1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * 6 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com> 7 */ 8 9 /* 10 * Supports following chips: 11 * 12 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 13 * w83791d 10 5 5 3 0x71 0x5ca3 yes no 14 * 15 * The w83791d chip appears to be part way between the 83781d and the 16 * 83792d. Thus, this file is derived from both the w83792d.c and 17 * w83781d.c files. 18 * 19 * The w83791g chip is the same as the w83791d but lead-free. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/i2c.h> 26 #include <linux/hwmon.h> 27 #include <linux/hwmon-vid.h> 28 #include <linux/hwmon-sysfs.h> 29 #include <linux/err.h> 30 #include <linux/mutex.h> 31 #include <linux/jiffies.h> 32 33 #define NUMBER_OF_VIN 10 34 #define NUMBER_OF_FANIN 5 35 #define NUMBER_OF_TEMPIN 3 36 #define NUMBER_OF_PWM 5 37 38 /* Addresses to scan */ 39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, 40 I2C_CLIENT_END }; 41 42 /* Insmod parameters */ 43 44 static unsigned short force_subclients[4]; 45 module_param_array(force_subclients, short, NULL, 0); 46 MODULE_PARM_DESC(force_subclients, 47 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); 48 49 static bool reset; 50 module_param(reset, bool, 0); 51 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset"); 52 53 static bool init; 54 module_param(init, bool, 0); 55 MODULE_PARM_DESC(init, "Set to one to force extra software initialization"); 56 57 /* The W83791D registers */ 58 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = { 59 0x20, /* VCOREA in DataSheet */ 60 0x21, /* VINR0 in DataSheet */ 61 0x22, /* +3.3VIN in DataSheet */ 62 0x23, /* VDD5V in DataSheet */ 63 0x24, /* +12VIN in DataSheet */ 64 0x25, /* -12VIN in DataSheet */ 65 0x26, /* -5VIN in DataSheet */ 66 0xB0, /* 5VSB in DataSheet */ 67 0xB1, /* VBAT in DataSheet */ 68 0xB2 /* VINR1 in DataSheet */ 69 }; 70 71 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = { 72 0x2B, /* VCOREA High Limit in DataSheet */ 73 0x2D, /* VINR0 High Limit in DataSheet */ 74 0x2F, /* +3.3VIN High Limit in DataSheet */ 75 0x31, /* VDD5V High Limit in DataSheet */ 76 0x33, /* +12VIN High Limit in DataSheet */ 77 0x35, /* -12VIN High Limit in DataSheet */ 78 0x37, /* -5VIN High Limit in DataSheet */ 79 0xB4, /* 5VSB High Limit in DataSheet */ 80 0xB6, /* VBAT High Limit in DataSheet */ 81 0xB8 /* VINR1 High Limit in DataSheet */ 82 }; 83 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = { 84 0x2C, /* VCOREA Low Limit in DataSheet */ 85 0x2E, /* VINR0 Low Limit in DataSheet */ 86 0x30, /* +3.3VIN Low Limit in DataSheet */ 87 0x32, /* VDD5V Low Limit in DataSheet */ 88 0x34, /* +12VIN Low Limit in DataSheet */ 89 0x36, /* -12VIN Low Limit in DataSheet */ 90 0x38, /* -5VIN Low Limit in DataSheet */ 91 0xB5, /* 5VSB Low Limit in DataSheet */ 92 0xB7, /* VBAT Low Limit in DataSheet */ 93 0xB9 /* VINR1 Low Limit in DataSheet */ 94 }; 95 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = { 96 0x28, /* FAN 1 Count in DataSheet */ 97 0x29, /* FAN 2 Count in DataSheet */ 98 0x2A, /* FAN 3 Count in DataSheet */ 99 0xBA, /* FAN 4 Count in DataSheet */ 100 0xBB, /* FAN 5 Count in DataSheet */ 101 }; 102 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = { 103 0x3B, /* FAN 1 Count Low Limit in DataSheet */ 104 0x3C, /* FAN 2 Count Low Limit in DataSheet */ 105 0x3D, /* FAN 3 Count Low Limit in DataSheet */ 106 0xBC, /* FAN 4 Count Low Limit in DataSheet */ 107 0xBD, /* FAN 5 Count Low Limit in DataSheet */ 108 }; 109 110 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = { 111 0x81, /* PWM 1 duty cycle register in DataSheet */ 112 0x83, /* PWM 2 duty cycle register in DataSheet */ 113 0x94, /* PWM 3 duty cycle register in DataSheet */ 114 0xA0, /* PWM 4 duty cycle register in DataSheet */ 115 0xA1, /* PWM 5 duty cycle register in DataSheet */ 116 }; 117 118 static const u8 W83791D_REG_TEMP_TARGET[3] = { 119 0x85, /* PWM 1 target temperature for temp 1 */ 120 0x86, /* PWM 2 target temperature for temp 2 */ 121 0x96, /* PWM 3 target temperature for temp 3 */ 122 }; 123 124 static const u8 W83791D_REG_TEMP_TOL[2] = { 125 0x87, /* PWM 1/2 temperature tolerance */ 126 0x97, /* PWM 3 temperature tolerance */ 127 }; 128 129 static const u8 W83791D_REG_FAN_CFG[2] = { 130 0x84, /* FAN 1/2 configuration */ 131 0x95, /* FAN 3 configuration */ 132 }; 133 134 static const u8 W83791D_REG_FAN_DIV[3] = { 135 0x47, /* contains FAN1 and FAN2 Divisor */ 136 0x4b, /* contains FAN3 Divisor */ 137 0x5C, /* contains FAN4 and FAN5 Divisor */ 138 }; 139 140 #define W83791D_REG_BANK 0x4E 141 #define W83791D_REG_TEMP2_CONFIG 0xC2 142 #define W83791D_REG_TEMP3_CONFIG 0xCA 143 144 static const u8 W83791D_REG_TEMP1[3] = { 145 0x27, /* TEMP 1 in DataSheet */ 146 0x39, /* TEMP 1 Over in DataSheet */ 147 0x3A, /* TEMP 1 Hyst in DataSheet */ 148 }; 149 150 static const u8 W83791D_REG_TEMP_ADD[2][6] = { 151 {0xC0, /* TEMP 2 in DataSheet */ 152 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ 153 0xC5, /* TEMP 2 Over High part in DataSheet */ 154 0xC6, /* TEMP 2 Over Low part in DataSheet */ 155 0xC3, /* TEMP 2 Thyst High part in DataSheet */ 156 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */ 157 {0xC8, /* TEMP 3 in DataSheet */ 158 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ 159 0xCD, /* TEMP 3 Over High part in DataSheet */ 160 0xCE, /* TEMP 3 Over Low part in DataSheet */ 161 0xCB, /* TEMP 3 Thyst High part in DataSheet */ 162 0xCC} /* TEMP 3 Thyst Low part in DataSheet */ 163 }; 164 165 #define W83791D_REG_BEEP_CONFIG 0x4D 166 167 static const u8 W83791D_REG_BEEP_CTRL[3] = { 168 0x56, /* BEEP Control Register 1 */ 169 0x57, /* BEEP Control Register 2 */ 170 0xA3, /* BEEP Control Register 3 */ 171 }; 172 173 #define W83791D_REG_GPIO 0x15 174 #define W83791D_REG_CONFIG 0x40 175 #define W83791D_REG_VID_FANDIV 0x47 176 #define W83791D_REG_DID_VID4 0x49 177 #define W83791D_REG_WCHIPID 0x58 178 #define W83791D_REG_CHIPMAN 0x4F 179 #define W83791D_REG_PIN 0x4B 180 #define W83791D_REG_I2C_SUBADDR 0x4A 181 182 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */ 183 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */ 184 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */ 185 186 #define W83791D_REG_VBAT 0x5D 187 #define W83791D_REG_I2C_ADDR 0x48 188 189 /* 190 * The SMBus locks itself. The Winbond W83791D has a bank select register 191 * (index 0x4e), but the driver only accesses registers in bank 0. Since 192 * we don't switch banks, we don't need any special code to handle 193 * locking access between bank switches 194 */ 195 static inline int w83791d_read(struct i2c_client *client, u8 reg) 196 { 197 return i2c_smbus_read_byte_data(client, reg); 198 } 199 200 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value) 201 { 202 return i2c_smbus_write_byte_data(client, reg, value); 203 } 204 205 /* 206 * The analog voltage inputs have 16mV LSB. Since the sysfs output is 207 * in mV as would be measured on the chip input pin, need to just 208 * multiply/divide by 16 to translate from/to register values. 209 */ 210 #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255)) 211 #define IN_FROM_REG(val) ((val) * 16) 212 213 static u8 fan_to_reg(long rpm, int div) 214 { 215 if (rpm == 0) 216 return 255; 217 rpm = clamp_val(rpm, 1, 1000000); 218 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 219 } 220 221 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ 222 ((val) == 255 ? 0 : \ 223 1350000 / ((val) * (div)))) 224 225 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */ 226 #define TEMP1_FROM_REG(val) ((val) * 1000) 227 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ 228 (val) >= 127000 ? 127 : \ 229 (val) < 0 ? ((val) - 500) / 1000 : \ 230 ((val) + 500) / 1000) 231 232 /* 233 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius 234 * Assumes the top 8 bits are the integral amount and the bottom 8 bits 235 * are the fractional amount. Since we only have 0.5 degree resolution, 236 * the bottom 7 bits will always be zero 237 */ 238 #define TEMP23_FROM_REG(val) ((val) / 128 * 500) 239 #define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \ 240 127500), 500) * 128) 241 242 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */ 243 #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \ 244 1000) 245 246 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */ 247 #define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \ 248 1000) 249 250 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) 251 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff) 252 253 #define DIV_FROM_REG(val) (1 << (val)) 254 255 static u8 div_to_reg(int nr, long val) 256 { 257 int i; 258 259 /* fan divisors max out at 128 */ 260 val = clamp_val(val, 1, 128) >> 1; 261 for (i = 0; i < 7; i++) { 262 if (val == 0) 263 break; 264 val >>= 1; 265 } 266 return (u8) i; 267 } 268 269 struct w83791d_data { 270 struct device *hwmon_dev; 271 struct mutex update_lock; 272 273 char valid; /* !=0 if following fields are valid */ 274 unsigned long last_updated; /* In jiffies */ 275 276 /* array of 2 pointers to subclients */ 277 struct i2c_client *lm75[2]; 278 279 /* volts */ 280 u8 in[NUMBER_OF_VIN]; /* Register value */ 281 u8 in_max[NUMBER_OF_VIN]; /* Register value */ 282 u8 in_min[NUMBER_OF_VIN]; /* Register value */ 283 284 /* fans */ 285 u8 fan[NUMBER_OF_FANIN]; /* Register value */ 286 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */ 287 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */ 288 289 /* Temperature sensors */ 290 291 s8 temp1[3]; /* current, over, thyst */ 292 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the 293 * integral part, bottom 8 bits are the 294 * fractional part. We only use the top 295 * 9 bits as the resolution is only 296 * to the 0.5 degree C... 297 * two sensors with three values 298 * (cur, over, hyst) 299 */ 300 301 /* PWMs */ 302 u8 pwm[5]; /* pwm duty cycle */ 303 u8 pwm_enable[3]; /* pwm enable status for fan 1-3 304 * (fan 4-5 only support manual mode) 305 */ 306 307 u8 temp_target[3]; /* pwm 1-3 target temperature */ 308 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */ 309 310 /* Misc */ 311 u32 alarms; /* realtime status register encoding,combined */ 312 u8 beep_enable; /* Global beep enable */ 313 u32 beep_mask; /* Mask off specific beeps */ 314 u8 vid; /* Register encoding, combined */ 315 u8 vrm; /* hwmon-vid */ 316 }; 317 318 static int w83791d_probe(struct i2c_client *client, 319 const struct i2c_device_id *id); 320 static int w83791d_detect(struct i2c_client *client, 321 struct i2c_board_info *info); 322 static int w83791d_remove(struct i2c_client *client); 323 324 static int w83791d_read(struct i2c_client *client, u8 reg); 325 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value); 326 static struct w83791d_data *w83791d_update_device(struct device *dev); 327 328 #ifdef DEBUG 329 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev); 330 #endif 331 332 static void w83791d_init_client(struct i2c_client *client); 333 334 static const struct i2c_device_id w83791d_id[] = { 335 { "w83791d", 0 }, 336 { } 337 }; 338 MODULE_DEVICE_TABLE(i2c, w83791d_id); 339 340 static struct i2c_driver w83791d_driver = { 341 .class = I2C_CLASS_HWMON, 342 .driver = { 343 .name = "w83791d", 344 }, 345 .probe = w83791d_probe, 346 .remove = w83791d_remove, 347 .id_table = w83791d_id, 348 .detect = w83791d_detect, 349 .address_list = normal_i2c, 350 }; 351 352 /* following are the sysfs callback functions */ 353 #define show_in_reg(reg) \ 354 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 355 char *buf) \ 356 { \ 357 struct sensor_device_attribute *sensor_attr = \ 358 to_sensor_dev_attr(attr); \ 359 struct w83791d_data *data = w83791d_update_device(dev); \ 360 int nr = sensor_attr->index; \ 361 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 362 } 363 364 show_in_reg(in); 365 show_in_reg(in_min); 366 show_in_reg(in_max); 367 368 #define store_in_reg(REG, reg) \ 369 static ssize_t store_in_##reg(struct device *dev, \ 370 struct device_attribute *attr, \ 371 const char *buf, size_t count) \ 372 { \ 373 struct sensor_device_attribute *sensor_attr = \ 374 to_sensor_dev_attr(attr); \ 375 struct i2c_client *client = to_i2c_client(dev); \ 376 struct w83791d_data *data = i2c_get_clientdata(client); \ 377 int nr = sensor_attr->index; \ 378 unsigned long val; \ 379 int err = kstrtoul(buf, 10, &val); \ 380 if (err) \ 381 return err; \ 382 mutex_lock(&data->update_lock); \ 383 data->in_##reg[nr] = IN_TO_REG(val); \ 384 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \ 385 mutex_unlock(&data->update_lock); \ 386 \ 387 return count; \ 388 } 389 store_in_reg(MIN, min); 390 store_in_reg(MAX, max); 391 392 static struct sensor_device_attribute sda_in_input[] = { 393 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), 394 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), 395 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), 396 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3), 397 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4), 398 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5), 399 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6), 400 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7), 401 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8), 402 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9), 403 }; 404 405 static struct sensor_device_attribute sda_in_min[] = { 406 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), 407 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), 408 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), 409 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3), 410 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4), 411 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5), 412 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6), 413 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7), 414 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8), 415 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9), 416 }; 417 418 static struct sensor_device_attribute sda_in_max[] = { 419 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), 420 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), 421 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), 422 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3), 423 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4), 424 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5), 425 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6), 426 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7), 427 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8), 428 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9), 429 }; 430 431 432 static ssize_t show_beep(struct device *dev, struct device_attribute *attr, 433 char *buf) 434 { 435 struct sensor_device_attribute *sensor_attr = 436 to_sensor_dev_attr(attr); 437 struct w83791d_data *data = w83791d_update_device(dev); 438 int bitnr = sensor_attr->index; 439 440 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1); 441 } 442 443 static ssize_t store_beep(struct device *dev, struct device_attribute *attr, 444 const char *buf, size_t count) 445 { 446 struct sensor_device_attribute *sensor_attr = 447 to_sensor_dev_attr(attr); 448 struct i2c_client *client = to_i2c_client(dev); 449 struct w83791d_data *data = i2c_get_clientdata(client); 450 int bitnr = sensor_attr->index; 451 int bytenr = bitnr / 8; 452 unsigned long val; 453 int err; 454 455 err = kstrtoul(buf, 10, &val); 456 if (err) 457 return err; 458 459 val = val ? 1 : 0; 460 461 mutex_lock(&data->update_lock); 462 463 data->beep_mask &= ~(0xff << (bytenr * 8)); 464 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr]) 465 << (bytenr * 8); 466 467 data->beep_mask &= ~(1 << bitnr); 468 data->beep_mask |= val << bitnr; 469 470 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr], 471 (data->beep_mask >> (bytenr * 8)) & 0xff); 472 473 mutex_unlock(&data->update_lock); 474 475 return count; 476 } 477 478 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 479 char *buf) 480 { 481 struct sensor_device_attribute *sensor_attr = 482 to_sensor_dev_attr(attr); 483 struct w83791d_data *data = w83791d_update_device(dev); 484 int bitnr = sensor_attr->index; 485 486 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); 487 } 488 489 /* 490 * Note: The bitmask for the beep enable/disable is different than 491 * the bitmask for the alarm. 492 */ 493 static struct sensor_device_attribute sda_in_beep[] = { 494 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0), 495 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13), 496 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2), 497 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3), 498 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8), 499 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9), 500 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10), 501 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16), 502 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17), 503 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14), 504 }; 505 506 static struct sensor_device_attribute sda_in_alarm[] = { 507 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0), 508 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1), 509 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2), 510 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3), 511 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8), 512 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9), 513 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10), 514 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19), 515 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20), 516 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14), 517 }; 518 519 #define show_fan_reg(reg) \ 520 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 521 char *buf) \ 522 { \ 523 struct sensor_device_attribute *sensor_attr = \ 524 to_sensor_dev_attr(attr); \ 525 struct w83791d_data *data = w83791d_update_device(dev); \ 526 int nr = sensor_attr->index; \ 527 return sprintf(buf, "%d\n", \ 528 FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ 529 } 530 531 show_fan_reg(fan); 532 show_fan_reg(fan_min); 533 534 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, 535 const char *buf, size_t count) 536 { 537 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 538 struct i2c_client *client = to_i2c_client(dev); 539 struct w83791d_data *data = i2c_get_clientdata(client); 540 int nr = sensor_attr->index; 541 unsigned long val; 542 int err; 543 544 err = kstrtoul(buf, 10, &val); 545 if (err) 546 return err; 547 548 mutex_lock(&data->update_lock); 549 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr])); 550 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 551 mutex_unlock(&data->update_lock); 552 553 return count; 554 } 555 556 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 557 char *buf) 558 { 559 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 560 int nr = sensor_attr->index; 561 struct w83791d_data *data = w83791d_update_device(dev); 562 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); 563 } 564 565 /* 566 * Note: we save and restore the fan minimum here, because its value is 567 * determined in part by the fan divisor. This follows the principle of 568 * least surprise; the user doesn't expect the fan minimum to change just 569 * because the divisor changed. 570 */ 571 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, 572 const char *buf, size_t count) 573 { 574 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 575 struct i2c_client *client = to_i2c_client(dev); 576 struct w83791d_data *data = i2c_get_clientdata(client); 577 int nr = sensor_attr->index; 578 unsigned long min; 579 u8 tmp_fan_div; 580 u8 fan_div_reg; 581 u8 vbat_reg; 582 int indx = 0; 583 u8 keep_mask = 0; 584 u8 new_shift = 0; 585 unsigned long val; 586 int err; 587 588 err = kstrtoul(buf, 10, &val); 589 if (err) 590 return err; 591 592 /* Save fan_min */ 593 min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); 594 595 mutex_lock(&data->update_lock); 596 data->fan_div[nr] = div_to_reg(nr, val); 597 598 switch (nr) { 599 case 0: 600 indx = 0; 601 keep_mask = 0xcf; 602 new_shift = 4; 603 break; 604 case 1: 605 indx = 0; 606 keep_mask = 0x3f; 607 new_shift = 6; 608 break; 609 case 2: 610 indx = 1; 611 keep_mask = 0x3f; 612 new_shift = 6; 613 break; 614 case 3: 615 indx = 2; 616 keep_mask = 0xf8; 617 new_shift = 0; 618 break; 619 case 4: 620 indx = 2; 621 keep_mask = 0x8f; 622 new_shift = 4; 623 break; 624 #ifdef DEBUG 625 default: 626 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr); 627 count = -EINVAL; 628 goto err_exit; 629 #endif 630 } 631 632 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx]) 633 & keep_mask; 634 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; 635 636 w83791d_write(client, W83791D_REG_FAN_DIV[indx], 637 fan_div_reg | tmp_fan_div); 638 639 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */ 640 if (nr < 3) { 641 keep_mask = ~(1 << (nr + 5)); 642 vbat_reg = w83791d_read(client, W83791D_REG_VBAT) 643 & keep_mask; 644 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask; 645 w83791d_write(client, W83791D_REG_VBAT, 646 vbat_reg | tmp_fan_div); 647 } 648 649 /* Restore fan_min */ 650 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr])); 651 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 652 653 #ifdef DEBUG 654 err_exit: 655 #endif 656 mutex_unlock(&data->update_lock); 657 658 return count; 659 } 660 661 static struct sensor_device_attribute sda_fan_input[] = { 662 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), 663 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), 664 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2), 665 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3), 666 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4), 667 }; 668 669 static struct sensor_device_attribute sda_fan_min[] = { 670 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, 671 show_fan_min, store_fan_min, 0), 672 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, 673 show_fan_min, store_fan_min, 1), 674 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, 675 show_fan_min, store_fan_min, 2), 676 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, 677 show_fan_min, store_fan_min, 3), 678 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, 679 show_fan_min, store_fan_min, 4), 680 }; 681 682 static struct sensor_device_attribute sda_fan_div[] = { 683 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, 684 show_fan_div, store_fan_div, 0), 685 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, 686 show_fan_div, store_fan_div, 1), 687 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO, 688 show_fan_div, store_fan_div, 2), 689 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO, 690 show_fan_div, store_fan_div, 3), 691 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO, 692 show_fan_div, store_fan_div, 4), 693 }; 694 695 static struct sensor_device_attribute sda_fan_beep[] = { 696 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6), 697 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7), 698 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11), 699 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21), 700 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22), 701 }; 702 703 static struct sensor_device_attribute sda_fan_alarm[] = { 704 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6), 705 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7), 706 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11), 707 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21), 708 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22), 709 }; 710 711 /* read/write PWMs */ 712 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 713 char *buf) 714 { 715 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 716 int nr = sensor_attr->index; 717 struct w83791d_data *data = w83791d_update_device(dev); 718 return sprintf(buf, "%u\n", data->pwm[nr]); 719 } 720 721 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, 722 const char *buf, size_t count) 723 { 724 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 725 struct i2c_client *client = to_i2c_client(dev); 726 struct w83791d_data *data = i2c_get_clientdata(client); 727 int nr = sensor_attr->index; 728 unsigned long val; 729 730 if (kstrtoul(buf, 10, &val)) 731 return -EINVAL; 732 733 mutex_lock(&data->update_lock); 734 data->pwm[nr] = clamp_val(val, 0, 255); 735 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]); 736 mutex_unlock(&data->update_lock); 737 return count; 738 } 739 740 static struct sensor_device_attribute sda_pwm[] = { 741 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, 742 show_pwm, store_pwm, 0), 743 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, 744 show_pwm, store_pwm, 1), 745 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, 746 show_pwm, store_pwm, 2), 747 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, 748 show_pwm, store_pwm, 3), 749 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO, 750 show_pwm, store_pwm, 4), 751 }; 752 753 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr, 754 char *buf) 755 { 756 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 757 int nr = sensor_attr->index; 758 struct w83791d_data *data = w83791d_update_device(dev); 759 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1); 760 } 761 762 static ssize_t store_pwmenable(struct device *dev, 763 struct device_attribute *attr, const char *buf, size_t count) 764 { 765 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 766 struct i2c_client *client = to_i2c_client(dev); 767 struct w83791d_data *data = i2c_get_clientdata(client); 768 int nr = sensor_attr->index; 769 unsigned long val; 770 u8 reg_cfg_tmp; 771 u8 reg_idx = 0; 772 u8 val_shift = 0; 773 u8 keep_mask = 0; 774 775 int ret = kstrtoul(buf, 10, &val); 776 777 if (ret || val < 1 || val > 3) 778 return -EINVAL; 779 780 mutex_lock(&data->update_lock); 781 data->pwm_enable[nr] = val - 1; 782 switch (nr) { 783 case 0: 784 reg_idx = 0; 785 val_shift = 2; 786 keep_mask = 0xf3; 787 break; 788 case 1: 789 reg_idx = 0; 790 val_shift = 4; 791 keep_mask = 0xcf; 792 break; 793 case 2: 794 reg_idx = 1; 795 val_shift = 2; 796 keep_mask = 0xf3; 797 break; 798 } 799 800 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]); 801 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) | 802 data->pwm_enable[nr] << val_shift; 803 804 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp); 805 mutex_unlock(&data->update_lock); 806 807 return count; 808 } 809 static struct sensor_device_attribute sda_pwmenable[] = { 810 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, 811 show_pwmenable, store_pwmenable, 0), 812 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, 813 show_pwmenable, store_pwmenable, 1), 814 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, 815 show_pwmenable, store_pwmenable, 2), 816 }; 817 818 /* For Smart Fan I / Thermal Cruise */ 819 static ssize_t show_temp_target(struct device *dev, 820 struct device_attribute *attr, char *buf) 821 { 822 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 823 struct w83791d_data *data = w83791d_update_device(dev); 824 int nr = sensor_attr->index; 825 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr])); 826 } 827 828 static ssize_t store_temp_target(struct device *dev, 829 struct device_attribute *attr, const char *buf, size_t count) 830 { 831 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 832 struct i2c_client *client = to_i2c_client(dev); 833 struct w83791d_data *data = i2c_get_clientdata(client); 834 int nr = sensor_attr->index; 835 long val; 836 u8 target_mask; 837 838 if (kstrtol(buf, 10, &val)) 839 return -EINVAL; 840 841 mutex_lock(&data->update_lock); 842 data->temp_target[nr] = TARGET_TEMP_TO_REG(val); 843 target_mask = w83791d_read(client, 844 W83791D_REG_TEMP_TARGET[nr]) & 0x80; 845 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr], 846 data->temp_target[nr] | target_mask); 847 mutex_unlock(&data->update_lock); 848 return count; 849 } 850 851 static struct sensor_device_attribute sda_temp_target[] = { 852 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO, 853 show_temp_target, store_temp_target, 0), 854 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO, 855 show_temp_target, store_temp_target, 1), 856 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO, 857 show_temp_target, store_temp_target, 2), 858 }; 859 860 static ssize_t show_temp_tolerance(struct device *dev, 861 struct device_attribute *attr, char *buf) 862 { 863 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 864 struct w83791d_data *data = w83791d_update_device(dev); 865 int nr = sensor_attr->index; 866 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr])); 867 } 868 869 static ssize_t store_temp_tolerance(struct device *dev, 870 struct device_attribute *attr, const char *buf, size_t count) 871 { 872 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 873 struct i2c_client *client = to_i2c_client(dev); 874 struct w83791d_data *data = i2c_get_clientdata(client); 875 int nr = sensor_attr->index; 876 unsigned long val; 877 u8 target_mask; 878 u8 reg_idx = 0; 879 u8 val_shift = 0; 880 u8 keep_mask = 0; 881 882 if (kstrtoul(buf, 10, &val)) 883 return -EINVAL; 884 885 switch (nr) { 886 case 0: 887 reg_idx = 0; 888 val_shift = 0; 889 keep_mask = 0xf0; 890 break; 891 case 1: 892 reg_idx = 0; 893 val_shift = 4; 894 keep_mask = 0x0f; 895 break; 896 case 2: 897 reg_idx = 1; 898 val_shift = 0; 899 keep_mask = 0xf0; 900 break; 901 } 902 903 mutex_lock(&data->update_lock); 904 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val); 905 target_mask = w83791d_read(client, 906 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask; 907 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx], 908 (data->temp_tolerance[nr] << val_shift) | target_mask); 909 mutex_unlock(&data->update_lock); 910 return count; 911 } 912 913 static struct sensor_device_attribute sda_temp_tolerance[] = { 914 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO, 915 show_temp_tolerance, store_temp_tolerance, 0), 916 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO, 917 show_temp_tolerance, store_temp_tolerance, 1), 918 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO, 919 show_temp_tolerance, store_temp_tolerance, 2), 920 }; 921 922 /* read/write the temperature1, includes measured value and limits */ 923 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr, 924 char *buf) 925 { 926 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 927 struct w83791d_data *data = w83791d_update_device(dev); 928 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index])); 929 } 930 931 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr, 932 const char *buf, size_t count) 933 { 934 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 935 struct i2c_client *client = to_i2c_client(dev); 936 struct w83791d_data *data = i2c_get_clientdata(client); 937 int nr = attr->index; 938 long val; 939 int err; 940 941 err = kstrtol(buf, 10, &val); 942 if (err) 943 return err; 944 945 mutex_lock(&data->update_lock); 946 data->temp1[nr] = TEMP1_TO_REG(val); 947 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]); 948 mutex_unlock(&data->update_lock); 949 return count; 950 } 951 952 /* read/write temperature2-3, includes measured value and limits */ 953 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr, 954 char *buf) 955 { 956 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 957 struct w83791d_data *data = w83791d_update_device(dev); 958 int nr = attr->nr; 959 int index = attr->index; 960 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index])); 961 } 962 963 static ssize_t store_temp23(struct device *dev, 964 struct device_attribute *devattr, 965 const char *buf, size_t count) 966 { 967 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 968 struct i2c_client *client = to_i2c_client(dev); 969 struct w83791d_data *data = i2c_get_clientdata(client); 970 long val; 971 int err; 972 int nr = attr->nr; 973 int index = attr->index; 974 975 err = kstrtol(buf, 10, &val); 976 if (err) 977 return err; 978 979 mutex_lock(&data->update_lock); 980 data->temp_add[nr][index] = TEMP23_TO_REG(val); 981 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2], 982 data->temp_add[nr][index] >> 8); 983 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1], 984 data->temp_add[nr][index] & 0x80); 985 mutex_unlock(&data->update_lock); 986 987 return count; 988 } 989 990 static struct sensor_device_attribute_2 sda_temp_input[] = { 991 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0), 992 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0), 993 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0), 994 }; 995 996 static struct sensor_device_attribute_2 sda_temp_max[] = { 997 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, 998 show_temp1, store_temp1, 0, 1), 999 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, 1000 show_temp23, store_temp23, 0, 1), 1001 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, 1002 show_temp23, store_temp23, 1, 1), 1003 }; 1004 1005 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { 1006 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, 1007 show_temp1, store_temp1, 0, 2), 1008 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, 1009 show_temp23, store_temp23, 0, 2), 1010 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, 1011 show_temp23, store_temp23, 1, 2), 1012 }; 1013 1014 /* 1015 * Note: The bitmask for the beep enable/disable is different than 1016 * the bitmask for the alarm. 1017 */ 1018 static struct sensor_device_attribute sda_temp_beep[] = { 1019 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4), 1020 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5), 1021 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1), 1022 }; 1023 1024 static struct sensor_device_attribute sda_temp_alarm[] = { 1025 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4), 1026 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5), 1027 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13), 1028 }; 1029 1030 /* get realtime status of all sensors items: voltage, temp, fan */ 1031 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 1032 char *buf) 1033 { 1034 struct w83791d_data *data = w83791d_update_device(dev); 1035 return sprintf(buf, "%u\n", data->alarms); 1036 } 1037 1038 static DEVICE_ATTR_RO(alarms); 1039 1040 /* Beep control */ 1041 1042 #define GLOBAL_BEEP_ENABLE_SHIFT 15 1043 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT) 1044 1045 static ssize_t show_beep_enable(struct device *dev, 1046 struct device_attribute *attr, char *buf) 1047 { 1048 struct w83791d_data *data = w83791d_update_device(dev); 1049 return sprintf(buf, "%d\n", data->beep_enable); 1050 } 1051 1052 static ssize_t show_beep_mask(struct device *dev, 1053 struct device_attribute *attr, char *buf) 1054 { 1055 struct w83791d_data *data = w83791d_update_device(dev); 1056 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask)); 1057 } 1058 1059 1060 static ssize_t store_beep_mask(struct device *dev, 1061 struct device_attribute *attr, 1062 const char *buf, size_t count) 1063 { 1064 struct i2c_client *client = to_i2c_client(dev); 1065 struct w83791d_data *data = i2c_get_clientdata(client); 1066 int i; 1067 long val; 1068 int err; 1069 1070 err = kstrtol(buf, 10, &val); 1071 if (err) 1072 return err; 1073 1074 mutex_lock(&data->update_lock); 1075 1076 /* 1077 * The beep_enable state overrides any enabling request from 1078 * the masks 1079 */ 1080 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK; 1081 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1082 1083 val = data->beep_mask; 1084 1085 for (i = 0; i < 3; i++) { 1086 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff)); 1087 val >>= 8; 1088 } 1089 1090 mutex_unlock(&data->update_lock); 1091 1092 return count; 1093 } 1094 1095 static ssize_t store_beep_enable(struct device *dev, 1096 struct device_attribute *attr, 1097 const char *buf, size_t count) 1098 { 1099 struct i2c_client *client = to_i2c_client(dev); 1100 struct w83791d_data *data = i2c_get_clientdata(client); 1101 long val; 1102 int err; 1103 1104 err = kstrtol(buf, 10, &val); 1105 if (err) 1106 return err; 1107 1108 mutex_lock(&data->update_lock); 1109 1110 data->beep_enable = val ? 1 : 0; 1111 1112 /* Keep the full mask value in sync with the current enable */ 1113 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK; 1114 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1115 1116 /* 1117 * The global control is in the second beep control register 1118 * so only need to update that register 1119 */ 1120 val = (data->beep_mask >> 8) & 0xff; 1121 1122 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val); 1123 1124 mutex_unlock(&data->update_lock); 1125 1126 return count; 1127 } 1128 1129 static struct sensor_device_attribute sda_beep_ctrl[] = { 1130 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR, 1131 show_beep_enable, store_beep_enable, 0), 1132 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR, 1133 show_beep_mask, store_beep_mask, 1) 1134 }; 1135 1136 /* cpu voltage regulation information */ 1137 static ssize_t cpu0_vid_show(struct device *dev, 1138 struct device_attribute *attr, char *buf) 1139 { 1140 struct w83791d_data *data = w83791d_update_device(dev); 1141 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 1142 } 1143 1144 static DEVICE_ATTR_RO(cpu0_vid); 1145 1146 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, 1147 char *buf) 1148 { 1149 struct w83791d_data *data = dev_get_drvdata(dev); 1150 return sprintf(buf, "%d\n", data->vrm); 1151 } 1152 1153 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, 1154 const char *buf, size_t count) 1155 { 1156 struct w83791d_data *data = dev_get_drvdata(dev); 1157 unsigned long val; 1158 int err; 1159 1160 /* 1161 * No lock needed as vrm is internal to the driver 1162 * (not read from a chip register) and so is not 1163 * updated in w83791d_update_device() 1164 */ 1165 1166 err = kstrtoul(buf, 10, &val); 1167 if (err) 1168 return err; 1169 1170 if (val > 255) 1171 return -EINVAL; 1172 1173 data->vrm = val; 1174 return count; 1175 } 1176 1177 static DEVICE_ATTR_RW(vrm); 1178 1179 #define IN_UNIT_ATTRS(X) \ 1180 &sda_in_input[X].dev_attr.attr, \ 1181 &sda_in_min[X].dev_attr.attr, \ 1182 &sda_in_max[X].dev_attr.attr, \ 1183 &sda_in_beep[X].dev_attr.attr, \ 1184 &sda_in_alarm[X].dev_attr.attr 1185 1186 #define FAN_UNIT_ATTRS(X) \ 1187 &sda_fan_input[X].dev_attr.attr, \ 1188 &sda_fan_min[X].dev_attr.attr, \ 1189 &sda_fan_div[X].dev_attr.attr, \ 1190 &sda_fan_beep[X].dev_attr.attr, \ 1191 &sda_fan_alarm[X].dev_attr.attr 1192 1193 #define TEMP_UNIT_ATTRS(X) \ 1194 &sda_temp_input[X].dev_attr.attr, \ 1195 &sda_temp_max[X].dev_attr.attr, \ 1196 &sda_temp_max_hyst[X].dev_attr.attr, \ 1197 &sda_temp_beep[X].dev_attr.attr, \ 1198 &sda_temp_alarm[X].dev_attr.attr 1199 1200 static struct attribute *w83791d_attributes[] = { 1201 IN_UNIT_ATTRS(0), 1202 IN_UNIT_ATTRS(1), 1203 IN_UNIT_ATTRS(2), 1204 IN_UNIT_ATTRS(3), 1205 IN_UNIT_ATTRS(4), 1206 IN_UNIT_ATTRS(5), 1207 IN_UNIT_ATTRS(6), 1208 IN_UNIT_ATTRS(7), 1209 IN_UNIT_ATTRS(8), 1210 IN_UNIT_ATTRS(9), 1211 FAN_UNIT_ATTRS(0), 1212 FAN_UNIT_ATTRS(1), 1213 FAN_UNIT_ATTRS(2), 1214 TEMP_UNIT_ATTRS(0), 1215 TEMP_UNIT_ATTRS(1), 1216 TEMP_UNIT_ATTRS(2), 1217 &dev_attr_alarms.attr, 1218 &sda_beep_ctrl[0].dev_attr.attr, 1219 &sda_beep_ctrl[1].dev_attr.attr, 1220 &dev_attr_cpu0_vid.attr, 1221 &dev_attr_vrm.attr, 1222 &sda_pwm[0].dev_attr.attr, 1223 &sda_pwm[1].dev_attr.attr, 1224 &sda_pwm[2].dev_attr.attr, 1225 &sda_pwmenable[0].dev_attr.attr, 1226 &sda_pwmenable[1].dev_attr.attr, 1227 &sda_pwmenable[2].dev_attr.attr, 1228 &sda_temp_target[0].dev_attr.attr, 1229 &sda_temp_target[1].dev_attr.attr, 1230 &sda_temp_target[2].dev_attr.attr, 1231 &sda_temp_tolerance[0].dev_attr.attr, 1232 &sda_temp_tolerance[1].dev_attr.attr, 1233 &sda_temp_tolerance[2].dev_attr.attr, 1234 NULL 1235 }; 1236 1237 static const struct attribute_group w83791d_group = { 1238 .attrs = w83791d_attributes, 1239 }; 1240 1241 /* 1242 * Separate group of attributes for fan/pwm 4-5. Their pins can also be 1243 * in use for GPIO in which case their sysfs-interface should not be made 1244 * available 1245 */ 1246 static struct attribute *w83791d_attributes_fanpwm45[] = { 1247 FAN_UNIT_ATTRS(3), 1248 FAN_UNIT_ATTRS(4), 1249 &sda_pwm[3].dev_attr.attr, 1250 &sda_pwm[4].dev_attr.attr, 1251 NULL 1252 }; 1253 1254 static const struct attribute_group w83791d_group_fanpwm45 = { 1255 .attrs = w83791d_attributes_fanpwm45, 1256 }; 1257 1258 static int w83791d_detect_subclients(struct i2c_client *client) 1259 { 1260 struct i2c_adapter *adapter = client->adapter; 1261 struct w83791d_data *data = i2c_get_clientdata(client); 1262 int address = client->addr; 1263 int i, id; 1264 u8 val; 1265 1266 id = i2c_adapter_id(adapter); 1267 if (force_subclients[0] == id && force_subclients[1] == address) { 1268 for (i = 2; i <= 3; i++) { 1269 if (force_subclients[i] < 0x48 || 1270 force_subclients[i] > 0x4f) { 1271 dev_err(&client->dev, 1272 "invalid subclient " 1273 "address %d; must be 0x48-0x4f\n", 1274 force_subclients[i]); 1275 return -ENODEV; 1276 } 1277 } 1278 w83791d_write(client, W83791D_REG_I2C_SUBADDR, 1279 (force_subclients[2] & 0x07) | 1280 ((force_subclients[3] & 0x07) << 4)); 1281 } 1282 1283 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR); 1284 if (!(val & 0x08)) 1285 data->lm75[0] = devm_i2c_new_dummy_device(&client->dev, adapter, 1286 0x48 + (val & 0x7)); 1287 if (!(val & 0x80)) { 1288 if (!IS_ERR(data->lm75[0]) && 1289 ((val & 0x7) == ((val >> 4) & 0x7))) { 1290 dev_err(&client->dev, 1291 "duplicate addresses 0x%x, " 1292 "use force_subclient\n", 1293 data->lm75[0]->addr); 1294 return -ENODEV; 1295 } 1296 data->lm75[1] = devm_i2c_new_dummy_device(&client->dev, adapter, 1297 0x48 + ((val >> 4) & 0x7)); 1298 } 1299 1300 return 0; 1301 } 1302 1303 1304 /* Return 0 if detection is successful, -ENODEV otherwise */ 1305 static int w83791d_detect(struct i2c_client *client, 1306 struct i2c_board_info *info) 1307 { 1308 struct i2c_adapter *adapter = client->adapter; 1309 int val1, val2; 1310 unsigned short address = client->addr; 1311 1312 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1313 return -ENODEV; 1314 1315 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80) 1316 return -ENODEV; 1317 1318 val1 = w83791d_read(client, W83791D_REG_BANK); 1319 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1320 /* Check for Winbond ID if in bank 0 */ 1321 if (!(val1 & 0x07)) { 1322 if ((!(val1 & 0x80) && val2 != 0xa3) || 1323 ((val1 & 0x80) && val2 != 0x5c)) { 1324 return -ENODEV; 1325 } 1326 } 1327 /* 1328 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR 1329 * should match 1330 */ 1331 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address) 1332 return -ENODEV; 1333 1334 /* We want bank 0 and Vendor ID high byte */ 1335 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78; 1336 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80); 1337 1338 /* Verify it is a Winbond w83791d */ 1339 val1 = w83791d_read(client, W83791D_REG_WCHIPID); 1340 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1341 if (val1 != 0x71 || val2 != 0x5c) 1342 return -ENODEV; 1343 1344 strlcpy(info->type, "w83791d", I2C_NAME_SIZE); 1345 1346 return 0; 1347 } 1348 1349 static int w83791d_probe(struct i2c_client *client, 1350 const struct i2c_device_id *id) 1351 { 1352 struct w83791d_data *data; 1353 struct device *dev = &client->dev; 1354 int i, err; 1355 u8 has_fanpwm45; 1356 1357 #ifdef DEBUG 1358 int val1; 1359 val1 = w83791d_read(client, W83791D_REG_DID_VID4); 1360 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n", 1361 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1); 1362 #endif 1363 1364 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data), 1365 GFP_KERNEL); 1366 if (!data) 1367 return -ENOMEM; 1368 1369 i2c_set_clientdata(client, data); 1370 mutex_init(&data->update_lock); 1371 1372 err = w83791d_detect_subclients(client); 1373 if (err) 1374 return err; 1375 1376 /* Initialize the chip */ 1377 w83791d_init_client(client); 1378 1379 /* 1380 * If the fan_div is changed, make sure there is a rational 1381 * fan_min in place 1382 */ 1383 for (i = 0; i < NUMBER_OF_FANIN; i++) 1384 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); 1385 1386 /* Register sysfs hooks */ 1387 err = sysfs_create_group(&client->dev.kobj, &w83791d_group); 1388 if (err) 1389 return err; 1390 1391 /* Check if pins of fan/pwm 4-5 are in use as GPIO */ 1392 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10; 1393 if (has_fanpwm45) { 1394 err = sysfs_create_group(&client->dev.kobj, 1395 &w83791d_group_fanpwm45); 1396 if (err) 1397 goto error4; 1398 } 1399 1400 /* Everything is ready, now register the working device */ 1401 data->hwmon_dev = hwmon_device_register(dev); 1402 if (IS_ERR(data->hwmon_dev)) { 1403 err = PTR_ERR(data->hwmon_dev); 1404 goto error5; 1405 } 1406 1407 return 0; 1408 1409 error5: 1410 if (has_fanpwm45) 1411 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45); 1412 error4: 1413 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1414 return err; 1415 } 1416 1417 static int w83791d_remove(struct i2c_client *client) 1418 { 1419 struct w83791d_data *data = i2c_get_clientdata(client); 1420 1421 hwmon_device_unregister(data->hwmon_dev); 1422 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1423 1424 return 0; 1425 } 1426 1427 static void w83791d_init_client(struct i2c_client *client) 1428 { 1429 struct w83791d_data *data = i2c_get_clientdata(client); 1430 u8 tmp; 1431 u8 old_beep; 1432 1433 /* 1434 * The difference between reset and init is that reset 1435 * does a hard reset of the chip via index 0x40, bit 7, 1436 * but init simply forces certain registers to have "sane" 1437 * values. The hope is that the BIOS has done the right 1438 * thing (which is why the default is reset=0, init=0), 1439 * but if not, reset is the hard hammer and init 1440 * is the soft mallet both of which are trying to whack 1441 * things into place... 1442 * NOTE: The data sheet makes a distinction between 1443 * "power on defaults" and "reset by MR". As far as I can tell, 1444 * the hard reset puts everything into a power-on state so I'm 1445 * not sure what "reset by MR" means or how it can happen. 1446 */ 1447 if (reset || init) { 1448 /* keep some BIOS settings when we... */ 1449 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG); 1450 1451 if (reset) { 1452 /* ... reset the chip and ... */ 1453 w83791d_write(client, W83791D_REG_CONFIG, 0x80); 1454 } 1455 1456 /* ... disable power-on abnormal beep */ 1457 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80); 1458 1459 /* disable the global beep (not done by hard reset) */ 1460 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]); 1461 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef); 1462 1463 if (init) { 1464 /* Make sure monitoring is turned on for add-ons */ 1465 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG); 1466 if (tmp & 1) { 1467 w83791d_write(client, W83791D_REG_TEMP2_CONFIG, 1468 tmp & 0xfe); 1469 } 1470 1471 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG); 1472 if (tmp & 1) { 1473 w83791d_write(client, W83791D_REG_TEMP3_CONFIG, 1474 tmp & 0xfe); 1475 } 1476 1477 /* Start monitoring */ 1478 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7; 1479 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01); 1480 } 1481 } 1482 1483 data->vrm = vid_which_vrm(); 1484 } 1485 1486 static struct w83791d_data *w83791d_update_device(struct device *dev) 1487 { 1488 struct i2c_client *client = to_i2c_client(dev); 1489 struct w83791d_data *data = i2c_get_clientdata(client); 1490 int i, j; 1491 u8 reg_array_tmp[3]; 1492 u8 vbat_reg; 1493 1494 mutex_lock(&data->update_lock); 1495 1496 if (time_after(jiffies, data->last_updated + (HZ * 3)) 1497 || !data->valid) { 1498 dev_dbg(dev, "Starting w83791d device update\n"); 1499 1500 /* Update the voltages measured value and limits */ 1501 for (i = 0; i < NUMBER_OF_VIN; i++) { 1502 data->in[i] = w83791d_read(client, 1503 W83791D_REG_IN[i]); 1504 data->in_max[i] = w83791d_read(client, 1505 W83791D_REG_IN_MAX[i]); 1506 data->in_min[i] = w83791d_read(client, 1507 W83791D_REG_IN_MIN[i]); 1508 } 1509 1510 /* Update the fan counts and limits */ 1511 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1512 /* Update the Fan measured value and limits */ 1513 data->fan[i] = w83791d_read(client, 1514 W83791D_REG_FAN[i]); 1515 data->fan_min[i] = w83791d_read(client, 1516 W83791D_REG_FAN_MIN[i]); 1517 } 1518 1519 /* Update the fan divisor */ 1520 for (i = 0; i < 3; i++) { 1521 reg_array_tmp[i] = w83791d_read(client, 1522 W83791D_REG_FAN_DIV[i]); 1523 } 1524 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03; 1525 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03; 1526 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03; 1527 data->fan_div[3] = reg_array_tmp[2] & 0x07; 1528 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07; 1529 1530 /* 1531 * The fan divisor for fans 0-2 get bit 2 from 1532 * bits 5-7 respectively of vbat register 1533 */ 1534 vbat_reg = w83791d_read(client, W83791D_REG_VBAT); 1535 for (i = 0; i < 3; i++) 1536 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04; 1537 1538 /* Update PWM duty cycle */ 1539 for (i = 0; i < NUMBER_OF_PWM; i++) { 1540 data->pwm[i] = w83791d_read(client, 1541 W83791D_REG_PWM[i]); 1542 } 1543 1544 /* Update PWM enable status */ 1545 for (i = 0; i < 2; i++) { 1546 reg_array_tmp[i] = w83791d_read(client, 1547 W83791D_REG_FAN_CFG[i]); 1548 } 1549 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03; 1550 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03; 1551 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03; 1552 1553 /* Update PWM target temperature */ 1554 for (i = 0; i < 3; i++) { 1555 data->temp_target[i] = w83791d_read(client, 1556 W83791D_REG_TEMP_TARGET[i]) & 0x7f; 1557 } 1558 1559 /* Update PWM temperature tolerance */ 1560 for (i = 0; i < 2; i++) { 1561 reg_array_tmp[i] = w83791d_read(client, 1562 W83791D_REG_TEMP_TOL[i]); 1563 } 1564 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f; 1565 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f; 1566 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f; 1567 1568 /* Update the first temperature sensor */ 1569 for (i = 0; i < 3; i++) { 1570 data->temp1[i] = w83791d_read(client, 1571 W83791D_REG_TEMP1[i]); 1572 } 1573 1574 /* Update the rest of the temperature sensors */ 1575 for (i = 0; i < 2; i++) { 1576 for (j = 0; j < 3; j++) { 1577 data->temp_add[i][j] = 1578 (w83791d_read(client, 1579 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) | 1580 w83791d_read(client, 1581 W83791D_REG_TEMP_ADD[i][j * 2 + 1]); 1582 } 1583 } 1584 1585 /* Update the realtime status */ 1586 data->alarms = 1587 w83791d_read(client, W83791D_REG_ALARM1) + 1588 (w83791d_read(client, W83791D_REG_ALARM2) << 8) + 1589 (w83791d_read(client, W83791D_REG_ALARM3) << 16); 1590 1591 /* Update the beep configuration information */ 1592 data->beep_mask = 1593 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) + 1594 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) + 1595 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16); 1596 1597 /* Extract global beep enable flag */ 1598 data->beep_enable = 1599 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01; 1600 1601 /* Update the cpu voltage information */ 1602 i = w83791d_read(client, W83791D_REG_VID_FANDIV); 1603 data->vid = i & 0x0f; 1604 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01) 1605 << 4; 1606 1607 data->last_updated = jiffies; 1608 data->valid = 1; 1609 } 1610 1611 mutex_unlock(&data->update_lock); 1612 1613 #ifdef DEBUG 1614 w83791d_print_debug(data, dev); 1615 #endif 1616 1617 return data; 1618 } 1619 1620 #ifdef DEBUG 1621 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev) 1622 { 1623 int i = 0, j = 0; 1624 1625 dev_dbg(dev, "======Start of w83791d debug values======\n"); 1626 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN); 1627 for (i = 0; i < NUMBER_OF_VIN; i++) { 1628 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]); 1629 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]); 1630 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]); 1631 } 1632 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN); 1633 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1634 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]); 1635 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]); 1636 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]); 1637 } 1638 1639 /* 1640 * temperature math is signed, but only print out the 1641 * bits that matter 1642 */ 1643 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN); 1644 for (i = 0; i < 3; i++) 1645 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]); 1646 for (i = 0; i < 2; i++) { 1647 for (j = 0; j < 3; j++) { 1648 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j, 1649 (u16) data->temp_add[i][j]); 1650 } 1651 } 1652 1653 dev_dbg(dev, "Misc Information: ===>\n"); 1654 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms); 1655 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask); 1656 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable); 1657 dev_dbg(dev, "vid is: 0x%02x\n", data->vid); 1658 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm); 1659 dev_dbg(dev, "=======End of w83791d debug values========\n"); 1660 dev_dbg(dev, "\n"); 1661 } 1662 #endif 1663 1664 module_i2c_driver(w83791d_driver); 1665 1666 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>"); 1667 MODULE_DESCRIPTION("W83791D driver"); 1668 MODULE_LICENSE("GPL"); 1669