1 /* 2 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * 5 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 /* 23 * Supports following chips: 24 * 25 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 26 * w83791d 10 5 5 3 0x71 0x5ca3 yes no 27 * 28 * The w83791d chip appears to be part way between the 83781d and the 29 * 83792d. Thus, this file is derived from both the w83792d.c and 30 * w83781d.c files. 31 * 32 * The w83791g chip is the same as the w83791d but lead-free. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/i2c.h> 39 #include <linux/hwmon.h> 40 #include <linux/hwmon-vid.h> 41 #include <linux/hwmon-sysfs.h> 42 #include <linux/err.h> 43 #include <linux/mutex.h> 44 #include <linux/jiffies.h> 45 46 #define NUMBER_OF_VIN 10 47 #define NUMBER_OF_FANIN 5 48 #define NUMBER_OF_TEMPIN 3 49 #define NUMBER_OF_PWM 5 50 51 /* Addresses to scan */ 52 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, 53 I2C_CLIENT_END }; 54 55 /* Insmod parameters */ 56 57 static unsigned short force_subclients[4]; 58 module_param_array(force_subclients, short, NULL, 0); 59 MODULE_PARM_DESC(force_subclients, 60 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); 61 62 static bool reset; 63 module_param(reset, bool, 0); 64 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset"); 65 66 static bool init; 67 module_param(init, bool, 0); 68 MODULE_PARM_DESC(init, "Set to one to force extra software initialization"); 69 70 /* The W83791D registers */ 71 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = { 72 0x20, /* VCOREA in DataSheet */ 73 0x21, /* VINR0 in DataSheet */ 74 0x22, /* +3.3VIN in DataSheet */ 75 0x23, /* VDD5V in DataSheet */ 76 0x24, /* +12VIN in DataSheet */ 77 0x25, /* -12VIN in DataSheet */ 78 0x26, /* -5VIN in DataSheet */ 79 0xB0, /* 5VSB in DataSheet */ 80 0xB1, /* VBAT in DataSheet */ 81 0xB2 /* VINR1 in DataSheet */ 82 }; 83 84 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = { 85 0x2B, /* VCOREA High Limit in DataSheet */ 86 0x2D, /* VINR0 High Limit in DataSheet */ 87 0x2F, /* +3.3VIN High Limit in DataSheet */ 88 0x31, /* VDD5V High Limit in DataSheet */ 89 0x33, /* +12VIN High Limit in DataSheet */ 90 0x35, /* -12VIN High Limit in DataSheet */ 91 0x37, /* -5VIN High Limit in DataSheet */ 92 0xB4, /* 5VSB High Limit in DataSheet */ 93 0xB6, /* VBAT High Limit in DataSheet */ 94 0xB8 /* VINR1 High Limit in DataSheet */ 95 }; 96 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = { 97 0x2C, /* VCOREA Low Limit in DataSheet */ 98 0x2E, /* VINR0 Low Limit in DataSheet */ 99 0x30, /* +3.3VIN Low Limit in DataSheet */ 100 0x32, /* VDD5V Low Limit in DataSheet */ 101 0x34, /* +12VIN Low Limit in DataSheet */ 102 0x36, /* -12VIN Low Limit in DataSheet */ 103 0x38, /* -5VIN Low Limit in DataSheet */ 104 0xB5, /* 5VSB Low Limit in DataSheet */ 105 0xB7, /* VBAT Low Limit in DataSheet */ 106 0xB9 /* VINR1 Low Limit in DataSheet */ 107 }; 108 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = { 109 0x28, /* FAN 1 Count in DataSheet */ 110 0x29, /* FAN 2 Count in DataSheet */ 111 0x2A, /* FAN 3 Count in DataSheet */ 112 0xBA, /* FAN 4 Count in DataSheet */ 113 0xBB, /* FAN 5 Count in DataSheet */ 114 }; 115 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = { 116 0x3B, /* FAN 1 Count Low Limit in DataSheet */ 117 0x3C, /* FAN 2 Count Low Limit in DataSheet */ 118 0x3D, /* FAN 3 Count Low Limit in DataSheet */ 119 0xBC, /* FAN 4 Count Low Limit in DataSheet */ 120 0xBD, /* FAN 5 Count Low Limit in DataSheet */ 121 }; 122 123 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = { 124 0x81, /* PWM 1 duty cycle register in DataSheet */ 125 0x83, /* PWM 2 duty cycle register in DataSheet */ 126 0x94, /* PWM 3 duty cycle register in DataSheet */ 127 0xA0, /* PWM 4 duty cycle register in DataSheet */ 128 0xA1, /* PWM 5 duty cycle register in DataSheet */ 129 }; 130 131 static const u8 W83791D_REG_TEMP_TARGET[3] = { 132 0x85, /* PWM 1 target temperature for temp 1 */ 133 0x86, /* PWM 2 target temperature for temp 2 */ 134 0x96, /* PWM 3 target temperature for temp 3 */ 135 }; 136 137 static const u8 W83791D_REG_TEMP_TOL[2] = { 138 0x87, /* PWM 1/2 temperature tolerance */ 139 0x97, /* PWM 3 temperature tolerance */ 140 }; 141 142 static const u8 W83791D_REG_FAN_CFG[2] = { 143 0x84, /* FAN 1/2 configuration */ 144 0x95, /* FAN 3 configuration */ 145 }; 146 147 static const u8 W83791D_REG_FAN_DIV[3] = { 148 0x47, /* contains FAN1 and FAN2 Divisor */ 149 0x4b, /* contains FAN3 Divisor */ 150 0x5C, /* contains FAN4 and FAN5 Divisor */ 151 }; 152 153 #define W83791D_REG_BANK 0x4E 154 #define W83791D_REG_TEMP2_CONFIG 0xC2 155 #define W83791D_REG_TEMP3_CONFIG 0xCA 156 157 static const u8 W83791D_REG_TEMP1[3] = { 158 0x27, /* TEMP 1 in DataSheet */ 159 0x39, /* TEMP 1 Over in DataSheet */ 160 0x3A, /* TEMP 1 Hyst in DataSheet */ 161 }; 162 163 static const u8 W83791D_REG_TEMP_ADD[2][6] = { 164 {0xC0, /* TEMP 2 in DataSheet */ 165 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ 166 0xC5, /* TEMP 2 Over High part in DataSheet */ 167 0xC6, /* TEMP 2 Over Low part in DataSheet */ 168 0xC3, /* TEMP 2 Thyst High part in DataSheet */ 169 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */ 170 {0xC8, /* TEMP 3 in DataSheet */ 171 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ 172 0xCD, /* TEMP 3 Over High part in DataSheet */ 173 0xCE, /* TEMP 3 Over Low part in DataSheet */ 174 0xCB, /* TEMP 3 Thyst High part in DataSheet */ 175 0xCC} /* TEMP 3 Thyst Low part in DataSheet */ 176 }; 177 178 #define W83791D_REG_BEEP_CONFIG 0x4D 179 180 static const u8 W83791D_REG_BEEP_CTRL[3] = { 181 0x56, /* BEEP Control Register 1 */ 182 0x57, /* BEEP Control Register 2 */ 183 0xA3, /* BEEP Control Register 3 */ 184 }; 185 186 #define W83791D_REG_GPIO 0x15 187 #define W83791D_REG_CONFIG 0x40 188 #define W83791D_REG_VID_FANDIV 0x47 189 #define W83791D_REG_DID_VID4 0x49 190 #define W83791D_REG_WCHIPID 0x58 191 #define W83791D_REG_CHIPMAN 0x4F 192 #define W83791D_REG_PIN 0x4B 193 #define W83791D_REG_I2C_SUBADDR 0x4A 194 195 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */ 196 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */ 197 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */ 198 199 #define W83791D_REG_VBAT 0x5D 200 #define W83791D_REG_I2C_ADDR 0x48 201 202 /* 203 * The SMBus locks itself. The Winbond W83791D has a bank select register 204 * (index 0x4e), but the driver only accesses registers in bank 0. Since 205 * we don't switch banks, we don't need any special code to handle 206 * locking access between bank switches 207 */ 208 static inline int w83791d_read(struct i2c_client *client, u8 reg) 209 { 210 return i2c_smbus_read_byte_data(client, reg); 211 } 212 213 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value) 214 { 215 return i2c_smbus_write_byte_data(client, reg, value); 216 } 217 218 /* 219 * The analog voltage inputs have 16mV LSB. Since the sysfs output is 220 * in mV as would be measured on the chip input pin, need to just 221 * multiply/divide by 16 to translate from/to register values. 222 */ 223 #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255)) 224 #define IN_FROM_REG(val) ((val) * 16) 225 226 static u8 fan_to_reg(long rpm, int div) 227 { 228 if (rpm == 0) 229 return 255; 230 rpm = clamp_val(rpm, 1, 1000000); 231 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 232 } 233 234 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ 235 ((val) == 255 ? 0 : \ 236 1350000 / ((val) * (div)))) 237 238 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */ 239 #define TEMP1_FROM_REG(val) ((val) * 1000) 240 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ 241 (val) >= 127000 ? 127 : \ 242 (val) < 0 ? ((val) - 500) / 1000 : \ 243 ((val) + 500) / 1000) 244 245 /* 246 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius 247 * Assumes the top 8 bits are the integral amount and the bottom 8 bits 248 * are the fractional amount. Since we only have 0.5 degree resolution, 249 * the bottom 7 bits will always be zero 250 */ 251 #define TEMP23_FROM_REG(val) ((val) / 128 * 500) 252 #define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \ 253 127500), 500) * 128) 254 255 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */ 256 #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \ 257 1000) 258 259 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */ 260 #define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \ 261 1000) 262 263 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) 264 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff) 265 266 #define DIV_FROM_REG(val) (1 << (val)) 267 268 static u8 div_to_reg(int nr, long val) 269 { 270 int i; 271 272 /* fan divisors max out at 128 */ 273 val = clamp_val(val, 1, 128) >> 1; 274 for (i = 0; i < 7; i++) { 275 if (val == 0) 276 break; 277 val >>= 1; 278 } 279 return (u8) i; 280 } 281 282 struct w83791d_data { 283 struct device *hwmon_dev; 284 struct mutex update_lock; 285 286 char valid; /* !=0 if following fields are valid */ 287 unsigned long last_updated; /* In jiffies */ 288 289 /* array of 2 pointers to subclients */ 290 struct i2c_client *lm75[2]; 291 292 /* volts */ 293 u8 in[NUMBER_OF_VIN]; /* Register value */ 294 u8 in_max[NUMBER_OF_VIN]; /* Register value */ 295 u8 in_min[NUMBER_OF_VIN]; /* Register value */ 296 297 /* fans */ 298 u8 fan[NUMBER_OF_FANIN]; /* Register value */ 299 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */ 300 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */ 301 302 /* Temperature sensors */ 303 304 s8 temp1[3]; /* current, over, thyst */ 305 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the 306 * integral part, bottom 8 bits are the 307 * fractional part. We only use the top 308 * 9 bits as the resolution is only 309 * to the 0.5 degree C... 310 * two sensors with three values 311 * (cur, over, hyst) 312 */ 313 314 /* PWMs */ 315 u8 pwm[5]; /* pwm duty cycle */ 316 u8 pwm_enable[3]; /* pwm enable status for fan 1-3 317 * (fan 4-5 only support manual mode) 318 */ 319 320 u8 temp_target[3]; /* pwm 1-3 target temperature */ 321 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */ 322 323 /* Misc */ 324 u32 alarms; /* realtime status register encoding,combined */ 325 u8 beep_enable; /* Global beep enable */ 326 u32 beep_mask; /* Mask off specific beeps */ 327 u8 vid; /* Register encoding, combined */ 328 u8 vrm; /* hwmon-vid */ 329 }; 330 331 static int w83791d_probe(struct i2c_client *client, 332 const struct i2c_device_id *id); 333 static int w83791d_detect(struct i2c_client *client, 334 struct i2c_board_info *info); 335 static int w83791d_remove(struct i2c_client *client); 336 337 static int w83791d_read(struct i2c_client *client, u8 reg); 338 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value); 339 static struct w83791d_data *w83791d_update_device(struct device *dev); 340 341 #ifdef DEBUG 342 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev); 343 #endif 344 345 static void w83791d_init_client(struct i2c_client *client); 346 347 static const struct i2c_device_id w83791d_id[] = { 348 { "w83791d", 0 }, 349 { } 350 }; 351 MODULE_DEVICE_TABLE(i2c, w83791d_id); 352 353 static struct i2c_driver w83791d_driver = { 354 .class = I2C_CLASS_HWMON, 355 .driver = { 356 .name = "w83791d", 357 }, 358 .probe = w83791d_probe, 359 .remove = w83791d_remove, 360 .id_table = w83791d_id, 361 .detect = w83791d_detect, 362 .address_list = normal_i2c, 363 }; 364 365 /* following are the sysfs callback functions */ 366 #define show_in_reg(reg) \ 367 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 368 char *buf) \ 369 { \ 370 struct sensor_device_attribute *sensor_attr = \ 371 to_sensor_dev_attr(attr); \ 372 struct w83791d_data *data = w83791d_update_device(dev); \ 373 int nr = sensor_attr->index; \ 374 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 375 } 376 377 show_in_reg(in); 378 show_in_reg(in_min); 379 show_in_reg(in_max); 380 381 #define store_in_reg(REG, reg) \ 382 static ssize_t store_in_##reg(struct device *dev, \ 383 struct device_attribute *attr, \ 384 const char *buf, size_t count) \ 385 { \ 386 struct sensor_device_attribute *sensor_attr = \ 387 to_sensor_dev_attr(attr); \ 388 struct i2c_client *client = to_i2c_client(dev); \ 389 struct w83791d_data *data = i2c_get_clientdata(client); \ 390 int nr = sensor_attr->index; \ 391 unsigned long val; \ 392 int err = kstrtoul(buf, 10, &val); \ 393 if (err) \ 394 return err; \ 395 mutex_lock(&data->update_lock); \ 396 data->in_##reg[nr] = IN_TO_REG(val); \ 397 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \ 398 mutex_unlock(&data->update_lock); \ 399 \ 400 return count; \ 401 } 402 store_in_reg(MIN, min); 403 store_in_reg(MAX, max); 404 405 static struct sensor_device_attribute sda_in_input[] = { 406 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), 407 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), 408 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), 409 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3), 410 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4), 411 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5), 412 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6), 413 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7), 414 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8), 415 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9), 416 }; 417 418 static struct sensor_device_attribute sda_in_min[] = { 419 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), 420 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), 421 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), 422 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3), 423 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4), 424 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5), 425 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6), 426 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7), 427 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8), 428 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9), 429 }; 430 431 static struct sensor_device_attribute sda_in_max[] = { 432 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), 433 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), 434 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), 435 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3), 436 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4), 437 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5), 438 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6), 439 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7), 440 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8), 441 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9), 442 }; 443 444 445 static ssize_t show_beep(struct device *dev, struct device_attribute *attr, 446 char *buf) 447 { 448 struct sensor_device_attribute *sensor_attr = 449 to_sensor_dev_attr(attr); 450 struct w83791d_data *data = w83791d_update_device(dev); 451 int bitnr = sensor_attr->index; 452 453 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1); 454 } 455 456 static ssize_t store_beep(struct device *dev, struct device_attribute *attr, 457 const char *buf, size_t count) 458 { 459 struct sensor_device_attribute *sensor_attr = 460 to_sensor_dev_attr(attr); 461 struct i2c_client *client = to_i2c_client(dev); 462 struct w83791d_data *data = i2c_get_clientdata(client); 463 int bitnr = sensor_attr->index; 464 int bytenr = bitnr / 8; 465 unsigned long val; 466 int err; 467 468 err = kstrtoul(buf, 10, &val); 469 if (err) 470 return err; 471 472 val = val ? 1 : 0; 473 474 mutex_lock(&data->update_lock); 475 476 data->beep_mask &= ~(0xff << (bytenr * 8)); 477 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr]) 478 << (bytenr * 8); 479 480 data->beep_mask &= ~(1 << bitnr); 481 data->beep_mask |= val << bitnr; 482 483 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr], 484 (data->beep_mask >> (bytenr * 8)) & 0xff); 485 486 mutex_unlock(&data->update_lock); 487 488 return count; 489 } 490 491 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 492 char *buf) 493 { 494 struct sensor_device_attribute *sensor_attr = 495 to_sensor_dev_attr(attr); 496 struct w83791d_data *data = w83791d_update_device(dev); 497 int bitnr = sensor_attr->index; 498 499 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); 500 } 501 502 /* 503 * Note: The bitmask for the beep enable/disable is different than 504 * the bitmask for the alarm. 505 */ 506 static struct sensor_device_attribute sda_in_beep[] = { 507 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0), 508 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13), 509 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2), 510 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3), 511 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8), 512 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9), 513 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10), 514 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16), 515 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17), 516 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14), 517 }; 518 519 static struct sensor_device_attribute sda_in_alarm[] = { 520 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0), 521 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1), 522 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2), 523 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3), 524 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8), 525 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9), 526 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10), 527 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19), 528 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20), 529 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14), 530 }; 531 532 #define show_fan_reg(reg) \ 533 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 534 char *buf) \ 535 { \ 536 struct sensor_device_attribute *sensor_attr = \ 537 to_sensor_dev_attr(attr); \ 538 struct w83791d_data *data = w83791d_update_device(dev); \ 539 int nr = sensor_attr->index; \ 540 return sprintf(buf, "%d\n", \ 541 FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ 542 } 543 544 show_fan_reg(fan); 545 show_fan_reg(fan_min); 546 547 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, 548 const char *buf, size_t count) 549 { 550 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 551 struct i2c_client *client = to_i2c_client(dev); 552 struct w83791d_data *data = i2c_get_clientdata(client); 553 int nr = sensor_attr->index; 554 unsigned long val; 555 int err; 556 557 err = kstrtoul(buf, 10, &val); 558 if (err) 559 return err; 560 561 mutex_lock(&data->update_lock); 562 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr])); 563 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 564 mutex_unlock(&data->update_lock); 565 566 return count; 567 } 568 569 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 573 int nr = sensor_attr->index; 574 struct w83791d_data *data = w83791d_update_device(dev); 575 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); 576 } 577 578 /* 579 * Note: we save and restore the fan minimum here, because its value is 580 * determined in part by the fan divisor. This follows the principle of 581 * least surprise; the user doesn't expect the fan minimum to change just 582 * because the divisor changed. 583 */ 584 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, 585 const char *buf, size_t count) 586 { 587 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 588 struct i2c_client *client = to_i2c_client(dev); 589 struct w83791d_data *data = i2c_get_clientdata(client); 590 int nr = sensor_attr->index; 591 unsigned long min; 592 u8 tmp_fan_div; 593 u8 fan_div_reg; 594 u8 vbat_reg; 595 int indx = 0; 596 u8 keep_mask = 0; 597 u8 new_shift = 0; 598 unsigned long val; 599 int err; 600 601 err = kstrtoul(buf, 10, &val); 602 if (err) 603 return err; 604 605 /* Save fan_min */ 606 min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); 607 608 mutex_lock(&data->update_lock); 609 data->fan_div[nr] = div_to_reg(nr, val); 610 611 switch (nr) { 612 case 0: 613 indx = 0; 614 keep_mask = 0xcf; 615 new_shift = 4; 616 break; 617 case 1: 618 indx = 0; 619 keep_mask = 0x3f; 620 new_shift = 6; 621 break; 622 case 2: 623 indx = 1; 624 keep_mask = 0x3f; 625 new_shift = 6; 626 break; 627 case 3: 628 indx = 2; 629 keep_mask = 0xf8; 630 new_shift = 0; 631 break; 632 case 4: 633 indx = 2; 634 keep_mask = 0x8f; 635 new_shift = 4; 636 break; 637 #ifdef DEBUG 638 default: 639 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr); 640 count = -EINVAL; 641 goto err_exit; 642 #endif 643 } 644 645 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx]) 646 & keep_mask; 647 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; 648 649 w83791d_write(client, W83791D_REG_FAN_DIV[indx], 650 fan_div_reg | tmp_fan_div); 651 652 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */ 653 if (nr < 3) { 654 keep_mask = ~(1 << (nr + 5)); 655 vbat_reg = w83791d_read(client, W83791D_REG_VBAT) 656 & keep_mask; 657 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask; 658 w83791d_write(client, W83791D_REG_VBAT, 659 vbat_reg | tmp_fan_div); 660 } 661 662 /* Restore fan_min */ 663 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr])); 664 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 665 666 #ifdef DEBUG 667 err_exit: 668 #endif 669 mutex_unlock(&data->update_lock); 670 671 return count; 672 } 673 674 static struct sensor_device_attribute sda_fan_input[] = { 675 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), 676 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), 677 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2), 678 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3), 679 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4), 680 }; 681 682 static struct sensor_device_attribute sda_fan_min[] = { 683 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, 684 show_fan_min, store_fan_min, 0), 685 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, 686 show_fan_min, store_fan_min, 1), 687 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, 688 show_fan_min, store_fan_min, 2), 689 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, 690 show_fan_min, store_fan_min, 3), 691 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, 692 show_fan_min, store_fan_min, 4), 693 }; 694 695 static struct sensor_device_attribute sda_fan_div[] = { 696 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, 697 show_fan_div, store_fan_div, 0), 698 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, 699 show_fan_div, store_fan_div, 1), 700 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO, 701 show_fan_div, store_fan_div, 2), 702 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO, 703 show_fan_div, store_fan_div, 3), 704 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO, 705 show_fan_div, store_fan_div, 4), 706 }; 707 708 static struct sensor_device_attribute sda_fan_beep[] = { 709 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6), 710 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7), 711 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11), 712 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21), 713 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22), 714 }; 715 716 static struct sensor_device_attribute sda_fan_alarm[] = { 717 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6), 718 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7), 719 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11), 720 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21), 721 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22), 722 }; 723 724 /* read/write PWMs */ 725 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 726 char *buf) 727 { 728 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 729 int nr = sensor_attr->index; 730 struct w83791d_data *data = w83791d_update_device(dev); 731 return sprintf(buf, "%u\n", data->pwm[nr]); 732 } 733 734 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, 735 const char *buf, size_t count) 736 { 737 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 738 struct i2c_client *client = to_i2c_client(dev); 739 struct w83791d_data *data = i2c_get_clientdata(client); 740 int nr = sensor_attr->index; 741 unsigned long val; 742 743 if (kstrtoul(buf, 10, &val)) 744 return -EINVAL; 745 746 mutex_lock(&data->update_lock); 747 data->pwm[nr] = clamp_val(val, 0, 255); 748 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]); 749 mutex_unlock(&data->update_lock); 750 return count; 751 } 752 753 static struct sensor_device_attribute sda_pwm[] = { 754 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, 755 show_pwm, store_pwm, 0), 756 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, 757 show_pwm, store_pwm, 1), 758 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, 759 show_pwm, store_pwm, 2), 760 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, 761 show_pwm, store_pwm, 3), 762 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO, 763 show_pwm, store_pwm, 4), 764 }; 765 766 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr, 767 char *buf) 768 { 769 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 770 int nr = sensor_attr->index; 771 struct w83791d_data *data = w83791d_update_device(dev); 772 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1); 773 } 774 775 static ssize_t store_pwmenable(struct device *dev, 776 struct device_attribute *attr, const char *buf, size_t count) 777 { 778 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 779 struct i2c_client *client = to_i2c_client(dev); 780 struct w83791d_data *data = i2c_get_clientdata(client); 781 int nr = sensor_attr->index; 782 unsigned long val; 783 u8 reg_cfg_tmp; 784 u8 reg_idx = 0; 785 u8 val_shift = 0; 786 u8 keep_mask = 0; 787 788 int ret = kstrtoul(buf, 10, &val); 789 790 if (ret || val < 1 || val > 3) 791 return -EINVAL; 792 793 mutex_lock(&data->update_lock); 794 data->pwm_enable[nr] = val - 1; 795 switch (nr) { 796 case 0: 797 reg_idx = 0; 798 val_shift = 2; 799 keep_mask = 0xf3; 800 break; 801 case 1: 802 reg_idx = 0; 803 val_shift = 4; 804 keep_mask = 0xcf; 805 break; 806 case 2: 807 reg_idx = 1; 808 val_shift = 2; 809 keep_mask = 0xf3; 810 break; 811 } 812 813 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]); 814 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) | 815 data->pwm_enable[nr] << val_shift; 816 817 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp); 818 mutex_unlock(&data->update_lock); 819 820 return count; 821 } 822 static struct sensor_device_attribute sda_pwmenable[] = { 823 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, 824 show_pwmenable, store_pwmenable, 0), 825 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, 826 show_pwmenable, store_pwmenable, 1), 827 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, 828 show_pwmenable, store_pwmenable, 2), 829 }; 830 831 /* For Smart Fan I / Thermal Cruise */ 832 static ssize_t show_temp_target(struct device *dev, 833 struct device_attribute *attr, char *buf) 834 { 835 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 836 struct w83791d_data *data = w83791d_update_device(dev); 837 int nr = sensor_attr->index; 838 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr])); 839 } 840 841 static ssize_t store_temp_target(struct device *dev, 842 struct device_attribute *attr, const char *buf, size_t count) 843 { 844 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 845 struct i2c_client *client = to_i2c_client(dev); 846 struct w83791d_data *data = i2c_get_clientdata(client); 847 int nr = sensor_attr->index; 848 long val; 849 u8 target_mask; 850 851 if (kstrtol(buf, 10, &val)) 852 return -EINVAL; 853 854 mutex_lock(&data->update_lock); 855 data->temp_target[nr] = TARGET_TEMP_TO_REG(val); 856 target_mask = w83791d_read(client, 857 W83791D_REG_TEMP_TARGET[nr]) & 0x80; 858 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr], 859 data->temp_target[nr] | target_mask); 860 mutex_unlock(&data->update_lock); 861 return count; 862 } 863 864 static struct sensor_device_attribute sda_temp_target[] = { 865 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO, 866 show_temp_target, store_temp_target, 0), 867 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO, 868 show_temp_target, store_temp_target, 1), 869 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO, 870 show_temp_target, store_temp_target, 2), 871 }; 872 873 static ssize_t show_temp_tolerance(struct device *dev, 874 struct device_attribute *attr, char *buf) 875 { 876 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 877 struct w83791d_data *data = w83791d_update_device(dev); 878 int nr = sensor_attr->index; 879 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr])); 880 } 881 882 static ssize_t store_temp_tolerance(struct device *dev, 883 struct device_attribute *attr, const char *buf, size_t count) 884 { 885 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 886 struct i2c_client *client = to_i2c_client(dev); 887 struct w83791d_data *data = i2c_get_clientdata(client); 888 int nr = sensor_attr->index; 889 unsigned long val; 890 u8 target_mask; 891 u8 reg_idx = 0; 892 u8 val_shift = 0; 893 u8 keep_mask = 0; 894 895 if (kstrtoul(buf, 10, &val)) 896 return -EINVAL; 897 898 switch (nr) { 899 case 0: 900 reg_idx = 0; 901 val_shift = 0; 902 keep_mask = 0xf0; 903 break; 904 case 1: 905 reg_idx = 0; 906 val_shift = 4; 907 keep_mask = 0x0f; 908 break; 909 case 2: 910 reg_idx = 1; 911 val_shift = 0; 912 keep_mask = 0xf0; 913 break; 914 } 915 916 mutex_lock(&data->update_lock); 917 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val); 918 target_mask = w83791d_read(client, 919 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask; 920 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx], 921 (data->temp_tolerance[nr] << val_shift) | target_mask); 922 mutex_unlock(&data->update_lock); 923 return count; 924 } 925 926 static struct sensor_device_attribute sda_temp_tolerance[] = { 927 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO, 928 show_temp_tolerance, store_temp_tolerance, 0), 929 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO, 930 show_temp_tolerance, store_temp_tolerance, 1), 931 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO, 932 show_temp_tolerance, store_temp_tolerance, 2), 933 }; 934 935 /* read/write the temperature1, includes measured value and limits */ 936 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr, 937 char *buf) 938 { 939 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 940 struct w83791d_data *data = w83791d_update_device(dev); 941 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index])); 942 } 943 944 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr, 945 const char *buf, size_t count) 946 { 947 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 948 struct i2c_client *client = to_i2c_client(dev); 949 struct w83791d_data *data = i2c_get_clientdata(client); 950 int nr = attr->index; 951 long val; 952 int err; 953 954 err = kstrtol(buf, 10, &val); 955 if (err) 956 return err; 957 958 mutex_lock(&data->update_lock); 959 data->temp1[nr] = TEMP1_TO_REG(val); 960 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]); 961 mutex_unlock(&data->update_lock); 962 return count; 963 } 964 965 /* read/write temperature2-3, includes measured value and limits */ 966 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr, 967 char *buf) 968 { 969 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 970 struct w83791d_data *data = w83791d_update_device(dev); 971 int nr = attr->nr; 972 int index = attr->index; 973 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index])); 974 } 975 976 static ssize_t store_temp23(struct device *dev, 977 struct device_attribute *devattr, 978 const char *buf, size_t count) 979 { 980 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 981 struct i2c_client *client = to_i2c_client(dev); 982 struct w83791d_data *data = i2c_get_clientdata(client); 983 long val; 984 int err; 985 int nr = attr->nr; 986 int index = attr->index; 987 988 err = kstrtol(buf, 10, &val); 989 if (err) 990 return err; 991 992 mutex_lock(&data->update_lock); 993 data->temp_add[nr][index] = TEMP23_TO_REG(val); 994 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2], 995 data->temp_add[nr][index] >> 8); 996 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1], 997 data->temp_add[nr][index] & 0x80); 998 mutex_unlock(&data->update_lock); 999 1000 return count; 1001 } 1002 1003 static struct sensor_device_attribute_2 sda_temp_input[] = { 1004 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0), 1005 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0), 1006 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0), 1007 }; 1008 1009 static struct sensor_device_attribute_2 sda_temp_max[] = { 1010 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, 1011 show_temp1, store_temp1, 0, 1), 1012 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, 1013 show_temp23, store_temp23, 0, 1), 1014 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, 1015 show_temp23, store_temp23, 1, 1), 1016 }; 1017 1018 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { 1019 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, 1020 show_temp1, store_temp1, 0, 2), 1021 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, 1022 show_temp23, store_temp23, 0, 2), 1023 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, 1024 show_temp23, store_temp23, 1, 2), 1025 }; 1026 1027 /* 1028 * Note: The bitmask for the beep enable/disable is different than 1029 * the bitmask for the alarm. 1030 */ 1031 static struct sensor_device_attribute sda_temp_beep[] = { 1032 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4), 1033 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5), 1034 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1), 1035 }; 1036 1037 static struct sensor_device_attribute sda_temp_alarm[] = { 1038 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4), 1039 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5), 1040 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13), 1041 }; 1042 1043 /* get realtime status of all sensors items: voltage, temp, fan */ 1044 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 1045 char *buf) 1046 { 1047 struct w83791d_data *data = w83791d_update_device(dev); 1048 return sprintf(buf, "%u\n", data->alarms); 1049 } 1050 1051 static DEVICE_ATTR_RO(alarms); 1052 1053 /* Beep control */ 1054 1055 #define GLOBAL_BEEP_ENABLE_SHIFT 15 1056 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT) 1057 1058 static ssize_t show_beep_enable(struct device *dev, 1059 struct device_attribute *attr, char *buf) 1060 { 1061 struct w83791d_data *data = w83791d_update_device(dev); 1062 return sprintf(buf, "%d\n", data->beep_enable); 1063 } 1064 1065 static ssize_t show_beep_mask(struct device *dev, 1066 struct device_attribute *attr, char *buf) 1067 { 1068 struct w83791d_data *data = w83791d_update_device(dev); 1069 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask)); 1070 } 1071 1072 1073 static ssize_t store_beep_mask(struct device *dev, 1074 struct device_attribute *attr, 1075 const char *buf, size_t count) 1076 { 1077 struct i2c_client *client = to_i2c_client(dev); 1078 struct w83791d_data *data = i2c_get_clientdata(client); 1079 int i; 1080 long val; 1081 int err; 1082 1083 err = kstrtol(buf, 10, &val); 1084 if (err) 1085 return err; 1086 1087 mutex_lock(&data->update_lock); 1088 1089 /* 1090 * The beep_enable state overrides any enabling request from 1091 * the masks 1092 */ 1093 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK; 1094 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1095 1096 val = data->beep_mask; 1097 1098 for (i = 0; i < 3; i++) { 1099 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff)); 1100 val >>= 8; 1101 } 1102 1103 mutex_unlock(&data->update_lock); 1104 1105 return count; 1106 } 1107 1108 static ssize_t store_beep_enable(struct device *dev, 1109 struct device_attribute *attr, 1110 const char *buf, size_t count) 1111 { 1112 struct i2c_client *client = to_i2c_client(dev); 1113 struct w83791d_data *data = i2c_get_clientdata(client); 1114 long val; 1115 int err; 1116 1117 err = kstrtol(buf, 10, &val); 1118 if (err) 1119 return err; 1120 1121 mutex_lock(&data->update_lock); 1122 1123 data->beep_enable = val ? 1 : 0; 1124 1125 /* Keep the full mask value in sync with the current enable */ 1126 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK; 1127 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1128 1129 /* 1130 * The global control is in the second beep control register 1131 * so only need to update that register 1132 */ 1133 val = (data->beep_mask >> 8) & 0xff; 1134 1135 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val); 1136 1137 mutex_unlock(&data->update_lock); 1138 1139 return count; 1140 } 1141 1142 static struct sensor_device_attribute sda_beep_ctrl[] = { 1143 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR, 1144 show_beep_enable, store_beep_enable, 0), 1145 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR, 1146 show_beep_mask, store_beep_mask, 1) 1147 }; 1148 1149 /* cpu voltage regulation information */ 1150 static ssize_t cpu0_vid_show(struct device *dev, 1151 struct device_attribute *attr, char *buf) 1152 { 1153 struct w83791d_data *data = w83791d_update_device(dev); 1154 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 1155 } 1156 1157 static DEVICE_ATTR_RO(cpu0_vid); 1158 1159 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, 1160 char *buf) 1161 { 1162 struct w83791d_data *data = dev_get_drvdata(dev); 1163 return sprintf(buf, "%d\n", data->vrm); 1164 } 1165 1166 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, 1167 const char *buf, size_t count) 1168 { 1169 struct w83791d_data *data = dev_get_drvdata(dev); 1170 unsigned long val; 1171 int err; 1172 1173 /* 1174 * No lock needed as vrm is internal to the driver 1175 * (not read from a chip register) and so is not 1176 * updated in w83791d_update_device() 1177 */ 1178 1179 err = kstrtoul(buf, 10, &val); 1180 if (err) 1181 return err; 1182 1183 if (val > 255) 1184 return -EINVAL; 1185 1186 data->vrm = val; 1187 return count; 1188 } 1189 1190 static DEVICE_ATTR_RW(vrm); 1191 1192 #define IN_UNIT_ATTRS(X) \ 1193 &sda_in_input[X].dev_attr.attr, \ 1194 &sda_in_min[X].dev_attr.attr, \ 1195 &sda_in_max[X].dev_attr.attr, \ 1196 &sda_in_beep[X].dev_attr.attr, \ 1197 &sda_in_alarm[X].dev_attr.attr 1198 1199 #define FAN_UNIT_ATTRS(X) \ 1200 &sda_fan_input[X].dev_attr.attr, \ 1201 &sda_fan_min[X].dev_attr.attr, \ 1202 &sda_fan_div[X].dev_attr.attr, \ 1203 &sda_fan_beep[X].dev_attr.attr, \ 1204 &sda_fan_alarm[X].dev_attr.attr 1205 1206 #define TEMP_UNIT_ATTRS(X) \ 1207 &sda_temp_input[X].dev_attr.attr, \ 1208 &sda_temp_max[X].dev_attr.attr, \ 1209 &sda_temp_max_hyst[X].dev_attr.attr, \ 1210 &sda_temp_beep[X].dev_attr.attr, \ 1211 &sda_temp_alarm[X].dev_attr.attr 1212 1213 static struct attribute *w83791d_attributes[] = { 1214 IN_UNIT_ATTRS(0), 1215 IN_UNIT_ATTRS(1), 1216 IN_UNIT_ATTRS(2), 1217 IN_UNIT_ATTRS(3), 1218 IN_UNIT_ATTRS(4), 1219 IN_UNIT_ATTRS(5), 1220 IN_UNIT_ATTRS(6), 1221 IN_UNIT_ATTRS(7), 1222 IN_UNIT_ATTRS(8), 1223 IN_UNIT_ATTRS(9), 1224 FAN_UNIT_ATTRS(0), 1225 FAN_UNIT_ATTRS(1), 1226 FAN_UNIT_ATTRS(2), 1227 TEMP_UNIT_ATTRS(0), 1228 TEMP_UNIT_ATTRS(1), 1229 TEMP_UNIT_ATTRS(2), 1230 &dev_attr_alarms.attr, 1231 &sda_beep_ctrl[0].dev_attr.attr, 1232 &sda_beep_ctrl[1].dev_attr.attr, 1233 &dev_attr_cpu0_vid.attr, 1234 &dev_attr_vrm.attr, 1235 &sda_pwm[0].dev_attr.attr, 1236 &sda_pwm[1].dev_attr.attr, 1237 &sda_pwm[2].dev_attr.attr, 1238 &sda_pwmenable[0].dev_attr.attr, 1239 &sda_pwmenable[1].dev_attr.attr, 1240 &sda_pwmenable[2].dev_attr.attr, 1241 &sda_temp_target[0].dev_attr.attr, 1242 &sda_temp_target[1].dev_attr.attr, 1243 &sda_temp_target[2].dev_attr.attr, 1244 &sda_temp_tolerance[0].dev_attr.attr, 1245 &sda_temp_tolerance[1].dev_attr.attr, 1246 &sda_temp_tolerance[2].dev_attr.attr, 1247 NULL 1248 }; 1249 1250 static const struct attribute_group w83791d_group = { 1251 .attrs = w83791d_attributes, 1252 }; 1253 1254 /* 1255 * Separate group of attributes for fan/pwm 4-5. Their pins can also be 1256 * in use for GPIO in which case their sysfs-interface should not be made 1257 * available 1258 */ 1259 static struct attribute *w83791d_attributes_fanpwm45[] = { 1260 FAN_UNIT_ATTRS(3), 1261 FAN_UNIT_ATTRS(4), 1262 &sda_pwm[3].dev_attr.attr, 1263 &sda_pwm[4].dev_attr.attr, 1264 NULL 1265 }; 1266 1267 static const struct attribute_group w83791d_group_fanpwm45 = { 1268 .attrs = w83791d_attributes_fanpwm45, 1269 }; 1270 1271 static int w83791d_detect_subclients(struct i2c_client *client) 1272 { 1273 struct i2c_adapter *adapter = client->adapter; 1274 struct w83791d_data *data = i2c_get_clientdata(client); 1275 int address = client->addr; 1276 int i, id, err; 1277 u8 val; 1278 1279 id = i2c_adapter_id(adapter); 1280 if (force_subclients[0] == id && force_subclients[1] == address) { 1281 for (i = 2; i <= 3; i++) { 1282 if (force_subclients[i] < 0x48 || 1283 force_subclients[i] > 0x4f) { 1284 dev_err(&client->dev, 1285 "invalid subclient " 1286 "address %d; must be 0x48-0x4f\n", 1287 force_subclients[i]); 1288 err = -ENODEV; 1289 goto error_sc_0; 1290 } 1291 } 1292 w83791d_write(client, W83791D_REG_I2C_SUBADDR, 1293 (force_subclients[2] & 0x07) | 1294 ((force_subclients[3] & 0x07) << 4)); 1295 } 1296 1297 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR); 1298 if (!(val & 0x08)) 1299 data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7)); 1300 if (!(val & 0x80)) { 1301 if ((data->lm75[0] != NULL) && 1302 ((val & 0x7) == ((val >> 4) & 0x7))) { 1303 dev_err(&client->dev, 1304 "duplicate addresses 0x%x, " 1305 "use force_subclient\n", 1306 data->lm75[0]->addr); 1307 err = -ENODEV; 1308 goto error_sc_1; 1309 } 1310 data->lm75[1] = i2c_new_dummy(adapter, 1311 0x48 + ((val >> 4) & 0x7)); 1312 } 1313 1314 return 0; 1315 1316 /* Undo inits in case of errors */ 1317 1318 error_sc_1: 1319 if (data->lm75[0] != NULL) 1320 i2c_unregister_device(data->lm75[0]); 1321 error_sc_0: 1322 return err; 1323 } 1324 1325 1326 /* Return 0 if detection is successful, -ENODEV otherwise */ 1327 static int w83791d_detect(struct i2c_client *client, 1328 struct i2c_board_info *info) 1329 { 1330 struct i2c_adapter *adapter = client->adapter; 1331 int val1, val2; 1332 unsigned short address = client->addr; 1333 1334 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1335 return -ENODEV; 1336 1337 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80) 1338 return -ENODEV; 1339 1340 val1 = w83791d_read(client, W83791D_REG_BANK); 1341 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1342 /* Check for Winbond ID if in bank 0 */ 1343 if (!(val1 & 0x07)) { 1344 if ((!(val1 & 0x80) && val2 != 0xa3) || 1345 ((val1 & 0x80) && val2 != 0x5c)) { 1346 return -ENODEV; 1347 } 1348 } 1349 /* 1350 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR 1351 * should match 1352 */ 1353 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address) 1354 return -ENODEV; 1355 1356 /* We want bank 0 and Vendor ID high byte */ 1357 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78; 1358 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80); 1359 1360 /* Verify it is a Winbond w83791d */ 1361 val1 = w83791d_read(client, W83791D_REG_WCHIPID); 1362 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1363 if (val1 != 0x71 || val2 != 0x5c) 1364 return -ENODEV; 1365 1366 strlcpy(info->type, "w83791d", I2C_NAME_SIZE); 1367 1368 return 0; 1369 } 1370 1371 static int w83791d_probe(struct i2c_client *client, 1372 const struct i2c_device_id *id) 1373 { 1374 struct w83791d_data *data; 1375 struct device *dev = &client->dev; 1376 int i, err; 1377 u8 has_fanpwm45; 1378 1379 #ifdef DEBUG 1380 int val1; 1381 val1 = w83791d_read(client, W83791D_REG_DID_VID4); 1382 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n", 1383 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1); 1384 #endif 1385 1386 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data), 1387 GFP_KERNEL); 1388 if (!data) 1389 return -ENOMEM; 1390 1391 i2c_set_clientdata(client, data); 1392 mutex_init(&data->update_lock); 1393 1394 err = w83791d_detect_subclients(client); 1395 if (err) 1396 return err; 1397 1398 /* Initialize the chip */ 1399 w83791d_init_client(client); 1400 1401 /* 1402 * If the fan_div is changed, make sure there is a rational 1403 * fan_min in place 1404 */ 1405 for (i = 0; i < NUMBER_OF_FANIN; i++) 1406 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); 1407 1408 /* Register sysfs hooks */ 1409 err = sysfs_create_group(&client->dev.kobj, &w83791d_group); 1410 if (err) 1411 goto error3; 1412 1413 /* Check if pins of fan/pwm 4-5 are in use as GPIO */ 1414 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10; 1415 if (has_fanpwm45) { 1416 err = sysfs_create_group(&client->dev.kobj, 1417 &w83791d_group_fanpwm45); 1418 if (err) 1419 goto error4; 1420 } 1421 1422 /* Everything is ready, now register the working device */ 1423 data->hwmon_dev = hwmon_device_register(dev); 1424 if (IS_ERR(data->hwmon_dev)) { 1425 err = PTR_ERR(data->hwmon_dev); 1426 goto error5; 1427 } 1428 1429 return 0; 1430 1431 error5: 1432 if (has_fanpwm45) 1433 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45); 1434 error4: 1435 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1436 error3: 1437 if (data->lm75[0] != NULL) 1438 i2c_unregister_device(data->lm75[0]); 1439 if (data->lm75[1] != NULL) 1440 i2c_unregister_device(data->lm75[1]); 1441 return err; 1442 } 1443 1444 static int w83791d_remove(struct i2c_client *client) 1445 { 1446 struct w83791d_data *data = i2c_get_clientdata(client); 1447 1448 hwmon_device_unregister(data->hwmon_dev); 1449 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1450 1451 if (data->lm75[0] != NULL) 1452 i2c_unregister_device(data->lm75[0]); 1453 if (data->lm75[1] != NULL) 1454 i2c_unregister_device(data->lm75[1]); 1455 1456 return 0; 1457 } 1458 1459 static void w83791d_init_client(struct i2c_client *client) 1460 { 1461 struct w83791d_data *data = i2c_get_clientdata(client); 1462 u8 tmp; 1463 u8 old_beep; 1464 1465 /* 1466 * The difference between reset and init is that reset 1467 * does a hard reset of the chip via index 0x40, bit 7, 1468 * but init simply forces certain registers to have "sane" 1469 * values. The hope is that the BIOS has done the right 1470 * thing (which is why the default is reset=0, init=0), 1471 * but if not, reset is the hard hammer and init 1472 * is the soft mallet both of which are trying to whack 1473 * things into place... 1474 * NOTE: The data sheet makes a distinction between 1475 * "power on defaults" and "reset by MR". As far as I can tell, 1476 * the hard reset puts everything into a power-on state so I'm 1477 * not sure what "reset by MR" means or how it can happen. 1478 */ 1479 if (reset || init) { 1480 /* keep some BIOS settings when we... */ 1481 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG); 1482 1483 if (reset) { 1484 /* ... reset the chip and ... */ 1485 w83791d_write(client, W83791D_REG_CONFIG, 0x80); 1486 } 1487 1488 /* ... disable power-on abnormal beep */ 1489 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80); 1490 1491 /* disable the global beep (not done by hard reset) */ 1492 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]); 1493 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef); 1494 1495 if (init) { 1496 /* Make sure monitoring is turned on for add-ons */ 1497 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG); 1498 if (tmp & 1) { 1499 w83791d_write(client, W83791D_REG_TEMP2_CONFIG, 1500 tmp & 0xfe); 1501 } 1502 1503 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG); 1504 if (tmp & 1) { 1505 w83791d_write(client, W83791D_REG_TEMP3_CONFIG, 1506 tmp & 0xfe); 1507 } 1508 1509 /* Start monitoring */ 1510 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7; 1511 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01); 1512 } 1513 } 1514 1515 data->vrm = vid_which_vrm(); 1516 } 1517 1518 static struct w83791d_data *w83791d_update_device(struct device *dev) 1519 { 1520 struct i2c_client *client = to_i2c_client(dev); 1521 struct w83791d_data *data = i2c_get_clientdata(client); 1522 int i, j; 1523 u8 reg_array_tmp[3]; 1524 u8 vbat_reg; 1525 1526 mutex_lock(&data->update_lock); 1527 1528 if (time_after(jiffies, data->last_updated + (HZ * 3)) 1529 || !data->valid) { 1530 dev_dbg(dev, "Starting w83791d device update\n"); 1531 1532 /* Update the voltages measured value and limits */ 1533 for (i = 0; i < NUMBER_OF_VIN; i++) { 1534 data->in[i] = w83791d_read(client, 1535 W83791D_REG_IN[i]); 1536 data->in_max[i] = w83791d_read(client, 1537 W83791D_REG_IN_MAX[i]); 1538 data->in_min[i] = w83791d_read(client, 1539 W83791D_REG_IN_MIN[i]); 1540 } 1541 1542 /* Update the fan counts and limits */ 1543 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1544 /* Update the Fan measured value and limits */ 1545 data->fan[i] = w83791d_read(client, 1546 W83791D_REG_FAN[i]); 1547 data->fan_min[i] = w83791d_read(client, 1548 W83791D_REG_FAN_MIN[i]); 1549 } 1550 1551 /* Update the fan divisor */ 1552 for (i = 0; i < 3; i++) { 1553 reg_array_tmp[i] = w83791d_read(client, 1554 W83791D_REG_FAN_DIV[i]); 1555 } 1556 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03; 1557 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03; 1558 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03; 1559 data->fan_div[3] = reg_array_tmp[2] & 0x07; 1560 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07; 1561 1562 /* 1563 * The fan divisor for fans 0-2 get bit 2 from 1564 * bits 5-7 respectively of vbat register 1565 */ 1566 vbat_reg = w83791d_read(client, W83791D_REG_VBAT); 1567 for (i = 0; i < 3; i++) 1568 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04; 1569 1570 /* Update PWM duty cycle */ 1571 for (i = 0; i < NUMBER_OF_PWM; i++) { 1572 data->pwm[i] = w83791d_read(client, 1573 W83791D_REG_PWM[i]); 1574 } 1575 1576 /* Update PWM enable status */ 1577 for (i = 0; i < 2; i++) { 1578 reg_array_tmp[i] = w83791d_read(client, 1579 W83791D_REG_FAN_CFG[i]); 1580 } 1581 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03; 1582 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03; 1583 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03; 1584 1585 /* Update PWM target temperature */ 1586 for (i = 0; i < 3; i++) { 1587 data->temp_target[i] = w83791d_read(client, 1588 W83791D_REG_TEMP_TARGET[i]) & 0x7f; 1589 } 1590 1591 /* Update PWM temperature tolerance */ 1592 for (i = 0; i < 2; i++) { 1593 reg_array_tmp[i] = w83791d_read(client, 1594 W83791D_REG_TEMP_TOL[i]); 1595 } 1596 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f; 1597 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f; 1598 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f; 1599 1600 /* Update the first temperature sensor */ 1601 for (i = 0; i < 3; i++) { 1602 data->temp1[i] = w83791d_read(client, 1603 W83791D_REG_TEMP1[i]); 1604 } 1605 1606 /* Update the rest of the temperature sensors */ 1607 for (i = 0; i < 2; i++) { 1608 for (j = 0; j < 3; j++) { 1609 data->temp_add[i][j] = 1610 (w83791d_read(client, 1611 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) | 1612 w83791d_read(client, 1613 W83791D_REG_TEMP_ADD[i][j * 2 + 1]); 1614 } 1615 } 1616 1617 /* Update the realtime status */ 1618 data->alarms = 1619 w83791d_read(client, W83791D_REG_ALARM1) + 1620 (w83791d_read(client, W83791D_REG_ALARM2) << 8) + 1621 (w83791d_read(client, W83791D_REG_ALARM3) << 16); 1622 1623 /* Update the beep configuration information */ 1624 data->beep_mask = 1625 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) + 1626 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) + 1627 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16); 1628 1629 /* Extract global beep enable flag */ 1630 data->beep_enable = 1631 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01; 1632 1633 /* Update the cpu voltage information */ 1634 i = w83791d_read(client, W83791D_REG_VID_FANDIV); 1635 data->vid = i & 0x0f; 1636 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01) 1637 << 4; 1638 1639 data->last_updated = jiffies; 1640 data->valid = 1; 1641 } 1642 1643 mutex_unlock(&data->update_lock); 1644 1645 #ifdef DEBUG 1646 w83791d_print_debug(data, dev); 1647 #endif 1648 1649 return data; 1650 } 1651 1652 #ifdef DEBUG 1653 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev) 1654 { 1655 int i = 0, j = 0; 1656 1657 dev_dbg(dev, "======Start of w83791d debug values======\n"); 1658 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN); 1659 for (i = 0; i < NUMBER_OF_VIN; i++) { 1660 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]); 1661 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]); 1662 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]); 1663 } 1664 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN); 1665 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1666 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]); 1667 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]); 1668 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]); 1669 } 1670 1671 /* 1672 * temperature math is signed, but only print out the 1673 * bits that matter 1674 */ 1675 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN); 1676 for (i = 0; i < 3; i++) 1677 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]); 1678 for (i = 0; i < 2; i++) { 1679 for (j = 0; j < 3; j++) { 1680 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j, 1681 (u16) data->temp_add[i][j]); 1682 } 1683 } 1684 1685 dev_dbg(dev, "Misc Information: ===>\n"); 1686 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms); 1687 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask); 1688 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable); 1689 dev_dbg(dev, "vid is: 0x%02x\n", data->vid); 1690 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm); 1691 dev_dbg(dev, "=======End of w83791d debug values========\n"); 1692 dev_dbg(dev, "\n"); 1693 } 1694 #endif 1695 1696 module_i2c_driver(w83791d_driver); 1697 1698 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>"); 1699 MODULE_DESCRIPTION("W83791D driver"); 1700 MODULE_LICENSE("GPL"); 1701