xref: /openbmc/linux/drivers/hwmon/w83791d.c (revision f9a82c48)
1 /*
2  * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	       monitoring
4  *
5  * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 /*
23  * Supports following chips:
24  *
25  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
26  * w83791d	10	5	5	3	0x71	0x5ca3	yes	no
27  *
28  * The w83791d chip appears to be part way between the 83781d and the
29  * 83792d. Thus, this file is derived from both the w83792d.c and
30  * w83781d.c files.
31  *
32  * The w83791g chip is the same as the w83791d but lead-free.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/i2c.h>
39 #include <linux/hwmon.h>
40 #include <linux/hwmon-vid.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/err.h>
43 #include <linux/mutex.h>
44 #include <linux/jiffies.h>
45 
46 #define NUMBER_OF_VIN		10
47 #define NUMBER_OF_FANIN		5
48 #define NUMBER_OF_TEMPIN	3
49 #define NUMBER_OF_PWM		5
50 
51 /* Addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
53 						I2C_CLIENT_END };
54 
55 /* Insmod parameters */
56 
57 static unsigned short force_subclients[4];
58 module_param_array(force_subclients, short, NULL, 0);
59 MODULE_PARM_DESC(force_subclients,
60 		 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
61 
62 static bool reset;
63 module_param(reset, bool, 0);
64 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
65 
66 static bool init;
67 module_param(init, bool, 0);
68 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
69 
70 /* The W83791D registers */
71 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
72 	0x20,			/* VCOREA in DataSheet */
73 	0x21,			/* VINR0 in DataSheet */
74 	0x22,			/* +3.3VIN in DataSheet */
75 	0x23,			/* VDD5V in DataSheet */
76 	0x24,			/* +12VIN in DataSheet */
77 	0x25,			/* -12VIN in DataSheet */
78 	0x26,			/* -5VIN in DataSheet */
79 	0xB0,			/* 5VSB in DataSheet */
80 	0xB1,			/* VBAT in DataSheet */
81 	0xB2			/* VINR1 in DataSheet */
82 };
83 
84 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
85 	0x2B,			/* VCOREA High Limit in DataSheet */
86 	0x2D,			/* VINR0 High Limit in DataSheet */
87 	0x2F,			/* +3.3VIN High Limit in DataSheet */
88 	0x31,			/* VDD5V High Limit in DataSheet */
89 	0x33,			/* +12VIN High Limit in DataSheet */
90 	0x35,			/* -12VIN High Limit in DataSheet */
91 	0x37,			/* -5VIN High Limit in DataSheet */
92 	0xB4,			/* 5VSB High Limit in DataSheet */
93 	0xB6,			/* VBAT High Limit in DataSheet */
94 	0xB8			/* VINR1 High Limit in DataSheet */
95 };
96 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
97 	0x2C,			/* VCOREA Low Limit in DataSheet */
98 	0x2E,			/* VINR0 Low Limit in DataSheet */
99 	0x30,			/* +3.3VIN Low Limit in DataSheet */
100 	0x32,			/* VDD5V Low Limit in DataSheet */
101 	0x34,			/* +12VIN Low Limit in DataSheet */
102 	0x36,			/* -12VIN Low Limit in DataSheet */
103 	0x38,			/* -5VIN Low Limit in DataSheet */
104 	0xB5,			/* 5VSB Low Limit in DataSheet */
105 	0xB7,			/* VBAT Low Limit in DataSheet */
106 	0xB9			/* VINR1 Low Limit in DataSheet */
107 };
108 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
109 	0x28,			/* FAN 1 Count in DataSheet */
110 	0x29,			/* FAN 2 Count in DataSheet */
111 	0x2A,			/* FAN 3 Count in DataSheet */
112 	0xBA,			/* FAN 4 Count in DataSheet */
113 	0xBB,			/* FAN 5 Count in DataSheet */
114 };
115 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
116 	0x3B,			/* FAN 1 Count Low Limit in DataSheet */
117 	0x3C,			/* FAN 2 Count Low Limit in DataSheet */
118 	0x3D,			/* FAN 3 Count Low Limit in DataSheet */
119 	0xBC,			/* FAN 4 Count Low Limit in DataSheet */
120 	0xBD,			/* FAN 5 Count Low Limit in DataSheet */
121 };
122 
123 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
124 	0x81,			/* PWM 1 duty cycle register in DataSheet */
125 	0x83,			/* PWM 2 duty cycle register in DataSheet */
126 	0x94,			/* PWM 3 duty cycle register in DataSheet */
127 	0xA0,			/* PWM 4 duty cycle register in DataSheet */
128 	0xA1,			/* PWM 5 duty cycle register in DataSheet */
129 };
130 
131 static const u8 W83791D_REG_TEMP_TARGET[3] = {
132 	0x85,			/* PWM 1 target temperature for temp 1 */
133 	0x86,			/* PWM 2 target temperature for temp 2 */
134 	0x96,			/* PWM 3 target temperature for temp 3 */
135 };
136 
137 static const u8 W83791D_REG_TEMP_TOL[2] = {
138 	0x87,			/* PWM 1/2 temperature tolerance */
139 	0x97,			/* PWM 3 temperature tolerance */
140 };
141 
142 static const u8 W83791D_REG_FAN_CFG[2] = {
143 	0x84,			/* FAN 1/2 configuration */
144 	0x95,			/* FAN 3 configuration */
145 };
146 
147 static const u8 W83791D_REG_FAN_DIV[3] = {
148 	0x47,			/* contains FAN1 and FAN2 Divisor */
149 	0x4b,			/* contains FAN3 Divisor */
150 	0x5C,			/* contains FAN4 and FAN5 Divisor */
151 };
152 
153 #define W83791D_REG_BANK		0x4E
154 #define W83791D_REG_TEMP2_CONFIG	0xC2
155 #define W83791D_REG_TEMP3_CONFIG	0xCA
156 
157 static const u8 W83791D_REG_TEMP1[3] = {
158 	0x27,			/* TEMP 1 in DataSheet */
159 	0x39,			/* TEMP 1 Over in DataSheet */
160 	0x3A,			/* TEMP 1 Hyst in DataSheet */
161 };
162 
163 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
164 	{0xC0,			/* TEMP 2 in DataSheet */
165 	 0xC1,			/* TEMP 2(0.5 deg) in DataSheet */
166 	 0xC5,			/* TEMP 2 Over High part in DataSheet */
167 	 0xC6,			/* TEMP 2 Over Low part in DataSheet */
168 	 0xC3,			/* TEMP 2 Thyst High part in DataSheet */
169 	 0xC4},			/* TEMP 2 Thyst Low part in DataSheet */
170 	{0xC8,			/* TEMP 3 in DataSheet */
171 	 0xC9,			/* TEMP 3(0.5 deg) in DataSheet */
172 	 0xCD,			/* TEMP 3 Over High part in DataSheet */
173 	 0xCE,			/* TEMP 3 Over Low part in DataSheet */
174 	 0xCB,			/* TEMP 3 Thyst High part in DataSheet */
175 	 0xCC}			/* TEMP 3 Thyst Low part in DataSheet */
176 };
177 
178 #define W83791D_REG_BEEP_CONFIG		0x4D
179 
180 static const u8 W83791D_REG_BEEP_CTRL[3] = {
181 	0x56,			/* BEEP Control Register 1 */
182 	0x57,			/* BEEP Control Register 2 */
183 	0xA3,			/* BEEP Control Register 3 */
184 };
185 
186 #define W83791D_REG_GPIO		0x15
187 #define W83791D_REG_CONFIG		0x40
188 #define W83791D_REG_VID_FANDIV		0x47
189 #define W83791D_REG_DID_VID4		0x49
190 #define W83791D_REG_WCHIPID		0x58
191 #define W83791D_REG_CHIPMAN		0x4F
192 #define W83791D_REG_PIN			0x4B
193 #define W83791D_REG_I2C_SUBADDR		0x4A
194 
195 #define W83791D_REG_ALARM1 0xA9	/* realtime status register1 */
196 #define W83791D_REG_ALARM2 0xAA	/* realtime status register2 */
197 #define W83791D_REG_ALARM3 0xAB	/* realtime status register3 */
198 
199 #define W83791D_REG_VBAT		0x5D
200 #define W83791D_REG_I2C_ADDR		0x48
201 
202 /*
203  * The SMBus locks itself. The Winbond W83791D has a bank select register
204  * (index 0x4e), but the driver only accesses registers in bank 0. Since
205  * we don't switch banks, we don't need any special code to handle
206  * locking access between bank switches
207  */
208 static inline int w83791d_read(struct i2c_client *client, u8 reg)
209 {
210 	return i2c_smbus_read_byte_data(client, reg);
211 }
212 
213 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
214 {
215 	return i2c_smbus_write_byte_data(client, reg, value);
216 }
217 
218 /*
219  * The analog voltage inputs have 16mV LSB. Since the sysfs output is
220  * in mV as would be measured on the chip input pin, need to just
221  * multiply/divide by 16 to translate from/to register values.
222  */
223 #define IN_TO_REG(val)		(clamp_val((((val) + 8) / 16), 0, 255))
224 #define IN_FROM_REG(val)	((val) * 16)
225 
226 static u8 fan_to_reg(long rpm, int div)
227 {
228 	if (rpm == 0)
229 		return 255;
230 	rpm = clamp_val(rpm, 1, 1000000);
231 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
232 }
233 
234 #define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
235 				((val) == 255 ? 0 : \
236 					1350000 / ((val) * (div))))
237 
238 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
239 #define TEMP1_FROM_REG(val)	((val) * 1000)
240 #define TEMP1_TO_REG(val)	((val) <= -128000 ? -128 : \
241 				 (val) >= 127000 ? 127 : \
242 				 (val) < 0 ? ((val) - 500) / 1000 : \
243 				 ((val) + 500) / 1000)
244 
245 /*
246  * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
247  * Assumes the top 8 bits are the integral amount and the bottom 8 bits
248  * are the fractional amount. Since we only have 0.5 degree resolution,
249  * the bottom 7 bits will always be zero
250  */
251 #define TEMP23_FROM_REG(val)	((val) / 128 * 500)
252 #define TEMP23_TO_REG(val)	(DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
253 						   127500), 500) * 128)
254 
255 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
256 #define TARGET_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
257 						  1000)
258 
259 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
260 #define TOL_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
261 						  1000)
262 
263 #define BEEP_MASK_TO_REG(val)		((val) & 0xffffff)
264 #define BEEP_MASK_FROM_REG(val)		((val) & 0xffffff)
265 
266 #define DIV_FROM_REG(val)		(1 << (val))
267 
268 static u8 div_to_reg(int nr, long val)
269 {
270 	int i;
271 
272 	/* fan divisors max out at 128 */
273 	val = clamp_val(val, 1, 128) >> 1;
274 	for (i = 0; i < 7; i++) {
275 		if (val == 0)
276 			break;
277 		val >>= 1;
278 	}
279 	return (u8) i;
280 }
281 
282 struct w83791d_data {
283 	struct device *hwmon_dev;
284 	struct mutex update_lock;
285 
286 	char valid;			/* !=0 if following fields are valid */
287 	unsigned long last_updated;	/* In jiffies */
288 
289 	/* array of 2 pointers to subclients */
290 	struct i2c_client *lm75[2];
291 
292 	/* volts */
293 	u8 in[NUMBER_OF_VIN];		/* Register value */
294 	u8 in_max[NUMBER_OF_VIN];	/* Register value */
295 	u8 in_min[NUMBER_OF_VIN];	/* Register value */
296 
297 	/* fans */
298 	u8 fan[NUMBER_OF_FANIN];	/* Register value */
299 	u8 fan_min[NUMBER_OF_FANIN];	/* Register value */
300 	u8 fan_div[NUMBER_OF_FANIN];	/* Register encoding, shifted right */
301 
302 	/* Temperature sensors */
303 
304 	s8 temp1[3];		/* current, over, thyst */
305 	s16 temp_add[2][3];	/* fixed point value. Top 8 bits are the
306 				 * integral part, bottom 8 bits are the
307 				 * fractional part. We only use the top
308 				 * 9 bits as the resolution is only
309 				 * to the 0.5 degree C...
310 				 * two sensors with three values
311 				 * (cur, over, hyst)
312 				 */
313 
314 	/* PWMs */
315 	u8 pwm[5];		/* pwm duty cycle */
316 	u8 pwm_enable[3];	/* pwm enable status for fan 1-3
317 				 * (fan 4-5 only support manual mode)
318 				 */
319 
320 	u8 temp_target[3];	/* pwm 1-3 target temperature */
321 	u8 temp_tolerance[3];	/* pwm 1-3 temperature tolerance */
322 
323 	/* Misc */
324 	u32 alarms;		/* realtime status register encoding,combined */
325 	u8 beep_enable;		/* Global beep enable */
326 	u32 beep_mask;		/* Mask off specific beeps */
327 	u8 vid;			/* Register encoding, combined */
328 	u8 vrm;			/* hwmon-vid */
329 };
330 
331 static int w83791d_probe(struct i2c_client *client,
332 			 const struct i2c_device_id *id);
333 static int w83791d_detect(struct i2c_client *client,
334 			  struct i2c_board_info *info);
335 static int w83791d_remove(struct i2c_client *client);
336 
337 static int w83791d_read(struct i2c_client *client, u8 reg);
338 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
339 static struct w83791d_data *w83791d_update_device(struct device *dev);
340 
341 #ifdef DEBUG
342 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
343 #endif
344 
345 static void w83791d_init_client(struct i2c_client *client);
346 
347 static const struct i2c_device_id w83791d_id[] = {
348 	{ "w83791d", 0 },
349 	{ }
350 };
351 MODULE_DEVICE_TABLE(i2c, w83791d_id);
352 
353 static struct i2c_driver w83791d_driver = {
354 	.class		= I2C_CLASS_HWMON,
355 	.driver = {
356 		.name = "w83791d",
357 	},
358 	.probe		= w83791d_probe,
359 	.remove		= w83791d_remove,
360 	.id_table	= w83791d_id,
361 	.detect		= w83791d_detect,
362 	.address_list	= normal_i2c,
363 };
364 
365 /* following are the sysfs callback functions */
366 #define show_in_reg(reg) \
367 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
368 			char *buf) \
369 { \
370 	struct sensor_device_attribute *sensor_attr = \
371 						to_sensor_dev_attr(attr); \
372 	struct w83791d_data *data = w83791d_update_device(dev); \
373 	int nr = sensor_attr->index; \
374 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
375 }
376 
377 show_in_reg(in);
378 show_in_reg(in_min);
379 show_in_reg(in_max);
380 
381 #define store_in_reg(REG, reg) \
382 static ssize_t store_in_##reg(struct device *dev, \
383 				struct device_attribute *attr, \
384 				const char *buf, size_t count) \
385 { \
386 	struct sensor_device_attribute *sensor_attr = \
387 						to_sensor_dev_attr(attr); \
388 	struct i2c_client *client = to_i2c_client(dev); \
389 	struct w83791d_data *data = i2c_get_clientdata(client); \
390 	int nr = sensor_attr->index; \
391 	unsigned long val; \
392 	int err = kstrtoul(buf, 10, &val); \
393 	if (err) \
394 		return err; \
395 	mutex_lock(&data->update_lock); \
396 	data->in_##reg[nr] = IN_TO_REG(val); \
397 	w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
398 	mutex_unlock(&data->update_lock); \
399 	 \
400 	return count; \
401 }
402 store_in_reg(MIN, min);
403 store_in_reg(MAX, max);
404 
405 static struct sensor_device_attribute sda_in_input[] = {
406 	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
407 	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
408 	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
409 	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
410 	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
411 	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
412 	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
413 	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
414 	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
415 	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
416 };
417 
418 static struct sensor_device_attribute sda_in_min[] = {
419 	SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
420 	SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
421 	SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
422 	SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
423 	SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
424 	SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
425 	SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
426 	SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
427 	SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
428 	SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
429 };
430 
431 static struct sensor_device_attribute sda_in_max[] = {
432 	SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
433 	SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
434 	SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
435 	SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
436 	SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
437 	SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
438 	SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
439 	SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
440 	SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
441 	SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
442 };
443 
444 
445 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
446 			char *buf)
447 {
448 	struct sensor_device_attribute *sensor_attr =
449 						to_sensor_dev_attr(attr);
450 	struct w83791d_data *data = w83791d_update_device(dev);
451 	int bitnr = sensor_attr->index;
452 
453 	return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
454 }
455 
456 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
457 			const char *buf, size_t count)
458 {
459 	struct sensor_device_attribute *sensor_attr =
460 						to_sensor_dev_attr(attr);
461 	struct i2c_client *client = to_i2c_client(dev);
462 	struct w83791d_data *data = i2c_get_clientdata(client);
463 	int bitnr = sensor_attr->index;
464 	int bytenr = bitnr / 8;
465 	unsigned long val;
466 	int err;
467 
468 	err = kstrtoul(buf, 10, &val);
469 	if (err)
470 		return err;
471 
472 	val = val ? 1 : 0;
473 
474 	mutex_lock(&data->update_lock);
475 
476 	data->beep_mask &= ~(0xff << (bytenr * 8));
477 	data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
478 		<< (bytenr * 8);
479 
480 	data->beep_mask &= ~(1 << bitnr);
481 	data->beep_mask |= val << bitnr;
482 
483 	w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
484 		(data->beep_mask >> (bytenr * 8)) & 0xff);
485 
486 	mutex_unlock(&data->update_lock);
487 
488 	return count;
489 }
490 
491 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
492 			char *buf)
493 {
494 	struct sensor_device_attribute *sensor_attr =
495 						to_sensor_dev_attr(attr);
496 	struct w83791d_data *data = w83791d_update_device(dev);
497 	int bitnr = sensor_attr->index;
498 
499 	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
500 }
501 
502 /*
503  * Note: The bitmask for the beep enable/disable is different than
504  * the bitmask for the alarm.
505  */
506 static struct sensor_device_attribute sda_in_beep[] = {
507 	SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
508 	SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
509 	SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
510 	SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
511 	SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
512 	SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
513 	SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
514 	SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
515 	SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
516 	SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
517 };
518 
519 static struct sensor_device_attribute sda_in_alarm[] = {
520 	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
521 	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
522 	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
523 	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
524 	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
525 	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
526 	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
527 	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
528 	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
529 	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
530 };
531 
532 #define show_fan_reg(reg) \
533 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
534 				char *buf) \
535 { \
536 	struct sensor_device_attribute *sensor_attr = \
537 						to_sensor_dev_attr(attr); \
538 	struct w83791d_data *data = w83791d_update_device(dev); \
539 	int nr = sensor_attr->index; \
540 	return sprintf(buf, "%d\n", \
541 		FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
542 }
543 
544 show_fan_reg(fan);
545 show_fan_reg(fan_min);
546 
547 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
548 				const char *buf, size_t count)
549 {
550 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
551 	struct i2c_client *client = to_i2c_client(dev);
552 	struct w83791d_data *data = i2c_get_clientdata(client);
553 	int nr = sensor_attr->index;
554 	unsigned long val;
555 	int err;
556 
557 	err = kstrtoul(buf, 10, &val);
558 	if (err)
559 		return err;
560 
561 	mutex_lock(&data->update_lock);
562 	data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
563 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
564 	mutex_unlock(&data->update_lock);
565 
566 	return count;
567 }
568 
569 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
570 				char *buf)
571 {
572 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
573 	int nr = sensor_attr->index;
574 	struct w83791d_data *data = w83791d_update_device(dev);
575 	return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
576 }
577 
578 /*
579  * Note: we save and restore the fan minimum here, because its value is
580  * determined in part by the fan divisor.  This follows the principle of
581  * least surprise; the user doesn't expect the fan minimum to change just
582  * because the divisor changed.
583  */
584 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
585 				const char *buf, size_t count)
586 {
587 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
588 	struct i2c_client *client = to_i2c_client(dev);
589 	struct w83791d_data *data = i2c_get_clientdata(client);
590 	int nr = sensor_attr->index;
591 	unsigned long min;
592 	u8 tmp_fan_div;
593 	u8 fan_div_reg;
594 	u8 vbat_reg;
595 	int indx = 0;
596 	u8 keep_mask = 0;
597 	u8 new_shift = 0;
598 	unsigned long val;
599 	int err;
600 
601 	err = kstrtoul(buf, 10, &val);
602 	if (err)
603 		return err;
604 
605 	/* Save fan_min */
606 	min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
607 
608 	mutex_lock(&data->update_lock);
609 	data->fan_div[nr] = div_to_reg(nr, val);
610 
611 	switch (nr) {
612 	case 0:
613 		indx = 0;
614 		keep_mask = 0xcf;
615 		new_shift = 4;
616 		break;
617 	case 1:
618 		indx = 0;
619 		keep_mask = 0x3f;
620 		new_shift = 6;
621 		break;
622 	case 2:
623 		indx = 1;
624 		keep_mask = 0x3f;
625 		new_shift = 6;
626 		break;
627 	case 3:
628 		indx = 2;
629 		keep_mask = 0xf8;
630 		new_shift = 0;
631 		break;
632 	case 4:
633 		indx = 2;
634 		keep_mask = 0x8f;
635 		new_shift = 4;
636 		break;
637 #ifdef DEBUG
638 	default:
639 		dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
640 		count = -EINVAL;
641 		goto err_exit;
642 #endif
643 	}
644 
645 	fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
646 			& keep_mask;
647 	tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
648 
649 	w83791d_write(client, W83791D_REG_FAN_DIV[indx],
650 				fan_div_reg | tmp_fan_div);
651 
652 	/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
653 	if (nr < 3) {
654 		keep_mask = ~(1 << (nr + 5));
655 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
656 				& keep_mask;
657 		tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
658 		w83791d_write(client, W83791D_REG_VBAT,
659 				vbat_reg | tmp_fan_div);
660 	}
661 
662 	/* Restore fan_min */
663 	data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
664 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
665 
666 #ifdef DEBUG
667 err_exit:
668 #endif
669 	mutex_unlock(&data->update_lock);
670 
671 	return count;
672 }
673 
674 static struct sensor_device_attribute sda_fan_input[] = {
675 	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
676 	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
677 	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
678 	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
679 	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
680 };
681 
682 static struct sensor_device_attribute sda_fan_min[] = {
683 	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
684 			show_fan_min, store_fan_min, 0),
685 	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
686 			show_fan_min, store_fan_min, 1),
687 	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
688 			show_fan_min, store_fan_min, 2),
689 	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
690 			show_fan_min, store_fan_min, 3),
691 	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
692 			show_fan_min, store_fan_min, 4),
693 };
694 
695 static struct sensor_device_attribute sda_fan_div[] = {
696 	SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
697 			show_fan_div, store_fan_div, 0),
698 	SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
699 			show_fan_div, store_fan_div, 1),
700 	SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
701 			show_fan_div, store_fan_div, 2),
702 	SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
703 			show_fan_div, store_fan_div, 3),
704 	SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
705 			show_fan_div, store_fan_div, 4),
706 };
707 
708 static struct sensor_device_attribute sda_fan_beep[] = {
709 	SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
710 	SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
711 	SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
712 	SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
713 	SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
714 };
715 
716 static struct sensor_device_attribute sda_fan_alarm[] = {
717 	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
718 	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
719 	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
720 	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
721 	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
722 };
723 
724 /* read/write PWMs */
725 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
726 				char *buf)
727 {
728 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
729 	int nr = sensor_attr->index;
730 	struct w83791d_data *data = w83791d_update_device(dev);
731 	return sprintf(buf, "%u\n", data->pwm[nr]);
732 }
733 
734 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
735 		const char *buf, size_t count)
736 {
737 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
738 	struct i2c_client *client = to_i2c_client(dev);
739 	struct w83791d_data *data = i2c_get_clientdata(client);
740 	int nr = sensor_attr->index;
741 	unsigned long val;
742 
743 	if (kstrtoul(buf, 10, &val))
744 		return -EINVAL;
745 
746 	mutex_lock(&data->update_lock);
747 	data->pwm[nr] = clamp_val(val, 0, 255);
748 	w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
749 	mutex_unlock(&data->update_lock);
750 	return count;
751 }
752 
753 static struct sensor_device_attribute sda_pwm[] = {
754 	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
755 			show_pwm, store_pwm, 0),
756 	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
757 			show_pwm, store_pwm, 1),
758 	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
759 			show_pwm, store_pwm, 2),
760 	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
761 			show_pwm, store_pwm, 3),
762 	SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
763 			show_pwm, store_pwm, 4),
764 };
765 
766 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
767 				char *buf)
768 {
769 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
770 	int nr = sensor_attr->index;
771 	struct w83791d_data *data = w83791d_update_device(dev);
772 	return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
773 }
774 
775 static ssize_t store_pwmenable(struct device *dev,
776 		struct device_attribute *attr, const char *buf, size_t count)
777 {
778 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
779 	struct i2c_client *client = to_i2c_client(dev);
780 	struct w83791d_data *data = i2c_get_clientdata(client);
781 	int nr = sensor_attr->index;
782 	unsigned long val;
783 	u8 reg_cfg_tmp;
784 	u8 reg_idx = 0;
785 	u8 val_shift = 0;
786 	u8 keep_mask = 0;
787 
788 	int ret = kstrtoul(buf, 10, &val);
789 
790 	if (ret || val < 1 || val > 3)
791 		return -EINVAL;
792 
793 	mutex_lock(&data->update_lock);
794 	data->pwm_enable[nr] = val - 1;
795 	switch (nr) {
796 	case 0:
797 		reg_idx = 0;
798 		val_shift = 2;
799 		keep_mask = 0xf3;
800 		break;
801 	case 1:
802 		reg_idx = 0;
803 		val_shift = 4;
804 		keep_mask = 0xcf;
805 		break;
806 	case 2:
807 		reg_idx = 1;
808 		val_shift = 2;
809 		keep_mask = 0xf3;
810 		break;
811 	}
812 
813 	reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
814 	reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
815 					data->pwm_enable[nr] << val_shift;
816 
817 	w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
818 	mutex_unlock(&data->update_lock);
819 
820 	return count;
821 }
822 static struct sensor_device_attribute sda_pwmenable[] = {
823 	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
824 			show_pwmenable, store_pwmenable, 0),
825 	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
826 			show_pwmenable, store_pwmenable, 1),
827 	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
828 			show_pwmenable, store_pwmenable, 2),
829 };
830 
831 /* For Smart Fan I / Thermal Cruise */
832 static ssize_t show_temp_target(struct device *dev,
833 			struct device_attribute *attr, char *buf)
834 {
835 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
836 	struct w83791d_data *data = w83791d_update_device(dev);
837 	int nr = sensor_attr->index;
838 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
839 }
840 
841 static ssize_t store_temp_target(struct device *dev,
842 		struct device_attribute *attr, const char *buf, size_t count)
843 {
844 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
845 	struct i2c_client *client = to_i2c_client(dev);
846 	struct w83791d_data *data = i2c_get_clientdata(client);
847 	int nr = sensor_attr->index;
848 	long val;
849 	u8 target_mask;
850 
851 	if (kstrtol(buf, 10, &val))
852 		return -EINVAL;
853 
854 	mutex_lock(&data->update_lock);
855 	data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
856 	target_mask = w83791d_read(client,
857 				W83791D_REG_TEMP_TARGET[nr]) & 0x80;
858 	w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
859 				data->temp_target[nr] | target_mask);
860 	mutex_unlock(&data->update_lock);
861 	return count;
862 }
863 
864 static struct sensor_device_attribute sda_temp_target[] = {
865 	SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
866 			show_temp_target, store_temp_target, 0),
867 	SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
868 			show_temp_target, store_temp_target, 1),
869 	SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
870 			show_temp_target, store_temp_target, 2),
871 };
872 
873 static ssize_t show_temp_tolerance(struct device *dev,
874 			struct device_attribute *attr, char *buf)
875 {
876 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
877 	struct w83791d_data *data = w83791d_update_device(dev);
878 	int nr = sensor_attr->index;
879 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
880 }
881 
882 static ssize_t store_temp_tolerance(struct device *dev,
883 		struct device_attribute *attr, const char *buf, size_t count)
884 {
885 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
886 	struct i2c_client *client = to_i2c_client(dev);
887 	struct w83791d_data *data = i2c_get_clientdata(client);
888 	int nr = sensor_attr->index;
889 	unsigned long val;
890 	u8 target_mask;
891 	u8 reg_idx = 0;
892 	u8 val_shift = 0;
893 	u8 keep_mask = 0;
894 
895 	if (kstrtoul(buf, 10, &val))
896 		return -EINVAL;
897 
898 	switch (nr) {
899 	case 0:
900 		reg_idx = 0;
901 		val_shift = 0;
902 		keep_mask = 0xf0;
903 		break;
904 	case 1:
905 		reg_idx = 0;
906 		val_shift = 4;
907 		keep_mask = 0x0f;
908 		break;
909 	case 2:
910 		reg_idx = 1;
911 		val_shift = 0;
912 		keep_mask = 0xf0;
913 		break;
914 	}
915 
916 	mutex_lock(&data->update_lock);
917 	data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
918 	target_mask = w83791d_read(client,
919 			W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
920 	w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
921 			(data->temp_tolerance[nr] << val_shift) | target_mask);
922 	mutex_unlock(&data->update_lock);
923 	return count;
924 }
925 
926 static struct sensor_device_attribute sda_temp_tolerance[] = {
927 	SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
928 			show_temp_tolerance, store_temp_tolerance, 0),
929 	SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
930 			show_temp_tolerance, store_temp_tolerance, 1),
931 	SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
932 			show_temp_tolerance, store_temp_tolerance, 2),
933 };
934 
935 /* read/write the temperature1, includes measured value and limits */
936 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
937 				char *buf)
938 {
939 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
940 	struct w83791d_data *data = w83791d_update_device(dev);
941 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
942 }
943 
944 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
945 				const char *buf, size_t count)
946 {
947 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
948 	struct i2c_client *client = to_i2c_client(dev);
949 	struct w83791d_data *data = i2c_get_clientdata(client);
950 	int nr = attr->index;
951 	long val;
952 	int err;
953 
954 	err = kstrtol(buf, 10, &val);
955 	if (err)
956 		return err;
957 
958 	mutex_lock(&data->update_lock);
959 	data->temp1[nr] = TEMP1_TO_REG(val);
960 	w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
961 	mutex_unlock(&data->update_lock);
962 	return count;
963 }
964 
965 /* read/write temperature2-3, includes measured value and limits */
966 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
967 				char *buf)
968 {
969 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
970 	struct w83791d_data *data = w83791d_update_device(dev);
971 	int nr = attr->nr;
972 	int index = attr->index;
973 	return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
974 }
975 
976 static ssize_t store_temp23(struct device *dev,
977 				struct device_attribute *devattr,
978 				const char *buf, size_t count)
979 {
980 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
981 	struct i2c_client *client = to_i2c_client(dev);
982 	struct w83791d_data *data = i2c_get_clientdata(client);
983 	long val;
984 	int err;
985 	int nr = attr->nr;
986 	int index = attr->index;
987 
988 	err = kstrtol(buf, 10, &val);
989 	if (err)
990 		return err;
991 
992 	mutex_lock(&data->update_lock);
993 	data->temp_add[nr][index] = TEMP23_TO_REG(val);
994 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
995 				data->temp_add[nr][index] >> 8);
996 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
997 				data->temp_add[nr][index] & 0x80);
998 	mutex_unlock(&data->update_lock);
999 
1000 	return count;
1001 }
1002 
1003 static struct sensor_device_attribute_2 sda_temp_input[] = {
1004 	SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
1005 	SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
1006 	SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
1007 };
1008 
1009 static struct sensor_device_attribute_2 sda_temp_max[] = {
1010 	SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
1011 			show_temp1, store_temp1, 0, 1),
1012 	SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
1013 			show_temp23, store_temp23, 0, 1),
1014 	SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
1015 			show_temp23, store_temp23, 1, 1),
1016 };
1017 
1018 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1019 	SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1020 			show_temp1, store_temp1, 0, 2),
1021 	SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1022 			show_temp23, store_temp23, 0, 2),
1023 	SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1024 			show_temp23, store_temp23, 1, 2),
1025 };
1026 
1027 /*
1028  * Note: The bitmask for the beep enable/disable is different than
1029  * the bitmask for the alarm.
1030  */
1031 static struct sensor_device_attribute sda_temp_beep[] = {
1032 	SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1033 	SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1034 	SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1035 };
1036 
1037 static struct sensor_device_attribute sda_temp_alarm[] = {
1038 	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1039 	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1040 	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1041 };
1042 
1043 /* get realtime status of all sensors items: voltage, temp, fan */
1044 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
1045 			   char *buf)
1046 {
1047 	struct w83791d_data *data = w83791d_update_device(dev);
1048 	return sprintf(buf, "%u\n", data->alarms);
1049 }
1050 
1051 static DEVICE_ATTR_RO(alarms);
1052 
1053 /* Beep control */
1054 
1055 #define GLOBAL_BEEP_ENABLE_SHIFT	15
1056 #define GLOBAL_BEEP_ENABLE_MASK		(1 << GLOBAL_BEEP_ENABLE_SHIFT)
1057 
1058 static ssize_t show_beep_enable(struct device *dev,
1059 				struct device_attribute *attr, char *buf)
1060 {
1061 	struct w83791d_data *data = w83791d_update_device(dev);
1062 	return sprintf(buf, "%d\n", data->beep_enable);
1063 }
1064 
1065 static ssize_t show_beep_mask(struct device *dev,
1066 				struct device_attribute *attr, char *buf)
1067 {
1068 	struct w83791d_data *data = w83791d_update_device(dev);
1069 	return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1070 }
1071 
1072 
1073 static ssize_t store_beep_mask(struct device *dev,
1074 				struct device_attribute *attr,
1075 				const char *buf, size_t count)
1076 {
1077 	struct i2c_client *client = to_i2c_client(dev);
1078 	struct w83791d_data *data = i2c_get_clientdata(client);
1079 	int i;
1080 	long val;
1081 	int err;
1082 
1083 	err = kstrtol(buf, 10, &val);
1084 	if (err)
1085 		return err;
1086 
1087 	mutex_lock(&data->update_lock);
1088 
1089 	/*
1090 	 * The beep_enable state overrides any enabling request from
1091 	 * the masks
1092 	 */
1093 	data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1094 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1095 
1096 	val = data->beep_mask;
1097 
1098 	for (i = 0; i < 3; i++) {
1099 		w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1100 		val >>= 8;
1101 	}
1102 
1103 	mutex_unlock(&data->update_lock);
1104 
1105 	return count;
1106 }
1107 
1108 static ssize_t store_beep_enable(struct device *dev,
1109 				struct device_attribute *attr,
1110 				const char *buf, size_t count)
1111 {
1112 	struct i2c_client *client = to_i2c_client(dev);
1113 	struct w83791d_data *data = i2c_get_clientdata(client);
1114 	long val;
1115 	int err;
1116 
1117 	err = kstrtol(buf, 10, &val);
1118 	if (err)
1119 		return err;
1120 
1121 	mutex_lock(&data->update_lock);
1122 
1123 	data->beep_enable = val ? 1 : 0;
1124 
1125 	/* Keep the full mask value in sync with the current enable */
1126 	data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1127 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1128 
1129 	/*
1130 	 * The global control is in the second beep control register
1131 	 * so only need to update that register
1132 	 */
1133 	val = (data->beep_mask >> 8) & 0xff;
1134 
1135 	w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1136 
1137 	mutex_unlock(&data->update_lock);
1138 
1139 	return count;
1140 }
1141 
1142 static struct sensor_device_attribute sda_beep_ctrl[] = {
1143 	SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1144 			show_beep_enable, store_beep_enable, 0),
1145 	SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1146 			show_beep_mask, store_beep_mask, 1)
1147 };
1148 
1149 /* cpu voltage regulation information */
1150 static ssize_t cpu0_vid_show(struct device *dev,
1151 			     struct device_attribute *attr, char *buf)
1152 {
1153 	struct w83791d_data *data = w83791d_update_device(dev);
1154 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1155 }
1156 
1157 static DEVICE_ATTR_RO(cpu0_vid);
1158 
1159 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
1160 			char *buf)
1161 {
1162 	struct w83791d_data *data = dev_get_drvdata(dev);
1163 	return sprintf(buf, "%d\n", data->vrm);
1164 }
1165 
1166 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
1167 			 const char *buf, size_t count)
1168 {
1169 	struct w83791d_data *data = dev_get_drvdata(dev);
1170 	unsigned long val;
1171 	int err;
1172 
1173 	/*
1174 	 * No lock needed as vrm is internal to the driver
1175 	 * (not read from a chip register) and so is not
1176 	 * updated in w83791d_update_device()
1177 	 */
1178 
1179 	err = kstrtoul(buf, 10, &val);
1180 	if (err)
1181 		return err;
1182 
1183 	if (val > 255)
1184 		return -EINVAL;
1185 
1186 	data->vrm = val;
1187 	return count;
1188 }
1189 
1190 static DEVICE_ATTR_RW(vrm);
1191 
1192 #define IN_UNIT_ATTRS(X) \
1193 	&sda_in_input[X].dev_attr.attr,	\
1194 	&sda_in_min[X].dev_attr.attr,	\
1195 	&sda_in_max[X].dev_attr.attr,	\
1196 	&sda_in_beep[X].dev_attr.attr,	\
1197 	&sda_in_alarm[X].dev_attr.attr
1198 
1199 #define FAN_UNIT_ATTRS(X) \
1200 	&sda_fan_input[X].dev_attr.attr,	\
1201 	&sda_fan_min[X].dev_attr.attr,		\
1202 	&sda_fan_div[X].dev_attr.attr,		\
1203 	&sda_fan_beep[X].dev_attr.attr,		\
1204 	&sda_fan_alarm[X].dev_attr.attr
1205 
1206 #define TEMP_UNIT_ATTRS(X) \
1207 	&sda_temp_input[X].dev_attr.attr,	\
1208 	&sda_temp_max[X].dev_attr.attr,		\
1209 	&sda_temp_max_hyst[X].dev_attr.attr,	\
1210 	&sda_temp_beep[X].dev_attr.attr,	\
1211 	&sda_temp_alarm[X].dev_attr.attr
1212 
1213 static struct attribute *w83791d_attributes[] = {
1214 	IN_UNIT_ATTRS(0),
1215 	IN_UNIT_ATTRS(1),
1216 	IN_UNIT_ATTRS(2),
1217 	IN_UNIT_ATTRS(3),
1218 	IN_UNIT_ATTRS(4),
1219 	IN_UNIT_ATTRS(5),
1220 	IN_UNIT_ATTRS(6),
1221 	IN_UNIT_ATTRS(7),
1222 	IN_UNIT_ATTRS(8),
1223 	IN_UNIT_ATTRS(9),
1224 	FAN_UNIT_ATTRS(0),
1225 	FAN_UNIT_ATTRS(1),
1226 	FAN_UNIT_ATTRS(2),
1227 	TEMP_UNIT_ATTRS(0),
1228 	TEMP_UNIT_ATTRS(1),
1229 	TEMP_UNIT_ATTRS(2),
1230 	&dev_attr_alarms.attr,
1231 	&sda_beep_ctrl[0].dev_attr.attr,
1232 	&sda_beep_ctrl[1].dev_attr.attr,
1233 	&dev_attr_cpu0_vid.attr,
1234 	&dev_attr_vrm.attr,
1235 	&sda_pwm[0].dev_attr.attr,
1236 	&sda_pwm[1].dev_attr.attr,
1237 	&sda_pwm[2].dev_attr.attr,
1238 	&sda_pwmenable[0].dev_attr.attr,
1239 	&sda_pwmenable[1].dev_attr.attr,
1240 	&sda_pwmenable[2].dev_attr.attr,
1241 	&sda_temp_target[0].dev_attr.attr,
1242 	&sda_temp_target[1].dev_attr.attr,
1243 	&sda_temp_target[2].dev_attr.attr,
1244 	&sda_temp_tolerance[0].dev_attr.attr,
1245 	&sda_temp_tolerance[1].dev_attr.attr,
1246 	&sda_temp_tolerance[2].dev_attr.attr,
1247 	NULL
1248 };
1249 
1250 static const struct attribute_group w83791d_group = {
1251 	.attrs = w83791d_attributes,
1252 };
1253 
1254 /*
1255  * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1256  * in use for GPIO in which case their sysfs-interface should not be made
1257  * available
1258  */
1259 static struct attribute *w83791d_attributes_fanpwm45[] = {
1260 	FAN_UNIT_ATTRS(3),
1261 	FAN_UNIT_ATTRS(4),
1262 	&sda_pwm[3].dev_attr.attr,
1263 	&sda_pwm[4].dev_attr.attr,
1264 	NULL
1265 };
1266 
1267 static const struct attribute_group w83791d_group_fanpwm45 = {
1268 	.attrs = w83791d_attributes_fanpwm45,
1269 };
1270 
1271 static int w83791d_detect_subclients(struct i2c_client *client)
1272 {
1273 	struct i2c_adapter *adapter = client->adapter;
1274 	struct w83791d_data *data = i2c_get_clientdata(client);
1275 	int address = client->addr;
1276 	int i, id, err;
1277 	u8 val;
1278 
1279 	id = i2c_adapter_id(adapter);
1280 	if (force_subclients[0] == id && force_subclients[1] == address) {
1281 		for (i = 2; i <= 3; i++) {
1282 			if (force_subclients[i] < 0x48 ||
1283 			    force_subclients[i] > 0x4f) {
1284 				dev_err(&client->dev,
1285 					"invalid subclient "
1286 					"address %d; must be 0x48-0x4f\n",
1287 					force_subclients[i]);
1288 				err = -ENODEV;
1289 				goto error_sc_0;
1290 			}
1291 		}
1292 		w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1293 					(force_subclients[2] & 0x07) |
1294 					((force_subclients[3] & 0x07) << 4));
1295 	}
1296 
1297 	val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1298 	if (!(val & 0x08))
1299 		data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
1300 	if (!(val & 0x80)) {
1301 		if ((data->lm75[0] != NULL) &&
1302 				((val & 0x7) == ((val >> 4) & 0x7))) {
1303 			dev_err(&client->dev,
1304 				"duplicate addresses 0x%x, "
1305 				"use force_subclient\n",
1306 				data->lm75[0]->addr);
1307 			err = -ENODEV;
1308 			goto error_sc_1;
1309 		}
1310 		data->lm75[1] = i2c_new_dummy(adapter,
1311 					      0x48 + ((val >> 4) & 0x7));
1312 	}
1313 
1314 	return 0;
1315 
1316 /* Undo inits in case of errors */
1317 
1318 error_sc_1:
1319 	i2c_unregister_device(data->lm75[0]);
1320 error_sc_0:
1321 	return err;
1322 }
1323 
1324 
1325 /* Return 0 if detection is successful, -ENODEV otherwise */
1326 static int w83791d_detect(struct i2c_client *client,
1327 			  struct i2c_board_info *info)
1328 {
1329 	struct i2c_adapter *adapter = client->adapter;
1330 	int val1, val2;
1331 	unsigned short address = client->addr;
1332 
1333 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1334 		return -ENODEV;
1335 
1336 	if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1337 		return -ENODEV;
1338 
1339 	val1 = w83791d_read(client, W83791D_REG_BANK);
1340 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1341 	/* Check for Winbond ID if in bank 0 */
1342 	if (!(val1 & 0x07)) {
1343 		if ((!(val1 & 0x80) && val2 != 0xa3) ||
1344 		    ((val1 & 0x80) && val2 != 0x5c)) {
1345 			return -ENODEV;
1346 		}
1347 	}
1348 	/*
1349 	 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1350 	 * should match
1351 	 */
1352 	if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1353 		return -ENODEV;
1354 
1355 	/* We want bank 0 and Vendor ID high byte */
1356 	val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1357 	w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1358 
1359 	/* Verify it is a Winbond w83791d */
1360 	val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1361 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1362 	if (val1 != 0x71 || val2 != 0x5c)
1363 		return -ENODEV;
1364 
1365 	strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
1366 
1367 	return 0;
1368 }
1369 
1370 static int w83791d_probe(struct i2c_client *client,
1371 			 const struct i2c_device_id *id)
1372 {
1373 	struct w83791d_data *data;
1374 	struct device *dev = &client->dev;
1375 	int i, err;
1376 	u8 has_fanpwm45;
1377 
1378 #ifdef DEBUG
1379 	int val1;
1380 	val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1381 	dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1382 			(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1383 #endif
1384 
1385 	data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1386 			    GFP_KERNEL);
1387 	if (!data)
1388 		return -ENOMEM;
1389 
1390 	i2c_set_clientdata(client, data);
1391 	mutex_init(&data->update_lock);
1392 
1393 	err = w83791d_detect_subclients(client);
1394 	if (err)
1395 		return err;
1396 
1397 	/* Initialize the chip */
1398 	w83791d_init_client(client);
1399 
1400 	/*
1401 	 * If the fan_div is changed, make sure there is a rational
1402 	 * fan_min in place
1403 	 */
1404 	for (i = 0; i < NUMBER_OF_FANIN; i++)
1405 		data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1406 
1407 	/* Register sysfs hooks */
1408 	err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1409 	if (err)
1410 		goto error3;
1411 
1412 	/* Check if pins of fan/pwm 4-5 are in use as GPIO */
1413 	has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1414 	if (has_fanpwm45) {
1415 		err = sysfs_create_group(&client->dev.kobj,
1416 					 &w83791d_group_fanpwm45);
1417 		if (err)
1418 			goto error4;
1419 	}
1420 
1421 	/* Everything is ready, now register the working device */
1422 	data->hwmon_dev = hwmon_device_register(dev);
1423 	if (IS_ERR(data->hwmon_dev)) {
1424 		err = PTR_ERR(data->hwmon_dev);
1425 		goto error5;
1426 	}
1427 
1428 	return 0;
1429 
1430 error5:
1431 	if (has_fanpwm45)
1432 		sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1433 error4:
1434 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1435 error3:
1436 	i2c_unregister_device(data->lm75[0]);
1437 	i2c_unregister_device(data->lm75[1]);
1438 	return err;
1439 }
1440 
1441 static int w83791d_remove(struct i2c_client *client)
1442 {
1443 	struct w83791d_data *data = i2c_get_clientdata(client);
1444 
1445 	hwmon_device_unregister(data->hwmon_dev);
1446 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1447 
1448 	i2c_unregister_device(data->lm75[0]);
1449 	i2c_unregister_device(data->lm75[1]);
1450 
1451 	return 0;
1452 }
1453 
1454 static void w83791d_init_client(struct i2c_client *client)
1455 {
1456 	struct w83791d_data *data = i2c_get_clientdata(client);
1457 	u8 tmp;
1458 	u8 old_beep;
1459 
1460 	/*
1461 	 * The difference between reset and init is that reset
1462 	 * does a hard reset of the chip via index 0x40, bit 7,
1463 	 * but init simply forces certain registers to have "sane"
1464 	 * values. The hope is that the BIOS has done the right
1465 	 * thing (which is why the default is reset=0, init=0),
1466 	 * but if not, reset is the hard hammer and init
1467 	 * is the soft mallet both of which are trying to whack
1468 	 * things into place...
1469 	 * NOTE: The data sheet makes a distinction between
1470 	 * "power on defaults" and "reset by MR". As far as I can tell,
1471 	 * the hard reset puts everything into a power-on state so I'm
1472 	 * not sure what "reset by MR" means or how it can happen.
1473 	 */
1474 	if (reset || init) {
1475 		/* keep some BIOS settings when we... */
1476 		old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1477 
1478 		if (reset) {
1479 			/* ... reset the chip and ... */
1480 			w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1481 		}
1482 
1483 		/* ... disable power-on abnormal beep */
1484 		w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1485 
1486 		/* disable the global beep (not done by hard reset) */
1487 		tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1488 		w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1489 
1490 		if (init) {
1491 			/* Make sure monitoring is turned on for add-ons */
1492 			tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1493 			if (tmp & 1) {
1494 				w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1495 					tmp & 0xfe);
1496 			}
1497 
1498 			tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1499 			if (tmp & 1) {
1500 				w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1501 					tmp & 0xfe);
1502 			}
1503 
1504 			/* Start monitoring */
1505 			tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1506 			w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1507 		}
1508 	}
1509 
1510 	data->vrm = vid_which_vrm();
1511 }
1512 
1513 static struct w83791d_data *w83791d_update_device(struct device *dev)
1514 {
1515 	struct i2c_client *client = to_i2c_client(dev);
1516 	struct w83791d_data *data = i2c_get_clientdata(client);
1517 	int i, j;
1518 	u8 reg_array_tmp[3];
1519 	u8 vbat_reg;
1520 
1521 	mutex_lock(&data->update_lock);
1522 
1523 	if (time_after(jiffies, data->last_updated + (HZ * 3))
1524 			|| !data->valid) {
1525 		dev_dbg(dev, "Starting w83791d device update\n");
1526 
1527 		/* Update the voltages measured value and limits */
1528 		for (i = 0; i < NUMBER_OF_VIN; i++) {
1529 			data->in[i] = w83791d_read(client,
1530 						W83791D_REG_IN[i]);
1531 			data->in_max[i] = w83791d_read(client,
1532 						W83791D_REG_IN_MAX[i]);
1533 			data->in_min[i] = w83791d_read(client,
1534 						W83791D_REG_IN_MIN[i]);
1535 		}
1536 
1537 		/* Update the fan counts and limits */
1538 		for (i = 0; i < NUMBER_OF_FANIN; i++) {
1539 			/* Update the Fan measured value and limits */
1540 			data->fan[i] = w83791d_read(client,
1541 						W83791D_REG_FAN[i]);
1542 			data->fan_min[i] = w83791d_read(client,
1543 						W83791D_REG_FAN_MIN[i]);
1544 		}
1545 
1546 		/* Update the fan divisor */
1547 		for (i = 0; i < 3; i++) {
1548 			reg_array_tmp[i] = w83791d_read(client,
1549 						W83791D_REG_FAN_DIV[i]);
1550 		}
1551 		data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1552 		data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1553 		data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1554 		data->fan_div[3] = reg_array_tmp[2] & 0x07;
1555 		data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1556 
1557 		/*
1558 		 * The fan divisor for fans 0-2 get bit 2 from
1559 		 * bits 5-7 respectively of vbat register
1560 		 */
1561 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1562 		for (i = 0; i < 3; i++)
1563 			data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1564 
1565 		/* Update PWM duty cycle */
1566 		for (i = 0; i < NUMBER_OF_PWM; i++) {
1567 			data->pwm[i] =  w83791d_read(client,
1568 						W83791D_REG_PWM[i]);
1569 		}
1570 
1571 		/* Update PWM enable status */
1572 		for (i = 0; i < 2; i++) {
1573 			reg_array_tmp[i] = w83791d_read(client,
1574 						W83791D_REG_FAN_CFG[i]);
1575 		}
1576 		data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1577 		data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1578 		data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1579 
1580 		/* Update PWM target temperature */
1581 		for (i = 0; i < 3; i++) {
1582 			data->temp_target[i] = w83791d_read(client,
1583 				W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1584 		}
1585 
1586 		/* Update PWM temperature tolerance */
1587 		for (i = 0; i < 2; i++) {
1588 			reg_array_tmp[i] = w83791d_read(client,
1589 					W83791D_REG_TEMP_TOL[i]);
1590 		}
1591 		data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1592 		data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1593 		data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1594 
1595 		/* Update the first temperature sensor */
1596 		for (i = 0; i < 3; i++) {
1597 			data->temp1[i] = w83791d_read(client,
1598 						W83791D_REG_TEMP1[i]);
1599 		}
1600 
1601 		/* Update the rest of the temperature sensors */
1602 		for (i = 0; i < 2; i++) {
1603 			for (j = 0; j < 3; j++) {
1604 				data->temp_add[i][j] =
1605 					(w83791d_read(client,
1606 					W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1607 					w83791d_read(client,
1608 					W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1609 			}
1610 		}
1611 
1612 		/* Update the realtime status */
1613 		data->alarms =
1614 			w83791d_read(client, W83791D_REG_ALARM1) +
1615 			(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1616 			(w83791d_read(client, W83791D_REG_ALARM3) << 16);
1617 
1618 		/* Update the beep configuration information */
1619 		data->beep_mask =
1620 			w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1621 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1622 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1623 
1624 		/* Extract global beep enable flag */
1625 		data->beep_enable =
1626 			(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1627 
1628 		/* Update the cpu voltage information */
1629 		i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1630 		data->vid = i & 0x0f;
1631 		data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1632 				<< 4;
1633 
1634 		data->last_updated = jiffies;
1635 		data->valid = 1;
1636 	}
1637 
1638 	mutex_unlock(&data->update_lock);
1639 
1640 #ifdef DEBUG
1641 	w83791d_print_debug(data, dev);
1642 #endif
1643 
1644 	return data;
1645 }
1646 
1647 #ifdef DEBUG
1648 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1649 {
1650 	int i = 0, j = 0;
1651 
1652 	dev_dbg(dev, "======Start of w83791d debug values======\n");
1653 	dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1654 	for (i = 0; i < NUMBER_OF_VIN; i++) {
1655 		dev_dbg(dev, "vin[%d] is:     0x%02x\n", i, data->in[i]);
1656 		dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1657 		dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1658 	}
1659 	dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1660 	for (i = 0; i < NUMBER_OF_FANIN; i++) {
1661 		dev_dbg(dev, "fan[%d] is:     0x%02x\n", i, data->fan[i]);
1662 		dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1663 		dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1664 	}
1665 
1666 	/*
1667 	 * temperature math is signed, but only print out the
1668 	 * bits that matter
1669 	 */
1670 	dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1671 	for (i = 0; i < 3; i++)
1672 		dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1673 	for (i = 0; i < 2; i++) {
1674 		for (j = 0; j < 3; j++) {
1675 			dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1676 				(u16) data->temp_add[i][j]);
1677 		}
1678 	}
1679 
1680 	dev_dbg(dev, "Misc Information: ===>\n");
1681 	dev_dbg(dev, "alarm is:     0x%08x\n", data->alarms);
1682 	dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1683 	dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1684 	dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1685 	dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1686 	dev_dbg(dev, "=======End of w83791d debug values========\n");
1687 	dev_dbg(dev, "\n");
1688 }
1689 #endif
1690 
1691 module_i2c_driver(w83791d_driver);
1692 
1693 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1694 MODULE_DESCRIPTION("W83791D driver");
1695 MODULE_LICENSE("GPL");
1696