1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/coresight.h>
8 #include <linux/coresight-pmu.h>
9 #include <linux/cpumask.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu-defs.h>
16 #include <linux/slab.h>
17 #include <linux/stringhash.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 
21 #include "coresight-config.h"
22 #include "coresight-etm-perf.h"
23 #include "coresight-priv.h"
24 #include "coresight-syscfg.h"
25 
26 static struct pmu etm_pmu;
27 static bool etm_perf_up;
28 
29 /*
30  * An ETM context for a running event includes the perf aux handle
31  * and aux_data. For ETM, the aux_data (etm_event_data), consists of
32  * the trace path and the sink configuration. The event data is accessible
33  * via perf_get_aux(handle). However, a sink could "end" a perf output
34  * handle via the IRQ handler. And if the "sink" encounters a failure
35  * to "begin" another session (e.g due to lack of space in the buffer),
36  * the handle will be cleared. Thus, the event_data may not be accessible
37  * from the handle when we get to the etm_event_stop(), which is required
38  * for stopping the trace path. The event_data is guaranteed to stay alive
39  * until "free_aux()", which cannot happen as long as the event is active on
40  * the ETM. Thus the event_data for the session must be part of the ETM context
41  * to make sure we can disable the trace path.
42  */
43 struct etm_ctxt {
44 	struct perf_output_handle handle;
45 	struct etm_event_data *event_data;
46 };
47 
48 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
49 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
50 
51 /*
52  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
53  * now take them as general formats and apply on all ETMs.
54  */
55 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
56 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
57 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
58 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
59 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
60 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
61 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
62 /* preset - if sink ID is used as a configuration selector */
63 PMU_FORMAT_ATTR(preset,		"config:0-3");
64 /* Sink ID - same for all ETMs */
65 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
66 /* config ID - set if a system configuration is selected */
67 PMU_FORMAT_ATTR(configid,	"config2:32-63");
68 
69 
70 /*
71  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
72  * when the kernel is running at EL1; when the kernel is at EL2,
73  * the PID is in CONTEXTIDR_EL2.
74  */
75 static ssize_t format_attr_contextid_show(struct device *dev,
76 					  struct device_attribute *attr,
77 					  char *page)
78 {
79 	int pid_fmt = ETM_OPT_CTXTID;
80 
81 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
82 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
83 #endif
84 	return sprintf(page, "config:%d\n", pid_fmt);
85 }
86 
87 static struct device_attribute format_attr_contextid =
88 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
89 
90 static struct attribute *etm_config_formats_attr[] = {
91 	&format_attr_cycacc.attr,
92 	&format_attr_contextid.attr,
93 	&format_attr_contextid1.attr,
94 	&format_attr_contextid2.attr,
95 	&format_attr_timestamp.attr,
96 	&format_attr_retstack.attr,
97 	&format_attr_sinkid.attr,
98 	&format_attr_preset.attr,
99 	&format_attr_configid.attr,
100 	NULL,
101 };
102 
103 static const struct attribute_group etm_pmu_format_group = {
104 	.name   = "format",
105 	.attrs  = etm_config_formats_attr,
106 };
107 
108 static struct attribute *etm_config_sinks_attr[] = {
109 	NULL,
110 };
111 
112 static const struct attribute_group etm_pmu_sinks_group = {
113 	.name   = "sinks",
114 	.attrs  = etm_config_sinks_attr,
115 };
116 
117 static struct attribute *etm_config_events_attr[] = {
118 	NULL,
119 };
120 
121 static const struct attribute_group etm_pmu_events_group = {
122 	.name   = "events",
123 	.attrs  = etm_config_events_attr,
124 };
125 
126 static const struct attribute_group *etm_pmu_attr_groups[] = {
127 	&etm_pmu_format_group,
128 	&etm_pmu_sinks_group,
129 	&etm_pmu_events_group,
130 	NULL,
131 };
132 
133 static inline struct list_head **
134 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
135 {
136 	return per_cpu_ptr(data->path, cpu);
137 }
138 
139 static inline struct list_head *
140 etm_event_cpu_path(struct etm_event_data *data, int cpu)
141 {
142 	return *etm_event_cpu_path_ptr(data, cpu);
143 }
144 
145 static void etm_event_read(struct perf_event *event) {}
146 
147 static int etm_addr_filters_alloc(struct perf_event *event)
148 {
149 	struct etm_filters *filters;
150 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
151 
152 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
153 	if (!filters)
154 		return -ENOMEM;
155 
156 	if (event->parent)
157 		memcpy(filters, event->parent->hw.addr_filters,
158 		       sizeof(*filters));
159 
160 	event->hw.addr_filters = filters;
161 
162 	return 0;
163 }
164 
165 static void etm_event_destroy(struct perf_event *event)
166 {
167 	kfree(event->hw.addr_filters);
168 	event->hw.addr_filters = NULL;
169 }
170 
171 static int etm_event_init(struct perf_event *event)
172 {
173 	int ret = 0;
174 
175 	if (event->attr.type != etm_pmu.type) {
176 		ret = -ENOENT;
177 		goto out;
178 	}
179 
180 	ret = etm_addr_filters_alloc(event);
181 	if (ret)
182 		goto out;
183 
184 	event->destroy = etm_event_destroy;
185 out:
186 	return ret;
187 }
188 
189 static void free_sink_buffer(struct etm_event_data *event_data)
190 {
191 	int cpu;
192 	cpumask_t *mask = &event_data->mask;
193 	struct coresight_device *sink;
194 
195 	if (!event_data->snk_config)
196 		return;
197 
198 	if (WARN_ON(cpumask_empty(mask)))
199 		return;
200 
201 	cpu = cpumask_first(mask);
202 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
203 	sink_ops(sink)->free_buffer(event_data->snk_config);
204 }
205 
206 static void free_event_data(struct work_struct *work)
207 {
208 	int cpu;
209 	cpumask_t *mask;
210 	struct etm_event_data *event_data;
211 
212 	event_data = container_of(work, struct etm_event_data, work);
213 	mask = &event_data->mask;
214 
215 	/* Free the sink buffers, if there are any */
216 	free_sink_buffer(event_data);
217 
218 	/* clear any configuration we were using */
219 	if (event_data->cfg_hash)
220 		cscfg_deactivate_config(event_data->cfg_hash);
221 
222 	for_each_cpu(cpu, mask) {
223 		struct list_head **ppath;
224 
225 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
226 		if (!(IS_ERR_OR_NULL(*ppath)))
227 			coresight_release_path(*ppath);
228 		*ppath = NULL;
229 	}
230 
231 	free_percpu(event_data->path);
232 	kfree(event_data);
233 }
234 
235 static void *alloc_event_data(int cpu)
236 {
237 	cpumask_t *mask;
238 	struct etm_event_data *event_data;
239 
240 	/* First get memory for the session's data */
241 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
242 	if (!event_data)
243 		return NULL;
244 
245 
246 	mask = &event_data->mask;
247 	if (cpu != -1)
248 		cpumask_set_cpu(cpu, mask);
249 	else
250 		cpumask_copy(mask, cpu_present_mask);
251 
252 	/*
253 	 * Each CPU has a single path between source and destination.  As such
254 	 * allocate an array using CPU numbers as indexes.  That way a path
255 	 * for any CPU can easily be accessed at any given time.  We proceed
256 	 * the same way for sessions involving a single CPU.  The cost of
257 	 * unused memory when dealing with single CPU trace scenarios is small
258 	 * compared to the cost of searching through an optimized array.
259 	 */
260 	event_data->path = alloc_percpu(struct list_head *);
261 
262 	if (!event_data->path) {
263 		kfree(event_data);
264 		return NULL;
265 	}
266 
267 	return event_data;
268 }
269 
270 static void etm_free_aux(void *data)
271 {
272 	struct etm_event_data *event_data = data;
273 
274 	schedule_work(&event_data->work);
275 }
276 
277 /*
278  * Check if two given sinks are compatible with each other,
279  * so that they can use the same sink buffers, when an event
280  * moves around.
281  */
282 static bool sinks_compatible(struct coresight_device *a,
283 			     struct coresight_device *b)
284 {
285 	if (!a || !b)
286 		return false;
287 	/*
288 	 * If the sinks are of the same subtype and driven
289 	 * by the same driver, we can use the same buffer
290 	 * on these sinks.
291 	 */
292 	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
293 	       (sink_ops(a) == sink_ops(b));
294 }
295 
296 static void *etm_setup_aux(struct perf_event *event, void **pages,
297 			   int nr_pages, bool overwrite)
298 {
299 	u32 id, cfg_hash;
300 	int cpu = event->cpu;
301 	cpumask_t *mask;
302 	struct coresight_device *sink = NULL;
303 	struct coresight_device *user_sink = NULL, *last_sink = NULL;
304 	struct etm_event_data *event_data = NULL;
305 
306 	event_data = alloc_event_data(cpu);
307 	if (!event_data)
308 		return NULL;
309 	INIT_WORK(&event_data->work, free_event_data);
310 
311 	/* First get the selected sink from user space. */
312 	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
313 		id = (u32)event->attr.config2;
314 		sink = user_sink = coresight_get_sink_by_id(id);
315 	}
316 
317 	/* check if user wants a coresight configuration selected */
318 	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
319 	if (cfg_hash) {
320 		if (cscfg_activate_config(cfg_hash))
321 			goto err;
322 		event_data->cfg_hash = cfg_hash;
323 	}
324 
325 	mask = &event_data->mask;
326 
327 	/*
328 	 * Setup the path for each CPU in a trace session. We try to build
329 	 * trace path for each CPU in the mask. If we don't find an ETM
330 	 * for the CPU or fail to build a path, we clear the CPU from the
331 	 * mask and continue with the rest. If ever we try to trace on those
332 	 * CPUs, we can handle it and fail the session.
333 	 */
334 	for_each_cpu(cpu, mask) {
335 		struct list_head *path;
336 		struct coresight_device *csdev;
337 
338 		csdev = per_cpu(csdev_src, cpu);
339 		/*
340 		 * If there is no ETM associated with this CPU clear it from
341 		 * the mask and continue with the rest. If ever we try to trace
342 		 * on this CPU, we handle it accordingly.
343 		 */
344 		if (!csdev) {
345 			cpumask_clear_cpu(cpu, mask);
346 			continue;
347 		}
348 
349 		/*
350 		 * No sink provided - look for a default sink for all the ETMs,
351 		 * where this event can be scheduled.
352 		 * We allocate the sink specific buffers only once for this
353 		 * event. If the ETMs have different default sink devices, we
354 		 * can only use a single "type" of sink as the event can carry
355 		 * only one sink specific buffer. Thus we have to make sure
356 		 * that the sinks are of the same type and driven by the same
357 		 * driver, as the one we allocate the buffer for. As such
358 		 * we choose the first sink and check if the remaining ETMs
359 		 * have a compatible default sink. We don't trace on a CPU
360 		 * if the sink is not compatible.
361 		 */
362 		if (!user_sink) {
363 			/* Find the default sink for this ETM */
364 			sink = coresight_find_default_sink(csdev);
365 			if (!sink) {
366 				cpumask_clear_cpu(cpu, mask);
367 				continue;
368 			}
369 
370 			/* Check if this sink compatible with the last sink */
371 			if (last_sink && !sinks_compatible(last_sink, sink)) {
372 				cpumask_clear_cpu(cpu, mask);
373 				continue;
374 			}
375 			last_sink = sink;
376 		}
377 
378 		/*
379 		 * Building a path doesn't enable it, it simply builds a
380 		 * list of devices from source to sink that can be
381 		 * referenced later when the path is actually needed.
382 		 */
383 		path = coresight_build_path(csdev, sink);
384 		if (IS_ERR(path)) {
385 			cpumask_clear_cpu(cpu, mask);
386 			continue;
387 		}
388 
389 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
390 	}
391 
392 	/* no sink found for any CPU - cannot trace */
393 	if (!sink)
394 		goto err;
395 
396 	/* If we don't have any CPUs ready for tracing, abort */
397 	cpu = cpumask_first(mask);
398 	if (cpu >= nr_cpu_ids)
399 		goto err;
400 
401 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
402 		goto err;
403 
404 	/*
405 	 * Allocate the sink buffer for this session. All the sinks
406 	 * where this event can be scheduled are ensured to be of the
407 	 * same type. Thus the same sink configuration is used by the
408 	 * sinks.
409 	 */
410 	event_data->snk_config =
411 			sink_ops(sink)->alloc_buffer(sink, event, pages,
412 						     nr_pages, overwrite);
413 	if (!event_data->snk_config)
414 		goto err;
415 
416 out:
417 	return event_data;
418 
419 err:
420 	etm_free_aux(event_data);
421 	event_data = NULL;
422 	goto out;
423 }
424 
425 static void etm_event_start(struct perf_event *event, int flags)
426 {
427 	int cpu = smp_processor_id();
428 	struct etm_event_data *event_data;
429 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
430 	struct perf_output_handle *handle = &ctxt->handle;
431 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
432 	struct list_head *path;
433 
434 	if (!csdev)
435 		goto fail;
436 
437 	/* Have we messed up our tracking ? */
438 	if (WARN_ON(ctxt->event_data))
439 		goto fail;
440 
441 	/*
442 	 * Deal with the ring buffer API and get a handle on the
443 	 * session's information.
444 	 */
445 	event_data = perf_aux_output_begin(handle, event);
446 	if (!event_data)
447 		goto fail;
448 
449 	/*
450 	 * Check if this ETM is allowed to trace, as decided
451 	 * at etm_setup_aux(). This could be due to an unreachable
452 	 * sink from this ETM. We can't do much in this case if
453 	 * the sink was specified or hinted to the driver. For
454 	 * now, simply don't record anything on this ETM.
455 	 *
456 	 * As such we pretend that everything is fine, and let
457 	 * it continue without actually tracing. The event could
458 	 * continue tracing when it moves to a CPU where it is
459 	 * reachable to a sink.
460 	 */
461 	if (!cpumask_test_cpu(cpu, &event_data->mask))
462 		goto out;
463 
464 	path = etm_event_cpu_path(event_data, cpu);
465 	/* We need a sink, no need to continue without one */
466 	sink = coresight_get_sink(path);
467 	if (WARN_ON_ONCE(!sink))
468 		goto fail_end_stop;
469 
470 	/* Nothing will happen without a path */
471 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
472 		goto fail_end_stop;
473 
474 	/* Finally enable the tracer */
475 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
476 		goto fail_disable_path;
477 
478 out:
479 	/* Tell the perf core the event is alive */
480 	event->hw.state = 0;
481 	/* Save the event_data for this ETM */
482 	ctxt->event_data = event_data;
483 	return;
484 
485 fail_disable_path:
486 	coresight_disable_path(path);
487 fail_end_stop:
488 	/*
489 	 * Check if the handle is still associated with the event,
490 	 * to handle cases where if the sink failed to start the
491 	 * trace and TRUNCATED the handle already.
492 	 */
493 	if (READ_ONCE(handle->event)) {
494 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
495 		perf_aux_output_end(handle, 0);
496 	}
497 fail:
498 	event->hw.state = PERF_HES_STOPPED;
499 	return;
500 }
501 
502 static void etm_event_stop(struct perf_event *event, int mode)
503 {
504 	int cpu = smp_processor_id();
505 	unsigned long size;
506 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
507 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
508 	struct perf_output_handle *handle = &ctxt->handle;
509 	struct etm_event_data *event_data;
510 	struct list_head *path;
511 
512 	/*
513 	 * If we still have access to the event_data via handle,
514 	 * confirm that we haven't messed up the tracking.
515 	 */
516 	if (handle->event &&
517 	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
518 		return;
519 
520 	event_data = ctxt->event_data;
521 	/* Clear the event_data as this ETM is stopping the trace. */
522 	ctxt->event_data = NULL;
523 
524 	if (event->hw.state == PERF_HES_STOPPED)
525 		return;
526 
527 	/* We must have a valid event_data for a running event */
528 	if (WARN_ON(!event_data))
529 		return;
530 
531 	/*
532 	 * Check if this ETM was allowed to trace, as decided at
533 	 * etm_setup_aux(). If it wasn't allowed to trace, then
534 	 * nothing needs to be torn down other than outputting a
535 	 * zero sized record.
536 	 */
537 	if (handle->event && (mode & PERF_EF_UPDATE) &&
538 	    !cpumask_test_cpu(cpu, &event_data->mask)) {
539 		event->hw.state = PERF_HES_STOPPED;
540 		perf_aux_output_end(handle, 0);
541 		return;
542 	}
543 
544 	if (!csdev)
545 		return;
546 
547 	path = etm_event_cpu_path(event_data, cpu);
548 	if (!path)
549 		return;
550 
551 	sink = coresight_get_sink(path);
552 	if (!sink)
553 		return;
554 
555 	/* stop tracer */
556 	source_ops(csdev)->disable(csdev, event);
557 
558 	/* tell the core */
559 	event->hw.state = PERF_HES_STOPPED;
560 
561 	/*
562 	 * If the handle is not bound to an event anymore
563 	 * (e.g, the sink driver was unable to restart the
564 	 * handle due to lack of buffer space), we don't
565 	 * have to do anything here.
566 	 */
567 	if (handle->event && (mode & PERF_EF_UPDATE)) {
568 		if (WARN_ON_ONCE(handle->event != event))
569 			return;
570 
571 		/* update trace information */
572 		if (!sink_ops(sink)->update_buffer)
573 			return;
574 
575 		size = sink_ops(sink)->update_buffer(sink, handle,
576 					      event_data->snk_config);
577 		/*
578 		 * Make sure the handle is still valid as the
579 		 * sink could have closed it from an IRQ.
580 		 * The sink driver must handle the race with
581 		 * update_buffer() and IRQ. Thus either we
582 		 * should get a valid handle and valid size
583 		 * (which may be 0).
584 		 *
585 		 * But we should never get a non-zero size with
586 		 * an invalid handle.
587 		 */
588 		if (READ_ONCE(handle->event))
589 			perf_aux_output_end(handle, size);
590 		else
591 			WARN_ON(size);
592 	}
593 
594 	/* Disabling the path make its elements available to other sessions */
595 	coresight_disable_path(path);
596 }
597 
598 static int etm_event_add(struct perf_event *event, int mode)
599 {
600 	int ret = 0;
601 	struct hw_perf_event *hwc = &event->hw;
602 
603 	if (mode & PERF_EF_START) {
604 		etm_event_start(event, 0);
605 		if (hwc->state & PERF_HES_STOPPED)
606 			ret = -EINVAL;
607 	} else {
608 		hwc->state = PERF_HES_STOPPED;
609 	}
610 
611 	return ret;
612 }
613 
614 static void etm_event_del(struct perf_event *event, int mode)
615 {
616 	etm_event_stop(event, PERF_EF_UPDATE);
617 }
618 
619 static int etm_addr_filters_validate(struct list_head *filters)
620 {
621 	bool range = false, address = false;
622 	int index = 0;
623 	struct perf_addr_filter *filter;
624 
625 	list_for_each_entry(filter, filters, entry) {
626 		/*
627 		 * No need to go further if there's no more
628 		 * room for filters.
629 		 */
630 		if (++index > ETM_ADDR_CMP_MAX)
631 			return -EOPNOTSUPP;
632 
633 		/* filter::size==0 means single address trigger */
634 		if (filter->size) {
635 			/*
636 			 * The existing code relies on START/STOP filters
637 			 * being address filters.
638 			 */
639 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
640 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
641 				return -EOPNOTSUPP;
642 
643 			range = true;
644 		} else
645 			address = true;
646 
647 		/*
648 		 * At this time we don't allow range and start/stop filtering
649 		 * to cohabitate, they have to be mutually exclusive.
650 		 */
651 		if (range && address)
652 			return -EOPNOTSUPP;
653 	}
654 
655 	return 0;
656 }
657 
658 static void etm_addr_filters_sync(struct perf_event *event)
659 {
660 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
661 	unsigned long start, stop;
662 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
663 	struct etm_filters *filters = event->hw.addr_filters;
664 	struct etm_filter *etm_filter;
665 	struct perf_addr_filter *filter;
666 	int i = 0;
667 
668 	list_for_each_entry(filter, &head->list, entry) {
669 		start = fr[i].start;
670 		stop = start + fr[i].size;
671 		etm_filter = &filters->etm_filter[i];
672 
673 		switch (filter->action) {
674 		case PERF_ADDR_FILTER_ACTION_FILTER:
675 			etm_filter->start_addr = start;
676 			etm_filter->stop_addr = stop;
677 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
678 			break;
679 		case PERF_ADDR_FILTER_ACTION_START:
680 			etm_filter->start_addr = start;
681 			etm_filter->type = ETM_ADDR_TYPE_START;
682 			break;
683 		case PERF_ADDR_FILTER_ACTION_STOP:
684 			etm_filter->stop_addr = stop;
685 			etm_filter->type = ETM_ADDR_TYPE_STOP;
686 			break;
687 		}
688 		i++;
689 	}
690 
691 	filters->nr_filters = i;
692 }
693 
694 int etm_perf_symlink(struct coresight_device *csdev, bool link)
695 {
696 	char entry[sizeof("cpu9999999")];
697 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
698 	struct device *pmu_dev = etm_pmu.dev;
699 	struct device *cs_dev = &csdev->dev;
700 
701 	sprintf(entry, "cpu%d", cpu);
702 
703 	if (!etm_perf_up)
704 		return -EPROBE_DEFER;
705 
706 	if (link) {
707 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
708 		if (ret)
709 			return ret;
710 		per_cpu(csdev_src, cpu) = csdev;
711 	} else {
712 		sysfs_remove_link(&pmu_dev->kobj, entry);
713 		per_cpu(csdev_src, cpu) = NULL;
714 	}
715 
716 	return 0;
717 }
718 EXPORT_SYMBOL_GPL(etm_perf_symlink);
719 
720 static ssize_t etm_perf_sink_name_show(struct device *dev,
721 				       struct device_attribute *dattr,
722 				       char *buf)
723 {
724 	struct dev_ext_attribute *ea;
725 
726 	ea = container_of(dattr, struct dev_ext_attribute, attr);
727 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
728 }
729 
730 static struct dev_ext_attribute *
731 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
732 {
733 	struct dev_ext_attribute *ea;
734 	unsigned long hash;
735 	int ret;
736 	struct device *pmu_dev = etm_pmu.dev;
737 
738 	if (!etm_perf_up)
739 		return ERR_PTR(-EPROBE_DEFER);
740 
741 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
742 	if (!ea)
743 		return ERR_PTR(-ENOMEM);
744 
745 	/*
746 	 * If this function is called adding a sink then the hash is used for
747 	 * sink selection - see function coresight_get_sink_by_id().
748 	 * If adding a configuration then the hash is used for selection in
749 	 * cscfg_activate_config()
750 	 */
751 	hash = hashlen_hash(hashlen_string(NULL, name));
752 
753 	sysfs_attr_init(&ea->attr.attr);
754 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
755 	if (!ea->attr.attr.name)
756 		return ERR_PTR(-ENOMEM);
757 
758 	ea->attr.attr.mode = 0444;
759 	ea->var = (unsigned long *)hash;
760 
761 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
762 				      &ea->attr.attr, group_name);
763 
764 	return ret ? ERR_PTR(ret) : ea;
765 }
766 
767 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
768 {
769 	const char *name;
770 	struct device *dev = &csdev->dev;
771 	int err = 0;
772 
773 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
774 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
775 		return -EINVAL;
776 
777 	if (csdev->ea != NULL)
778 		return -EINVAL;
779 
780 	name = dev_name(dev);
781 	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
782 	if (IS_ERR(csdev->ea)) {
783 		err = PTR_ERR(csdev->ea);
784 		csdev->ea = NULL;
785 	} else
786 		csdev->ea->attr.show = etm_perf_sink_name_show;
787 
788 	return err;
789 }
790 
791 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
792 {
793 	struct device *pmu_dev = etm_pmu.dev;
794 
795 	sysfs_remove_file_from_group(&pmu_dev->kobj,
796 				     &ea->attr.attr, group_name);
797 }
798 
799 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
800 {
801 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
802 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
803 		return;
804 
805 	if (!csdev->ea)
806 		return;
807 
808 	etm_perf_del_symlink_group(csdev->ea, "sinks");
809 	csdev->ea = NULL;
810 }
811 
812 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
813 					 struct device_attribute *dattr,
814 					 char *buf)
815 {
816 	struct dev_ext_attribute *ea;
817 
818 	ea = container_of(dattr, struct dev_ext_attribute, attr);
819 	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
820 }
821 
822 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
823 {
824 	int err = 0;
825 
826 	if (config_desc->event_ea != NULL)
827 		return 0;
828 
829 	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
830 
831 	/* set the show function to the custom cscfg event */
832 	if (!IS_ERR(config_desc->event_ea))
833 		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
834 	else {
835 		err = PTR_ERR(config_desc->event_ea);
836 		config_desc->event_ea = NULL;
837 	}
838 
839 	return err;
840 }
841 
842 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
843 {
844 	if (!config_desc->event_ea)
845 		return;
846 
847 	etm_perf_del_symlink_group(config_desc->event_ea, "events");
848 	config_desc->event_ea = NULL;
849 }
850 
851 int __init etm_perf_init(void)
852 {
853 	int ret;
854 
855 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
856 					   PERF_PMU_CAP_ITRACE);
857 
858 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
859 	etm_pmu.task_ctx_nr		= perf_sw_context;
860 	etm_pmu.read			= etm_event_read;
861 	etm_pmu.event_init		= etm_event_init;
862 	etm_pmu.setup_aux		= etm_setup_aux;
863 	etm_pmu.free_aux		= etm_free_aux;
864 	etm_pmu.start			= etm_event_start;
865 	etm_pmu.stop			= etm_event_stop;
866 	etm_pmu.add			= etm_event_add;
867 	etm_pmu.del			= etm_event_del;
868 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
869 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
870 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
871 
872 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
873 	if (ret == 0)
874 		etm_perf_up = true;
875 
876 	return ret;
877 }
878 
879 void etm_perf_exit(void)
880 {
881 	perf_pmu_unregister(&etm_pmu);
882 }
883