694 int etm_perf_symlink(struct coresight_device *csdev, bool link) 695 { 696 char entry[sizeof("cpu9999999")]; 697 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev); 698 struct device *pmu_dev = etm_pmu.dev; 699 struct device *cs_dev = &csdev->dev; 700 701 sprintf(entry, "cpu%d", cpu); 702 703 if (!etm_perf_up) 704 return -EPROBE_DEFER; 705 706 if (link) { 707 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry); 708 if (ret) 709 return ret; 710 per_cpu(csdev_src, cpu) = csdev; 711 } else { 712 sysfs_remove_link(&pmu_dev->kobj, entry); 713 per_cpu(csdev_src, cpu) = NULL; 714 } 715 716 return 0; 717 } 718 EXPORT_SYMBOL_GPL(etm_perf_symlink); 719 720 static ssize_t etm_perf_sink_name_show(struct device *dev, 721 struct device_attribute *dattr, 722 char *buf) 723 { 724 struct dev_ext_attribute *ea; 725 726 ea = container_of(dattr, struct dev_ext_attribute, attr); 727 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var)); 728 } 729 730 static struct dev_ext_attribute * 731 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name) 732 { 733 struct dev_ext_attribute *ea; 734 unsigned long hash; 735 int ret; 736 struct device *pmu_dev = etm_pmu.dev; 737 738 if (!etm_perf_up) 739 return ERR_PTR(-EPROBE_DEFER); 740 741 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL); 742 if (!ea) 743 return ERR_PTR(-ENOMEM); 744 745 /* 746 * If this function is called adding a sink then the hash is used for 747 * sink selection - see function coresight_get_sink_by_id(). 748 * If adding a configuration then the hash is used for selection in 749 * cscfg_activate_config() 750 */ 751 hash = hashlen_hash(hashlen_string(NULL, name)); 752 753 sysfs_attr_init(&ea->attr.attr); 754 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL); 755 if (!ea->attr.attr.name) 756 return ERR_PTR(-ENOMEM); 757 758 ea->attr.attr.mode = 0444; 759 ea->var = (unsigned long *)hash; 760 761 ret = sysfs_add_file_to_group(&pmu_dev->kobj, 762 &ea->attr.attr, group_name); 763 764 return ret ? ERR_PTR(ret) : ea; 765 } 766 767 int etm_perf_add_symlink_sink(struct coresight_device *csdev) 768 { 769 const char *name; 770 struct device *dev = &csdev->dev; 771 int err = 0; 772 773 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 774 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 775 return -EINVAL; 776 777 if (csdev->ea != NULL) 778 return -EINVAL; 779 780 name = dev_name(dev); 781 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks"); 782 if (IS_ERR(csdev->ea)) { 783 err = PTR_ERR(csdev->ea); 784 csdev->ea = NULL; 785 } else 786 csdev->ea->attr.show = etm_perf_sink_name_show; 787 788 return err; 789 } 790 791 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name) 792 { 793 struct device *pmu_dev = etm_pmu.dev; 794 795 sysfs_remove_file_from_group(&pmu_dev->kobj, 796 &ea->attr.attr, group_name); 797 } 798 799 void etm_perf_del_symlink_sink(struct coresight_device *csdev) 800 { 801 if (csdev->type != CORESIGHT_DEV_TYPE_SINK && 802 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK) 803 return; 804 805 if (!csdev->ea) 806 return; 807 808 etm_perf_del_symlink_group(csdev->ea, "sinks"); 809 csdev->ea = NULL; 810 } 811 812 static ssize_t etm_perf_cscfg_event_show(struct device *dev, 813 struct device_attribute *dattr, 814 char *buf) 815 { 816 struct dev_ext_attribute *ea; 817 818 ea = container_of(dattr, struct dev_ext_attribute, attr); 819 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var)); 820 } 821 822 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc) 823 { 824 int err = 0; 825 826 if (config_desc->event_ea != NULL) 827 return 0; 828 829 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events"); 830 831 /* set the show function to the custom cscfg event */ 832 if (!IS_ERR(config_desc->event_ea)) 833 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show; 834 else { 835 err = PTR_ERR(config_desc->event_ea); 836 config_desc->event_ea = NULL; 837 } 838 839 return err; 840 } 841 842 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc) 843 { 844 if (!config_desc->event_ea) 845 return; 846 847 etm_perf_del_symlink_group(config_desc->event_ea, "events"); 848 config_desc->event_ea = NULL; 849 } 850 851 int __init etm_perf_init(void) 852 { 853 int ret; 854 855 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE | 856 PERF_PMU_CAP_ITRACE); 857 858 etm_pmu.attr_groups = etm_pmu_attr_groups; 859 etm_pmu.task_ctx_nr = perf_sw_context; 860 etm_pmu.read = etm_event_read; 861 etm_pmu.event_init = etm_event_init; 862 etm_pmu.setup_aux = etm_setup_aux; 863 etm_pmu.free_aux = etm_free_aux; 864 etm_pmu.start = etm_event_start; 865 etm_pmu.stop = etm_event_stop; 866 etm_pmu.add = etm_event_add; 867 etm_pmu.del = etm_event_del; 868 etm_pmu.addr_filters_sync = etm_addr_filters_sync; 869 etm_pmu.addr_filters_validate = etm_addr_filters_validate; 870 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX; 871 872 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1); 873 if (ret == 0) 874 etm_perf_up = true; 875 876 return ret; 877 } 878 879 void etm_perf_exit(void) 880 { 881 perf_pmu_unregister(&etm_pmu); 882 } 883