1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * 6 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com> 7 */ 8 9 /* 10 * Supports following chips: 11 * 12 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 13 * w83791d 10 5 5 3 0x71 0x5ca3 yes no 14 * 15 * The w83791d chip appears to be part way between the 83781d and the 16 * 83792d. Thus, this file is derived from both the w83792d.c and 17 * w83781d.c files. 18 * 19 * The w83791g chip is the same as the w83791d but lead-free. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/i2c.h> 26 #include <linux/hwmon.h> 27 #include <linux/hwmon-vid.h> 28 #include <linux/hwmon-sysfs.h> 29 #include <linux/err.h> 30 #include <linux/mutex.h> 31 #include <linux/jiffies.h> 32 33 #define NUMBER_OF_VIN 10 34 #define NUMBER_OF_FANIN 5 35 #define NUMBER_OF_TEMPIN 3 36 #define NUMBER_OF_PWM 5 37 38 /* Addresses to scan */ 39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, 40 I2C_CLIENT_END }; 41 42 /* Insmod parameters */ 43 44 static unsigned short force_subclients[4]; 45 module_param_array(force_subclients, short, NULL, 0); 46 MODULE_PARM_DESC(force_subclients, 47 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); 48 49 static bool reset; 50 module_param(reset, bool, 0); 51 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset"); 52 53 static bool init; 54 module_param(init, bool, 0); 55 MODULE_PARM_DESC(init, "Set to one to force extra software initialization"); 56 57 /* The W83791D registers */ 58 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = { 59 0x20, /* VCOREA in DataSheet */ 60 0x21, /* VINR0 in DataSheet */ 61 0x22, /* +3.3VIN in DataSheet */ 62 0x23, /* VDD5V in DataSheet */ 63 0x24, /* +12VIN in DataSheet */ 64 0x25, /* -12VIN in DataSheet */ 65 0x26, /* -5VIN in DataSheet */ 66 0xB0, /* 5VSB in DataSheet */ 67 0xB1, /* VBAT in DataSheet */ 68 0xB2 /* VINR1 in DataSheet */ 69 }; 70 71 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = { 72 0x2B, /* VCOREA High Limit in DataSheet */ 73 0x2D, /* VINR0 High Limit in DataSheet */ 74 0x2F, /* +3.3VIN High Limit in DataSheet */ 75 0x31, /* VDD5V High Limit in DataSheet */ 76 0x33, /* +12VIN High Limit in DataSheet */ 77 0x35, /* -12VIN High Limit in DataSheet */ 78 0x37, /* -5VIN High Limit in DataSheet */ 79 0xB4, /* 5VSB High Limit in DataSheet */ 80 0xB6, /* VBAT High Limit in DataSheet */ 81 0xB8 /* VINR1 High Limit in DataSheet */ 82 }; 83 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = { 84 0x2C, /* VCOREA Low Limit in DataSheet */ 85 0x2E, /* VINR0 Low Limit in DataSheet */ 86 0x30, /* +3.3VIN Low Limit in DataSheet */ 87 0x32, /* VDD5V Low Limit in DataSheet */ 88 0x34, /* +12VIN Low Limit in DataSheet */ 89 0x36, /* -12VIN Low Limit in DataSheet */ 90 0x38, /* -5VIN Low Limit in DataSheet */ 91 0xB5, /* 5VSB Low Limit in DataSheet */ 92 0xB7, /* VBAT Low Limit in DataSheet */ 93 0xB9 /* VINR1 Low Limit in DataSheet */ 94 }; 95 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = { 96 0x28, /* FAN 1 Count in DataSheet */ 97 0x29, /* FAN 2 Count in DataSheet */ 98 0x2A, /* FAN 3 Count in DataSheet */ 99 0xBA, /* FAN 4 Count in DataSheet */ 100 0xBB, /* FAN 5 Count in DataSheet */ 101 }; 102 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = { 103 0x3B, /* FAN 1 Count Low Limit in DataSheet */ 104 0x3C, /* FAN 2 Count Low Limit in DataSheet */ 105 0x3D, /* FAN 3 Count Low Limit in DataSheet */ 106 0xBC, /* FAN 4 Count Low Limit in DataSheet */ 107 0xBD, /* FAN 5 Count Low Limit in DataSheet */ 108 }; 109 110 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = { 111 0x81, /* PWM 1 duty cycle register in DataSheet */ 112 0x83, /* PWM 2 duty cycle register in DataSheet */ 113 0x94, /* PWM 3 duty cycle register in DataSheet */ 114 0xA0, /* PWM 4 duty cycle register in DataSheet */ 115 0xA1, /* PWM 5 duty cycle register in DataSheet */ 116 }; 117 118 static const u8 W83791D_REG_TEMP_TARGET[3] = { 119 0x85, /* PWM 1 target temperature for temp 1 */ 120 0x86, /* PWM 2 target temperature for temp 2 */ 121 0x96, /* PWM 3 target temperature for temp 3 */ 122 }; 123 124 static const u8 W83791D_REG_TEMP_TOL[2] = { 125 0x87, /* PWM 1/2 temperature tolerance */ 126 0x97, /* PWM 3 temperature tolerance */ 127 }; 128 129 static const u8 W83791D_REG_FAN_CFG[2] = { 130 0x84, /* FAN 1/2 configuration */ 131 0x95, /* FAN 3 configuration */ 132 }; 133 134 static const u8 W83791D_REG_FAN_DIV[3] = { 135 0x47, /* contains FAN1 and FAN2 Divisor */ 136 0x4b, /* contains FAN3 Divisor */ 137 0x5C, /* contains FAN4 and FAN5 Divisor */ 138 }; 139 140 #define W83791D_REG_BANK 0x4E 141 #define W83791D_REG_TEMP2_CONFIG 0xC2 142 #define W83791D_REG_TEMP3_CONFIG 0xCA 143 144 static const u8 W83791D_REG_TEMP1[3] = { 145 0x27, /* TEMP 1 in DataSheet */ 146 0x39, /* TEMP 1 Over in DataSheet */ 147 0x3A, /* TEMP 1 Hyst in DataSheet */ 148 }; 149 150 static const u8 W83791D_REG_TEMP_ADD[2][6] = { 151 {0xC0, /* TEMP 2 in DataSheet */ 152 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ 153 0xC5, /* TEMP 2 Over High part in DataSheet */ 154 0xC6, /* TEMP 2 Over Low part in DataSheet */ 155 0xC3, /* TEMP 2 Thyst High part in DataSheet */ 156 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */ 157 {0xC8, /* TEMP 3 in DataSheet */ 158 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ 159 0xCD, /* TEMP 3 Over High part in DataSheet */ 160 0xCE, /* TEMP 3 Over Low part in DataSheet */ 161 0xCB, /* TEMP 3 Thyst High part in DataSheet */ 162 0xCC} /* TEMP 3 Thyst Low part in DataSheet */ 163 }; 164 165 #define W83791D_REG_BEEP_CONFIG 0x4D 166 167 static const u8 W83791D_REG_BEEP_CTRL[3] = { 168 0x56, /* BEEP Control Register 1 */ 169 0x57, /* BEEP Control Register 2 */ 170 0xA3, /* BEEP Control Register 3 */ 171 }; 172 173 #define W83791D_REG_GPIO 0x15 174 #define W83791D_REG_CONFIG 0x40 175 #define W83791D_REG_VID_FANDIV 0x47 176 #define W83791D_REG_DID_VID4 0x49 177 #define W83791D_REG_WCHIPID 0x58 178 #define W83791D_REG_CHIPMAN 0x4F 179 #define W83791D_REG_PIN 0x4B 180 #define W83791D_REG_I2C_SUBADDR 0x4A 181 182 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */ 183 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */ 184 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */ 185 186 #define W83791D_REG_VBAT 0x5D 187 #define W83791D_REG_I2C_ADDR 0x48 188 189 /* 190 * The SMBus locks itself. The Winbond W83791D has a bank select register 191 * (index 0x4e), but the driver only accesses registers in bank 0. Since 192 * we don't switch banks, we don't need any special code to handle 193 * locking access between bank switches 194 */ 195 static inline int w83791d_read(struct i2c_client *client, u8 reg) 196 { 197 return i2c_smbus_read_byte_data(client, reg); 198 } 199 200 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value) 201 { 202 return i2c_smbus_write_byte_data(client, reg, value); 203 } 204 205 /* 206 * The analog voltage inputs have 16mV LSB. Since the sysfs output is 207 * in mV as would be measured on the chip input pin, need to just 208 * multiply/divide by 16 to translate from/to register values. 209 */ 210 #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255)) 211 #define IN_FROM_REG(val) ((val) * 16) 212 213 static u8 fan_to_reg(long rpm, int div) 214 { 215 if (rpm == 0) 216 return 255; 217 rpm = clamp_val(rpm, 1, 1000000); 218 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 219 } 220 221 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ 222 ((val) == 255 ? 0 : \ 223 1350000 / ((val) * (div)))) 224 225 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */ 226 #define TEMP1_FROM_REG(val) ((val) * 1000) 227 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ 228 (val) >= 127000 ? 127 : \ 229 (val) < 0 ? ((val) - 500) / 1000 : \ 230 ((val) + 500) / 1000) 231 232 /* 233 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius 234 * Assumes the top 8 bits are the integral amount and the bottom 8 bits 235 * are the fractional amount. Since we only have 0.5 degree resolution, 236 * the bottom 7 bits will always be zero 237 */ 238 #define TEMP23_FROM_REG(val) ((val) / 128 * 500) 239 #define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \ 240 127500), 500) * 128) 241 242 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */ 243 #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \ 244 1000) 245 246 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */ 247 #define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \ 248 1000) 249 250 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) 251 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff) 252 253 #define DIV_FROM_REG(val) (1 << (val)) 254 255 static u8 div_to_reg(int nr, long val) 256 { 257 int i; 258 259 /* fan divisors max out at 128 */ 260 val = clamp_val(val, 1, 128) >> 1; 261 for (i = 0; i < 7; i++) { 262 if (val == 0) 263 break; 264 val >>= 1; 265 } 266 return (u8) i; 267 } 268 269 struct w83791d_data { 270 struct device *hwmon_dev; 271 struct mutex update_lock; 272 273 bool valid; /* true if following fields are valid */ 274 unsigned long last_updated; /* In jiffies */ 275 276 /* volts */ 277 u8 in[NUMBER_OF_VIN]; /* Register value */ 278 u8 in_max[NUMBER_OF_VIN]; /* Register value */ 279 u8 in_min[NUMBER_OF_VIN]; /* Register value */ 280 281 /* fans */ 282 u8 fan[NUMBER_OF_FANIN]; /* Register value */ 283 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */ 284 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */ 285 286 /* Temperature sensors */ 287 288 s8 temp1[3]; /* current, over, thyst */ 289 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the 290 * integral part, bottom 8 bits are the 291 * fractional part. We only use the top 292 * 9 bits as the resolution is only 293 * to the 0.5 degree C... 294 * two sensors with three values 295 * (cur, over, hyst) 296 */ 297 298 /* PWMs */ 299 u8 pwm[5]; /* pwm duty cycle */ 300 u8 pwm_enable[3]; /* pwm enable status for fan 1-3 301 * (fan 4-5 only support manual mode) 302 */ 303 304 u8 temp_target[3]; /* pwm 1-3 target temperature */ 305 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */ 306 307 /* Misc */ 308 u32 alarms; /* realtime status register encoding,combined */ 309 u8 beep_enable; /* Global beep enable */ 310 u32 beep_mask; /* Mask off specific beeps */ 311 u8 vid; /* Register encoding, combined */ 312 u8 vrm; /* hwmon-vid */ 313 }; 314 315 static int w83791d_probe(struct i2c_client *client); 316 static int w83791d_detect(struct i2c_client *client, 317 struct i2c_board_info *info); 318 static void w83791d_remove(struct i2c_client *client); 319 320 static int w83791d_read(struct i2c_client *client, u8 reg); 321 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value); 322 static struct w83791d_data *w83791d_update_device(struct device *dev); 323 324 #ifdef DEBUG 325 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev); 326 #endif 327 328 static void w83791d_init_client(struct i2c_client *client); 329 330 static const struct i2c_device_id w83791d_id[] = { 331 { "w83791d", 0 }, 332 { } 333 }; 334 MODULE_DEVICE_TABLE(i2c, w83791d_id); 335 336 static struct i2c_driver w83791d_driver = { 337 .class = I2C_CLASS_HWMON, 338 .driver = { 339 .name = "w83791d", 340 }, 341 .probe_new = w83791d_probe, 342 .remove = w83791d_remove, 343 .id_table = w83791d_id, 344 .detect = w83791d_detect, 345 .address_list = normal_i2c, 346 }; 347 348 /* following are the sysfs callback functions */ 349 #define show_in_reg(reg) \ 350 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 351 char *buf) \ 352 { \ 353 struct sensor_device_attribute *sensor_attr = \ 354 to_sensor_dev_attr(attr); \ 355 struct w83791d_data *data = w83791d_update_device(dev); \ 356 int nr = sensor_attr->index; \ 357 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 358 } 359 360 show_in_reg(in); 361 show_in_reg(in_min); 362 show_in_reg(in_max); 363 364 #define store_in_reg(REG, reg) \ 365 static ssize_t store_in_##reg(struct device *dev, \ 366 struct device_attribute *attr, \ 367 const char *buf, size_t count) \ 368 { \ 369 struct sensor_device_attribute *sensor_attr = \ 370 to_sensor_dev_attr(attr); \ 371 struct i2c_client *client = to_i2c_client(dev); \ 372 struct w83791d_data *data = i2c_get_clientdata(client); \ 373 int nr = sensor_attr->index; \ 374 unsigned long val; \ 375 int err = kstrtoul(buf, 10, &val); \ 376 if (err) \ 377 return err; \ 378 mutex_lock(&data->update_lock); \ 379 data->in_##reg[nr] = IN_TO_REG(val); \ 380 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \ 381 mutex_unlock(&data->update_lock); \ 382 \ 383 return count; \ 384 } 385 store_in_reg(MIN, min); 386 store_in_reg(MAX, max); 387 388 static struct sensor_device_attribute sda_in_input[] = { 389 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), 390 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), 391 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), 392 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3), 393 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4), 394 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5), 395 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6), 396 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7), 397 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8), 398 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9), 399 }; 400 401 static struct sensor_device_attribute sda_in_min[] = { 402 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), 403 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), 404 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), 405 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3), 406 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4), 407 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5), 408 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6), 409 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7), 410 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8), 411 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9), 412 }; 413 414 static struct sensor_device_attribute sda_in_max[] = { 415 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), 416 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), 417 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), 418 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3), 419 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4), 420 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5), 421 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6), 422 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7), 423 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8), 424 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9), 425 }; 426 427 428 static ssize_t show_beep(struct device *dev, struct device_attribute *attr, 429 char *buf) 430 { 431 struct sensor_device_attribute *sensor_attr = 432 to_sensor_dev_attr(attr); 433 struct w83791d_data *data = w83791d_update_device(dev); 434 int bitnr = sensor_attr->index; 435 436 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1); 437 } 438 439 static ssize_t store_beep(struct device *dev, struct device_attribute *attr, 440 const char *buf, size_t count) 441 { 442 struct sensor_device_attribute *sensor_attr = 443 to_sensor_dev_attr(attr); 444 struct i2c_client *client = to_i2c_client(dev); 445 struct w83791d_data *data = i2c_get_clientdata(client); 446 int bitnr = sensor_attr->index; 447 int bytenr = bitnr / 8; 448 unsigned long val; 449 int err; 450 451 err = kstrtoul(buf, 10, &val); 452 if (err) 453 return err; 454 455 val = val ? 1 : 0; 456 457 mutex_lock(&data->update_lock); 458 459 data->beep_mask &= ~(0xff << (bytenr * 8)); 460 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr]) 461 << (bytenr * 8); 462 463 data->beep_mask &= ~(1 << bitnr); 464 data->beep_mask |= val << bitnr; 465 466 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr], 467 (data->beep_mask >> (bytenr * 8)) & 0xff); 468 469 mutex_unlock(&data->update_lock); 470 471 return count; 472 } 473 474 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 475 char *buf) 476 { 477 struct sensor_device_attribute *sensor_attr = 478 to_sensor_dev_attr(attr); 479 struct w83791d_data *data = w83791d_update_device(dev); 480 int bitnr = sensor_attr->index; 481 482 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); 483 } 484 485 /* 486 * Note: The bitmask for the beep enable/disable is different than 487 * the bitmask for the alarm. 488 */ 489 static struct sensor_device_attribute sda_in_beep[] = { 490 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0), 491 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13), 492 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2), 493 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3), 494 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8), 495 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9), 496 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10), 497 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16), 498 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17), 499 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14), 500 }; 501 502 static struct sensor_device_attribute sda_in_alarm[] = { 503 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0), 504 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1), 505 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2), 506 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3), 507 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8), 508 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9), 509 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10), 510 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19), 511 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20), 512 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14), 513 }; 514 515 #define show_fan_reg(reg) \ 516 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 517 char *buf) \ 518 { \ 519 struct sensor_device_attribute *sensor_attr = \ 520 to_sensor_dev_attr(attr); \ 521 struct w83791d_data *data = w83791d_update_device(dev); \ 522 int nr = sensor_attr->index; \ 523 return sprintf(buf, "%d\n", \ 524 FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ 525 } 526 527 show_fan_reg(fan); 528 show_fan_reg(fan_min); 529 530 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, 531 const char *buf, size_t count) 532 { 533 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 534 struct i2c_client *client = to_i2c_client(dev); 535 struct w83791d_data *data = i2c_get_clientdata(client); 536 int nr = sensor_attr->index; 537 unsigned long val; 538 int err; 539 540 err = kstrtoul(buf, 10, &val); 541 if (err) 542 return err; 543 544 mutex_lock(&data->update_lock); 545 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr])); 546 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 547 mutex_unlock(&data->update_lock); 548 549 return count; 550 } 551 552 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 553 char *buf) 554 { 555 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 556 int nr = sensor_attr->index; 557 struct w83791d_data *data = w83791d_update_device(dev); 558 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); 559 } 560 561 /* 562 * Note: we save and restore the fan minimum here, because its value is 563 * determined in part by the fan divisor. This follows the principle of 564 * least surprise; the user doesn't expect the fan minimum to change just 565 * because the divisor changed. 566 */ 567 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, 568 const char *buf, size_t count) 569 { 570 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 571 struct i2c_client *client = to_i2c_client(dev); 572 struct w83791d_data *data = i2c_get_clientdata(client); 573 int nr = sensor_attr->index; 574 unsigned long min; 575 u8 tmp_fan_div; 576 u8 fan_div_reg; 577 u8 vbat_reg; 578 int indx = 0; 579 u8 keep_mask = 0; 580 u8 new_shift = 0; 581 unsigned long val; 582 int err; 583 584 err = kstrtoul(buf, 10, &val); 585 if (err) 586 return err; 587 588 /* Save fan_min */ 589 min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); 590 591 mutex_lock(&data->update_lock); 592 data->fan_div[nr] = div_to_reg(nr, val); 593 594 switch (nr) { 595 case 0: 596 indx = 0; 597 keep_mask = 0xcf; 598 new_shift = 4; 599 break; 600 case 1: 601 indx = 0; 602 keep_mask = 0x3f; 603 new_shift = 6; 604 break; 605 case 2: 606 indx = 1; 607 keep_mask = 0x3f; 608 new_shift = 6; 609 break; 610 case 3: 611 indx = 2; 612 keep_mask = 0xf8; 613 new_shift = 0; 614 break; 615 case 4: 616 indx = 2; 617 keep_mask = 0x8f; 618 new_shift = 4; 619 break; 620 #ifdef DEBUG 621 default: 622 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr); 623 count = -EINVAL; 624 goto err_exit; 625 #endif 626 } 627 628 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx]) 629 & keep_mask; 630 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; 631 632 w83791d_write(client, W83791D_REG_FAN_DIV[indx], 633 fan_div_reg | tmp_fan_div); 634 635 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */ 636 if (nr < 3) { 637 keep_mask = ~(1 << (nr + 5)); 638 vbat_reg = w83791d_read(client, W83791D_REG_VBAT) 639 & keep_mask; 640 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask; 641 w83791d_write(client, W83791D_REG_VBAT, 642 vbat_reg | tmp_fan_div); 643 } 644 645 /* Restore fan_min */ 646 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr])); 647 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 648 649 #ifdef DEBUG 650 err_exit: 651 #endif 652 mutex_unlock(&data->update_lock); 653 654 return count; 655 } 656 657 static struct sensor_device_attribute sda_fan_input[] = { 658 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), 659 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), 660 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2), 661 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3), 662 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4), 663 }; 664 665 static struct sensor_device_attribute sda_fan_min[] = { 666 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, 667 show_fan_min, store_fan_min, 0), 668 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, 669 show_fan_min, store_fan_min, 1), 670 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, 671 show_fan_min, store_fan_min, 2), 672 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, 673 show_fan_min, store_fan_min, 3), 674 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, 675 show_fan_min, store_fan_min, 4), 676 }; 677 678 static struct sensor_device_attribute sda_fan_div[] = { 679 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, 680 show_fan_div, store_fan_div, 0), 681 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, 682 show_fan_div, store_fan_div, 1), 683 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO, 684 show_fan_div, store_fan_div, 2), 685 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO, 686 show_fan_div, store_fan_div, 3), 687 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO, 688 show_fan_div, store_fan_div, 4), 689 }; 690 691 static struct sensor_device_attribute sda_fan_beep[] = { 692 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6), 693 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7), 694 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11), 695 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21), 696 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22), 697 }; 698 699 static struct sensor_device_attribute sda_fan_alarm[] = { 700 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6), 701 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7), 702 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11), 703 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21), 704 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22), 705 }; 706 707 /* read/write PWMs */ 708 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 709 char *buf) 710 { 711 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 712 int nr = sensor_attr->index; 713 struct w83791d_data *data = w83791d_update_device(dev); 714 return sprintf(buf, "%u\n", data->pwm[nr]); 715 } 716 717 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, 718 const char *buf, size_t count) 719 { 720 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 721 struct i2c_client *client = to_i2c_client(dev); 722 struct w83791d_data *data = i2c_get_clientdata(client); 723 int nr = sensor_attr->index; 724 unsigned long val; 725 726 if (kstrtoul(buf, 10, &val)) 727 return -EINVAL; 728 729 mutex_lock(&data->update_lock); 730 data->pwm[nr] = clamp_val(val, 0, 255); 731 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]); 732 mutex_unlock(&data->update_lock); 733 return count; 734 } 735 736 static struct sensor_device_attribute sda_pwm[] = { 737 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, 738 show_pwm, store_pwm, 0), 739 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, 740 show_pwm, store_pwm, 1), 741 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, 742 show_pwm, store_pwm, 2), 743 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, 744 show_pwm, store_pwm, 3), 745 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO, 746 show_pwm, store_pwm, 4), 747 }; 748 749 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr, 750 char *buf) 751 { 752 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 753 int nr = sensor_attr->index; 754 struct w83791d_data *data = w83791d_update_device(dev); 755 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1); 756 } 757 758 static ssize_t store_pwmenable(struct device *dev, 759 struct device_attribute *attr, const char *buf, size_t count) 760 { 761 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 762 struct i2c_client *client = to_i2c_client(dev); 763 struct w83791d_data *data = i2c_get_clientdata(client); 764 int nr = sensor_attr->index; 765 unsigned long val; 766 u8 reg_cfg_tmp; 767 u8 reg_idx = 0; 768 u8 val_shift = 0; 769 u8 keep_mask = 0; 770 771 int ret = kstrtoul(buf, 10, &val); 772 773 if (ret || val < 1 || val > 3) 774 return -EINVAL; 775 776 mutex_lock(&data->update_lock); 777 data->pwm_enable[nr] = val - 1; 778 switch (nr) { 779 case 0: 780 reg_idx = 0; 781 val_shift = 2; 782 keep_mask = 0xf3; 783 break; 784 case 1: 785 reg_idx = 0; 786 val_shift = 4; 787 keep_mask = 0xcf; 788 break; 789 case 2: 790 reg_idx = 1; 791 val_shift = 2; 792 keep_mask = 0xf3; 793 break; 794 } 795 796 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]); 797 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) | 798 data->pwm_enable[nr] << val_shift; 799 800 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp); 801 mutex_unlock(&data->update_lock); 802 803 return count; 804 } 805 static struct sensor_device_attribute sda_pwmenable[] = { 806 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, 807 show_pwmenable, store_pwmenable, 0), 808 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, 809 show_pwmenable, store_pwmenable, 1), 810 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, 811 show_pwmenable, store_pwmenable, 2), 812 }; 813 814 /* For Smart Fan I / Thermal Cruise */ 815 static ssize_t show_temp_target(struct device *dev, 816 struct device_attribute *attr, char *buf) 817 { 818 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 819 struct w83791d_data *data = w83791d_update_device(dev); 820 int nr = sensor_attr->index; 821 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr])); 822 } 823 824 static ssize_t store_temp_target(struct device *dev, 825 struct device_attribute *attr, const char *buf, size_t count) 826 { 827 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 828 struct i2c_client *client = to_i2c_client(dev); 829 struct w83791d_data *data = i2c_get_clientdata(client); 830 int nr = sensor_attr->index; 831 long val; 832 u8 target_mask; 833 834 if (kstrtol(buf, 10, &val)) 835 return -EINVAL; 836 837 mutex_lock(&data->update_lock); 838 data->temp_target[nr] = TARGET_TEMP_TO_REG(val); 839 target_mask = w83791d_read(client, 840 W83791D_REG_TEMP_TARGET[nr]) & 0x80; 841 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr], 842 data->temp_target[nr] | target_mask); 843 mutex_unlock(&data->update_lock); 844 return count; 845 } 846 847 static struct sensor_device_attribute sda_temp_target[] = { 848 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO, 849 show_temp_target, store_temp_target, 0), 850 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO, 851 show_temp_target, store_temp_target, 1), 852 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO, 853 show_temp_target, store_temp_target, 2), 854 }; 855 856 static ssize_t show_temp_tolerance(struct device *dev, 857 struct device_attribute *attr, char *buf) 858 { 859 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 860 struct w83791d_data *data = w83791d_update_device(dev); 861 int nr = sensor_attr->index; 862 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr])); 863 } 864 865 static ssize_t store_temp_tolerance(struct device *dev, 866 struct device_attribute *attr, const char *buf, size_t count) 867 { 868 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 869 struct i2c_client *client = to_i2c_client(dev); 870 struct w83791d_data *data = i2c_get_clientdata(client); 871 int nr = sensor_attr->index; 872 unsigned long val; 873 u8 target_mask; 874 u8 reg_idx = 0; 875 u8 val_shift = 0; 876 u8 keep_mask = 0; 877 878 if (kstrtoul(buf, 10, &val)) 879 return -EINVAL; 880 881 switch (nr) { 882 case 0: 883 reg_idx = 0; 884 val_shift = 0; 885 keep_mask = 0xf0; 886 break; 887 case 1: 888 reg_idx = 0; 889 val_shift = 4; 890 keep_mask = 0x0f; 891 break; 892 case 2: 893 reg_idx = 1; 894 val_shift = 0; 895 keep_mask = 0xf0; 896 break; 897 } 898 899 mutex_lock(&data->update_lock); 900 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val); 901 target_mask = w83791d_read(client, 902 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask; 903 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx], 904 (data->temp_tolerance[nr] << val_shift) | target_mask); 905 mutex_unlock(&data->update_lock); 906 return count; 907 } 908 909 static struct sensor_device_attribute sda_temp_tolerance[] = { 910 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO, 911 show_temp_tolerance, store_temp_tolerance, 0), 912 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO, 913 show_temp_tolerance, store_temp_tolerance, 1), 914 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO, 915 show_temp_tolerance, store_temp_tolerance, 2), 916 }; 917 918 /* read/write the temperature1, includes measured value and limits */ 919 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr, 920 char *buf) 921 { 922 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 923 struct w83791d_data *data = w83791d_update_device(dev); 924 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index])); 925 } 926 927 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr, 928 const char *buf, size_t count) 929 { 930 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 931 struct i2c_client *client = to_i2c_client(dev); 932 struct w83791d_data *data = i2c_get_clientdata(client); 933 int nr = attr->index; 934 long val; 935 int err; 936 937 err = kstrtol(buf, 10, &val); 938 if (err) 939 return err; 940 941 mutex_lock(&data->update_lock); 942 data->temp1[nr] = TEMP1_TO_REG(val); 943 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]); 944 mutex_unlock(&data->update_lock); 945 return count; 946 } 947 948 /* read/write temperature2-3, includes measured value and limits */ 949 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr, 950 char *buf) 951 { 952 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 953 struct w83791d_data *data = w83791d_update_device(dev); 954 int nr = attr->nr; 955 int index = attr->index; 956 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index])); 957 } 958 959 static ssize_t store_temp23(struct device *dev, 960 struct device_attribute *devattr, 961 const char *buf, size_t count) 962 { 963 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 964 struct i2c_client *client = to_i2c_client(dev); 965 struct w83791d_data *data = i2c_get_clientdata(client); 966 long val; 967 int err; 968 int nr = attr->nr; 969 int index = attr->index; 970 971 err = kstrtol(buf, 10, &val); 972 if (err) 973 return err; 974 975 mutex_lock(&data->update_lock); 976 data->temp_add[nr][index] = TEMP23_TO_REG(val); 977 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2], 978 data->temp_add[nr][index] >> 8); 979 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1], 980 data->temp_add[nr][index] & 0x80); 981 mutex_unlock(&data->update_lock); 982 983 return count; 984 } 985 986 static struct sensor_device_attribute_2 sda_temp_input[] = { 987 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0), 988 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0), 989 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0), 990 }; 991 992 static struct sensor_device_attribute_2 sda_temp_max[] = { 993 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, 994 show_temp1, store_temp1, 0, 1), 995 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, 996 show_temp23, store_temp23, 0, 1), 997 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, 998 show_temp23, store_temp23, 1, 1), 999 }; 1000 1001 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { 1002 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, 1003 show_temp1, store_temp1, 0, 2), 1004 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, 1005 show_temp23, store_temp23, 0, 2), 1006 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, 1007 show_temp23, store_temp23, 1, 2), 1008 }; 1009 1010 /* 1011 * Note: The bitmask for the beep enable/disable is different than 1012 * the bitmask for the alarm. 1013 */ 1014 static struct sensor_device_attribute sda_temp_beep[] = { 1015 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4), 1016 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5), 1017 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1), 1018 }; 1019 1020 static struct sensor_device_attribute sda_temp_alarm[] = { 1021 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4), 1022 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5), 1023 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13), 1024 }; 1025 1026 /* get realtime status of all sensors items: voltage, temp, fan */ 1027 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 1028 char *buf) 1029 { 1030 struct w83791d_data *data = w83791d_update_device(dev); 1031 return sprintf(buf, "%u\n", data->alarms); 1032 } 1033 1034 static DEVICE_ATTR_RO(alarms); 1035 1036 /* Beep control */ 1037 1038 #define GLOBAL_BEEP_ENABLE_SHIFT 15 1039 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT) 1040 1041 static ssize_t show_beep_enable(struct device *dev, 1042 struct device_attribute *attr, char *buf) 1043 { 1044 struct w83791d_data *data = w83791d_update_device(dev); 1045 return sprintf(buf, "%d\n", data->beep_enable); 1046 } 1047 1048 static ssize_t show_beep_mask(struct device *dev, 1049 struct device_attribute *attr, char *buf) 1050 { 1051 struct w83791d_data *data = w83791d_update_device(dev); 1052 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask)); 1053 } 1054 1055 1056 static ssize_t store_beep_mask(struct device *dev, 1057 struct device_attribute *attr, 1058 const char *buf, size_t count) 1059 { 1060 struct i2c_client *client = to_i2c_client(dev); 1061 struct w83791d_data *data = i2c_get_clientdata(client); 1062 int i; 1063 long val; 1064 int err; 1065 1066 err = kstrtol(buf, 10, &val); 1067 if (err) 1068 return err; 1069 1070 mutex_lock(&data->update_lock); 1071 1072 /* 1073 * The beep_enable state overrides any enabling request from 1074 * the masks 1075 */ 1076 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK; 1077 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1078 1079 val = data->beep_mask; 1080 1081 for (i = 0; i < 3; i++) { 1082 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff)); 1083 val >>= 8; 1084 } 1085 1086 mutex_unlock(&data->update_lock); 1087 1088 return count; 1089 } 1090 1091 static ssize_t store_beep_enable(struct device *dev, 1092 struct device_attribute *attr, 1093 const char *buf, size_t count) 1094 { 1095 struct i2c_client *client = to_i2c_client(dev); 1096 struct w83791d_data *data = i2c_get_clientdata(client); 1097 long val; 1098 int err; 1099 1100 err = kstrtol(buf, 10, &val); 1101 if (err) 1102 return err; 1103 1104 mutex_lock(&data->update_lock); 1105 1106 data->beep_enable = val ? 1 : 0; 1107 1108 /* Keep the full mask value in sync with the current enable */ 1109 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK; 1110 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1111 1112 /* 1113 * The global control is in the second beep control register 1114 * so only need to update that register 1115 */ 1116 val = (data->beep_mask >> 8) & 0xff; 1117 1118 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val); 1119 1120 mutex_unlock(&data->update_lock); 1121 1122 return count; 1123 } 1124 1125 static struct sensor_device_attribute sda_beep_ctrl[] = { 1126 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR, 1127 show_beep_enable, store_beep_enable, 0), 1128 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR, 1129 show_beep_mask, store_beep_mask, 1) 1130 }; 1131 1132 /* cpu voltage regulation information */ 1133 static ssize_t cpu0_vid_show(struct device *dev, 1134 struct device_attribute *attr, char *buf) 1135 { 1136 struct w83791d_data *data = w83791d_update_device(dev); 1137 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 1138 } 1139 1140 static DEVICE_ATTR_RO(cpu0_vid); 1141 1142 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, 1143 char *buf) 1144 { 1145 struct w83791d_data *data = dev_get_drvdata(dev); 1146 return sprintf(buf, "%d\n", data->vrm); 1147 } 1148 1149 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, 1150 const char *buf, size_t count) 1151 { 1152 struct w83791d_data *data = dev_get_drvdata(dev); 1153 unsigned long val; 1154 int err; 1155 1156 /* 1157 * No lock needed as vrm is internal to the driver 1158 * (not read from a chip register) and so is not 1159 * updated in w83791d_update_device() 1160 */ 1161 1162 err = kstrtoul(buf, 10, &val); 1163 if (err) 1164 return err; 1165 1166 if (val > 255) 1167 return -EINVAL; 1168 1169 data->vrm = val; 1170 return count; 1171 } 1172 1173 static DEVICE_ATTR_RW(vrm); 1174 1175 #define IN_UNIT_ATTRS(X) \ 1176 &sda_in_input[X].dev_attr.attr, \ 1177 &sda_in_min[X].dev_attr.attr, \ 1178 &sda_in_max[X].dev_attr.attr, \ 1179 &sda_in_beep[X].dev_attr.attr, \ 1180 &sda_in_alarm[X].dev_attr.attr 1181 1182 #define FAN_UNIT_ATTRS(X) \ 1183 &sda_fan_input[X].dev_attr.attr, \ 1184 &sda_fan_min[X].dev_attr.attr, \ 1185 &sda_fan_div[X].dev_attr.attr, \ 1186 &sda_fan_beep[X].dev_attr.attr, \ 1187 &sda_fan_alarm[X].dev_attr.attr 1188 1189 #define TEMP_UNIT_ATTRS(X) \ 1190 &sda_temp_input[X].dev_attr.attr, \ 1191 &sda_temp_max[X].dev_attr.attr, \ 1192 &sda_temp_max_hyst[X].dev_attr.attr, \ 1193 &sda_temp_beep[X].dev_attr.attr, \ 1194 &sda_temp_alarm[X].dev_attr.attr 1195 1196 static struct attribute *w83791d_attributes[] = { 1197 IN_UNIT_ATTRS(0), 1198 IN_UNIT_ATTRS(1), 1199 IN_UNIT_ATTRS(2), 1200 IN_UNIT_ATTRS(3), 1201 IN_UNIT_ATTRS(4), 1202 IN_UNIT_ATTRS(5), 1203 IN_UNIT_ATTRS(6), 1204 IN_UNIT_ATTRS(7), 1205 IN_UNIT_ATTRS(8), 1206 IN_UNIT_ATTRS(9), 1207 FAN_UNIT_ATTRS(0), 1208 FAN_UNIT_ATTRS(1), 1209 FAN_UNIT_ATTRS(2), 1210 TEMP_UNIT_ATTRS(0), 1211 TEMP_UNIT_ATTRS(1), 1212 TEMP_UNIT_ATTRS(2), 1213 &dev_attr_alarms.attr, 1214 &sda_beep_ctrl[0].dev_attr.attr, 1215 &sda_beep_ctrl[1].dev_attr.attr, 1216 &dev_attr_cpu0_vid.attr, 1217 &dev_attr_vrm.attr, 1218 &sda_pwm[0].dev_attr.attr, 1219 &sda_pwm[1].dev_attr.attr, 1220 &sda_pwm[2].dev_attr.attr, 1221 &sda_pwmenable[0].dev_attr.attr, 1222 &sda_pwmenable[1].dev_attr.attr, 1223 &sda_pwmenable[2].dev_attr.attr, 1224 &sda_temp_target[0].dev_attr.attr, 1225 &sda_temp_target[1].dev_attr.attr, 1226 &sda_temp_target[2].dev_attr.attr, 1227 &sda_temp_tolerance[0].dev_attr.attr, 1228 &sda_temp_tolerance[1].dev_attr.attr, 1229 &sda_temp_tolerance[2].dev_attr.attr, 1230 NULL 1231 }; 1232 1233 static const struct attribute_group w83791d_group = { 1234 .attrs = w83791d_attributes, 1235 }; 1236 1237 /* 1238 * Separate group of attributes for fan/pwm 4-5. Their pins can also be 1239 * in use for GPIO in which case their sysfs-interface should not be made 1240 * available 1241 */ 1242 static struct attribute *w83791d_attributes_fanpwm45[] = { 1243 FAN_UNIT_ATTRS(3), 1244 FAN_UNIT_ATTRS(4), 1245 &sda_pwm[3].dev_attr.attr, 1246 &sda_pwm[4].dev_attr.attr, 1247 NULL 1248 }; 1249 1250 static const struct attribute_group w83791d_group_fanpwm45 = { 1251 .attrs = w83791d_attributes_fanpwm45, 1252 }; 1253 1254 static int w83791d_detect_subclients(struct i2c_client *client) 1255 { 1256 struct i2c_adapter *adapter = client->adapter; 1257 int address = client->addr; 1258 int i, id; 1259 u8 val; 1260 1261 id = i2c_adapter_id(adapter); 1262 if (force_subclients[0] == id && force_subclients[1] == address) { 1263 for (i = 2; i <= 3; i++) { 1264 if (force_subclients[i] < 0x48 || 1265 force_subclients[i] > 0x4f) { 1266 dev_err(&client->dev, 1267 "invalid subclient " 1268 "address %d; must be 0x48-0x4f\n", 1269 force_subclients[i]); 1270 return -ENODEV; 1271 } 1272 } 1273 w83791d_write(client, W83791D_REG_I2C_SUBADDR, 1274 (force_subclients[2] & 0x07) | 1275 ((force_subclients[3] & 0x07) << 4)); 1276 } 1277 1278 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR); 1279 1280 if (!(val & 0x88) && (val & 0x7) == ((val >> 4) & 0x7)) { 1281 dev_err(&client->dev, 1282 "duplicate addresses 0x%x, use force_subclient\n", 0x48 + (val & 0x7)); 1283 return -ENODEV; 1284 } 1285 1286 if (!(val & 0x08)) 1287 devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + (val & 0x7)); 1288 1289 if (!(val & 0x80)) 1290 devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + ((val >> 4) & 0x7)); 1291 1292 return 0; 1293 } 1294 1295 1296 /* Return 0 if detection is successful, -ENODEV otherwise */ 1297 static int w83791d_detect(struct i2c_client *client, 1298 struct i2c_board_info *info) 1299 { 1300 struct i2c_adapter *adapter = client->adapter; 1301 int val1, val2; 1302 unsigned short address = client->addr; 1303 1304 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1305 return -ENODEV; 1306 1307 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80) 1308 return -ENODEV; 1309 1310 val1 = w83791d_read(client, W83791D_REG_BANK); 1311 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1312 /* Check for Winbond ID if in bank 0 */ 1313 if (!(val1 & 0x07)) { 1314 if ((!(val1 & 0x80) && val2 != 0xa3) || 1315 ((val1 & 0x80) && val2 != 0x5c)) { 1316 return -ENODEV; 1317 } 1318 } 1319 /* 1320 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR 1321 * should match 1322 */ 1323 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address) 1324 return -ENODEV; 1325 1326 /* We want bank 0 and Vendor ID high byte */ 1327 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78; 1328 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80); 1329 1330 /* Verify it is a Winbond w83791d */ 1331 val1 = w83791d_read(client, W83791D_REG_WCHIPID); 1332 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1333 if (val1 != 0x71 || val2 != 0x5c) 1334 return -ENODEV; 1335 1336 strscpy(info->type, "w83791d", I2C_NAME_SIZE); 1337 1338 return 0; 1339 } 1340 1341 static int w83791d_probe(struct i2c_client *client) 1342 { 1343 struct w83791d_data *data; 1344 struct device *dev = &client->dev; 1345 int i, err; 1346 u8 has_fanpwm45; 1347 1348 #ifdef DEBUG 1349 int val1; 1350 val1 = w83791d_read(client, W83791D_REG_DID_VID4); 1351 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n", 1352 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1); 1353 #endif 1354 1355 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data), 1356 GFP_KERNEL); 1357 if (!data) 1358 return -ENOMEM; 1359 1360 i2c_set_clientdata(client, data); 1361 mutex_init(&data->update_lock); 1362 1363 err = w83791d_detect_subclients(client); 1364 if (err) 1365 return err; 1366 1367 /* Initialize the chip */ 1368 w83791d_init_client(client); 1369 1370 /* 1371 * If the fan_div is changed, make sure there is a rational 1372 * fan_min in place 1373 */ 1374 for (i = 0; i < NUMBER_OF_FANIN; i++) 1375 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); 1376 1377 /* Register sysfs hooks */ 1378 err = sysfs_create_group(&client->dev.kobj, &w83791d_group); 1379 if (err) 1380 return err; 1381 1382 /* Check if pins of fan/pwm 4-5 are in use as GPIO */ 1383 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10; 1384 if (has_fanpwm45) { 1385 err = sysfs_create_group(&client->dev.kobj, 1386 &w83791d_group_fanpwm45); 1387 if (err) 1388 goto error4; 1389 } 1390 1391 /* Everything is ready, now register the working device */ 1392 data->hwmon_dev = hwmon_device_register(dev); 1393 if (IS_ERR(data->hwmon_dev)) { 1394 err = PTR_ERR(data->hwmon_dev); 1395 goto error5; 1396 } 1397 1398 return 0; 1399 1400 error5: 1401 if (has_fanpwm45) 1402 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45); 1403 error4: 1404 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1405 return err; 1406 } 1407 1408 static void w83791d_remove(struct i2c_client *client) 1409 { 1410 struct w83791d_data *data = i2c_get_clientdata(client); 1411 1412 hwmon_device_unregister(data->hwmon_dev); 1413 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1414 } 1415 1416 static void w83791d_init_client(struct i2c_client *client) 1417 { 1418 struct w83791d_data *data = i2c_get_clientdata(client); 1419 u8 tmp; 1420 u8 old_beep; 1421 1422 /* 1423 * The difference between reset and init is that reset 1424 * does a hard reset of the chip via index 0x40, bit 7, 1425 * but init simply forces certain registers to have "sane" 1426 * values. The hope is that the BIOS has done the right 1427 * thing (which is why the default is reset=0, init=0), 1428 * but if not, reset is the hard hammer and init 1429 * is the soft mallet both of which are trying to whack 1430 * things into place... 1431 * NOTE: The data sheet makes a distinction between 1432 * "power on defaults" and "reset by MR". As far as I can tell, 1433 * the hard reset puts everything into a power-on state so I'm 1434 * not sure what "reset by MR" means or how it can happen. 1435 */ 1436 if (reset || init) { 1437 /* keep some BIOS settings when we... */ 1438 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG); 1439 1440 if (reset) { 1441 /* ... reset the chip and ... */ 1442 w83791d_write(client, W83791D_REG_CONFIG, 0x80); 1443 } 1444 1445 /* ... disable power-on abnormal beep */ 1446 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80); 1447 1448 /* disable the global beep (not done by hard reset) */ 1449 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]); 1450 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef); 1451 1452 if (init) { 1453 /* Make sure monitoring is turned on for add-ons */ 1454 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG); 1455 if (tmp & 1) { 1456 w83791d_write(client, W83791D_REG_TEMP2_CONFIG, 1457 tmp & 0xfe); 1458 } 1459 1460 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG); 1461 if (tmp & 1) { 1462 w83791d_write(client, W83791D_REG_TEMP3_CONFIG, 1463 tmp & 0xfe); 1464 } 1465 1466 /* Start monitoring */ 1467 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7; 1468 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01); 1469 } 1470 } 1471 1472 data->vrm = vid_which_vrm(); 1473 } 1474 1475 static struct w83791d_data *w83791d_update_device(struct device *dev) 1476 { 1477 struct i2c_client *client = to_i2c_client(dev); 1478 struct w83791d_data *data = i2c_get_clientdata(client); 1479 int i, j; 1480 u8 reg_array_tmp[3]; 1481 u8 vbat_reg; 1482 1483 mutex_lock(&data->update_lock); 1484 1485 if (time_after(jiffies, data->last_updated + (HZ * 3)) 1486 || !data->valid) { 1487 dev_dbg(dev, "Starting w83791d device update\n"); 1488 1489 /* Update the voltages measured value and limits */ 1490 for (i = 0; i < NUMBER_OF_VIN; i++) { 1491 data->in[i] = w83791d_read(client, 1492 W83791D_REG_IN[i]); 1493 data->in_max[i] = w83791d_read(client, 1494 W83791D_REG_IN_MAX[i]); 1495 data->in_min[i] = w83791d_read(client, 1496 W83791D_REG_IN_MIN[i]); 1497 } 1498 1499 /* Update the fan counts and limits */ 1500 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1501 /* Update the Fan measured value and limits */ 1502 data->fan[i] = w83791d_read(client, 1503 W83791D_REG_FAN[i]); 1504 data->fan_min[i] = w83791d_read(client, 1505 W83791D_REG_FAN_MIN[i]); 1506 } 1507 1508 /* Update the fan divisor */ 1509 for (i = 0; i < 3; i++) { 1510 reg_array_tmp[i] = w83791d_read(client, 1511 W83791D_REG_FAN_DIV[i]); 1512 } 1513 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03; 1514 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03; 1515 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03; 1516 data->fan_div[3] = reg_array_tmp[2] & 0x07; 1517 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07; 1518 1519 /* 1520 * The fan divisor for fans 0-2 get bit 2 from 1521 * bits 5-7 respectively of vbat register 1522 */ 1523 vbat_reg = w83791d_read(client, W83791D_REG_VBAT); 1524 for (i = 0; i < 3; i++) 1525 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04; 1526 1527 /* Update PWM duty cycle */ 1528 for (i = 0; i < NUMBER_OF_PWM; i++) { 1529 data->pwm[i] = w83791d_read(client, 1530 W83791D_REG_PWM[i]); 1531 } 1532 1533 /* Update PWM enable status */ 1534 for (i = 0; i < 2; i++) { 1535 reg_array_tmp[i] = w83791d_read(client, 1536 W83791D_REG_FAN_CFG[i]); 1537 } 1538 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03; 1539 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03; 1540 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03; 1541 1542 /* Update PWM target temperature */ 1543 for (i = 0; i < 3; i++) { 1544 data->temp_target[i] = w83791d_read(client, 1545 W83791D_REG_TEMP_TARGET[i]) & 0x7f; 1546 } 1547 1548 /* Update PWM temperature tolerance */ 1549 for (i = 0; i < 2; i++) { 1550 reg_array_tmp[i] = w83791d_read(client, 1551 W83791D_REG_TEMP_TOL[i]); 1552 } 1553 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f; 1554 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f; 1555 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f; 1556 1557 /* Update the first temperature sensor */ 1558 for (i = 0; i < 3; i++) { 1559 data->temp1[i] = w83791d_read(client, 1560 W83791D_REG_TEMP1[i]); 1561 } 1562 1563 /* Update the rest of the temperature sensors */ 1564 for (i = 0; i < 2; i++) { 1565 for (j = 0; j < 3; j++) { 1566 data->temp_add[i][j] = 1567 (w83791d_read(client, 1568 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) | 1569 w83791d_read(client, 1570 W83791D_REG_TEMP_ADD[i][j * 2 + 1]); 1571 } 1572 } 1573 1574 /* Update the realtime status */ 1575 data->alarms = 1576 w83791d_read(client, W83791D_REG_ALARM1) + 1577 (w83791d_read(client, W83791D_REG_ALARM2) << 8) + 1578 (w83791d_read(client, W83791D_REG_ALARM3) << 16); 1579 1580 /* Update the beep configuration information */ 1581 data->beep_mask = 1582 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) + 1583 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) + 1584 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16); 1585 1586 /* Extract global beep enable flag */ 1587 data->beep_enable = 1588 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01; 1589 1590 /* Update the cpu voltage information */ 1591 i = w83791d_read(client, W83791D_REG_VID_FANDIV); 1592 data->vid = i & 0x0f; 1593 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01) 1594 << 4; 1595 1596 data->last_updated = jiffies; 1597 data->valid = true; 1598 } 1599 1600 mutex_unlock(&data->update_lock); 1601 1602 #ifdef DEBUG 1603 w83791d_print_debug(data, dev); 1604 #endif 1605 1606 return data; 1607 } 1608 1609 #ifdef DEBUG 1610 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev) 1611 { 1612 int i = 0, j = 0; 1613 1614 dev_dbg(dev, "======Start of w83791d debug values======\n"); 1615 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN); 1616 for (i = 0; i < NUMBER_OF_VIN; i++) { 1617 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]); 1618 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]); 1619 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]); 1620 } 1621 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN); 1622 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1623 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]); 1624 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]); 1625 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]); 1626 } 1627 1628 /* 1629 * temperature math is signed, but only print out the 1630 * bits that matter 1631 */ 1632 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN); 1633 for (i = 0; i < 3; i++) 1634 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]); 1635 for (i = 0; i < 2; i++) { 1636 for (j = 0; j < 3; j++) { 1637 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j, 1638 (u16) data->temp_add[i][j]); 1639 } 1640 } 1641 1642 dev_dbg(dev, "Misc Information: ===>\n"); 1643 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms); 1644 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask); 1645 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable); 1646 dev_dbg(dev, "vid is: 0x%02x\n", data->vid); 1647 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm); 1648 dev_dbg(dev, "=======End of w83791d debug values========\n"); 1649 dev_dbg(dev, "\n"); 1650 } 1651 #endif 1652 1653 module_i2c_driver(w83791d_driver); 1654 1655 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>"); 1656 MODULE_DESCRIPTION("W83791D driver"); 1657 MODULE_LICENSE("GPL"); 1658