xref: /openbmc/linux/drivers/hwmon/w83791d.c (revision 5a86bf34)
1 /*
2  * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	       monitoring
4  *
5  * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 /*
23  * Supports following chips:
24  *
25  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
26  * w83791d	10	5	5	3	0x71	0x5ca3	yes	no
27  *
28  * The w83791d chip appears to be part way between the 83781d and the
29  * 83792d. Thus, this file is derived from both the w83792d.c and
30  * w83781d.c files.
31  *
32  * The w83791g chip is the same as the w83791d but lead-free.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/i2c.h>
39 #include <linux/hwmon.h>
40 #include <linux/hwmon-vid.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/err.h>
43 #include <linux/mutex.h>
44 #include <linux/jiffies.h>
45 
46 #define NUMBER_OF_VIN		10
47 #define NUMBER_OF_FANIN		5
48 #define NUMBER_OF_TEMPIN	3
49 #define NUMBER_OF_PWM		5
50 
51 /* Addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
53 						I2C_CLIENT_END };
54 
55 /* Insmod parameters */
56 
57 static unsigned short force_subclients[4];
58 module_param_array(force_subclients, short, NULL, 0);
59 MODULE_PARM_DESC(force_subclients,
60 		 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
61 
62 static bool reset;
63 module_param(reset, bool, 0);
64 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
65 
66 static bool init;
67 module_param(init, bool, 0);
68 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
69 
70 /* The W83791D registers */
71 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
72 	0x20,			/* VCOREA in DataSheet */
73 	0x21,			/* VINR0 in DataSheet */
74 	0x22,			/* +3.3VIN in DataSheet */
75 	0x23,			/* VDD5V in DataSheet */
76 	0x24,			/* +12VIN in DataSheet */
77 	0x25,			/* -12VIN in DataSheet */
78 	0x26,			/* -5VIN in DataSheet */
79 	0xB0,			/* 5VSB in DataSheet */
80 	0xB1,			/* VBAT in DataSheet */
81 	0xB2			/* VINR1 in DataSheet */
82 };
83 
84 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
85 	0x2B,			/* VCOREA High Limit in DataSheet */
86 	0x2D,			/* VINR0 High Limit in DataSheet */
87 	0x2F,			/* +3.3VIN High Limit in DataSheet */
88 	0x31,			/* VDD5V High Limit in DataSheet */
89 	0x33,			/* +12VIN High Limit in DataSheet */
90 	0x35,			/* -12VIN High Limit in DataSheet */
91 	0x37,			/* -5VIN High Limit in DataSheet */
92 	0xB4,			/* 5VSB High Limit in DataSheet */
93 	0xB6,			/* VBAT High Limit in DataSheet */
94 	0xB8			/* VINR1 High Limit in DataSheet */
95 };
96 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
97 	0x2C,			/* VCOREA Low Limit in DataSheet */
98 	0x2E,			/* VINR0 Low Limit in DataSheet */
99 	0x30,			/* +3.3VIN Low Limit in DataSheet */
100 	0x32,			/* VDD5V Low Limit in DataSheet */
101 	0x34,			/* +12VIN Low Limit in DataSheet */
102 	0x36,			/* -12VIN Low Limit in DataSheet */
103 	0x38,			/* -5VIN Low Limit in DataSheet */
104 	0xB5,			/* 5VSB Low Limit in DataSheet */
105 	0xB7,			/* VBAT Low Limit in DataSheet */
106 	0xB9			/* VINR1 Low Limit in DataSheet */
107 };
108 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
109 	0x28,			/* FAN 1 Count in DataSheet */
110 	0x29,			/* FAN 2 Count in DataSheet */
111 	0x2A,			/* FAN 3 Count in DataSheet */
112 	0xBA,			/* FAN 4 Count in DataSheet */
113 	0xBB,			/* FAN 5 Count in DataSheet */
114 };
115 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
116 	0x3B,			/* FAN 1 Count Low Limit in DataSheet */
117 	0x3C,			/* FAN 2 Count Low Limit in DataSheet */
118 	0x3D,			/* FAN 3 Count Low Limit in DataSheet */
119 	0xBC,			/* FAN 4 Count Low Limit in DataSheet */
120 	0xBD,			/* FAN 5 Count Low Limit in DataSheet */
121 };
122 
123 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
124 	0x81,			/* PWM 1 duty cycle register in DataSheet */
125 	0x83,			/* PWM 2 duty cycle register in DataSheet */
126 	0x94,			/* PWM 3 duty cycle register in DataSheet */
127 	0xA0,			/* PWM 4 duty cycle register in DataSheet */
128 	0xA1,			/* PWM 5 duty cycle register in DataSheet */
129 };
130 
131 static const u8 W83791D_REG_TEMP_TARGET[3] = {
132 	0x85,			/* PWM 1 target temperature for temp 1 */
133 	0x86,			/* PWM 2 target temperature for temp 2 */
134 	0x96,			/* PWM 3 target temperature for temp 3 */
135 };
136 
137 static const u8 W83791D_REG_TEMP_TOL[2] = {
138 	0x87,			/* PWM 1/2 temperature tolerance */
139 	0x97,			/* PWM 3 temperature tolerance */
140 };
141 
142 static const u8 W83791D_REG_FAN_CFG[2] = {
143 	0x84,			/* FAN 1/2 configuration */
144 	0x95,			/* FAN 3 configuration */
145 };
146 
147 static const u8 W83791D_REG_FAN_DIV[3] = {
148 	0x47,			/* contains FAN1 and FAN2 Divisor */
149 	0x4b,			/* contains FAN3 Divisor */
150 	0x5C,			/* contains FAN4 and FAN5 Divisor */
151 };
152 
153 #define W83791D_REG_BANK		0x4E
154 #define W83791D_REG_TEMP2_CONFIG	0xC2
155 #define W83791D_REG_TEMP3_CONFIG	0xCA
156 
157 static const u8 W83791D_REG_TEMP1[3] = {
158 	0x27,			/* TEMP 1 in DataSheet */
159 	0x39,			/* TEMP 1 Over in DataSheet */
160 	0x3A,			/* TEMP 1 Hyst in DataSheet */
161 };
162 
163 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
164 	{0xC0,			/* TEMP 2 in DataSheet */
165 	 0xC1,			/* TEMP 2(0.5 deg) in DataSheet */
166 	 0xC5,			/* TEMP 2 Over High part in DataSheet */
167 	 0xC6,			/* TEMP 2 Over Low part in DataSheet */
168 	 0xC3,			/* TEMP 2 Thyst High part in DataSheet */
169 	 0xC4},			/* TEMP 2 Thyst Low part in DataSheet */
170 	{0xC8,			/* TEMP 3 in DataSheet */
171 	 0xC9,			/* TEMP 3(0.5 deg) in DataSheet */
172 	 0xCD,			/* TEMP 3 Over High part in DataSheet */
173 	 0xCE,			/* TEMP 3 Over Low part in DataSheet */
174 	 0xCB,			/* TEMP 3 Thyst High part in DataSheet */
175 	 0xCC}			/* TEMP 3 Thyst Low part in DataSheet */
176 };
177 
178 #define W83791D_REG_BEEP_CONFIG		0x4D
179 
180 static const u8 W83791D_REG_BEEP_CTRL[3] = {
181 	0x56,			/* BEEP Control Register 1 */
182 	0x57,			/* BEEP Control Register 2 */
183 	0xA3,			/* BEEP Control Register 3 */
184 };
185 
186 #define W83791D_REG_GPIO		0x15
187 #define W83791D_REG_CONFIG		0x40
188 #define W83791D_REG_VID_FANDIV		0x47
189 #define W83791D_REG_DID_VID4		0x49
190 #define W83791D_REG_WCHIPID		0x58
191 #define W83791D_REG_CHIPMAN		0x4F
192 #define W83791D_REG_PIN			0x4B
193 #define W83791D_REG_I2C_SUBADDR		0x4A
194 
195 #define W83791D_REG_ALARM1 0xA9	/* realtime status register1 */
196 #define W83791D_REG_ALARM2 0xAA	/* realtime status register2 */
197 #define W83791D_REG_ALARM3 0xAB	/* realtime status register3 */
198 
199 #define W83791D_REG_VBAT		0x5D
200 #define W83791D_REG_I2C_ADDR		0x48
201 
202 /*
203  * The SMBus locks itself. The Winbond W83791D has a bank select register
204  * (index 0x4e), but the driver only accesses registers in bank 0. Since
205  * we don't switch banks, we don't need any special code to handle
206  * locking access between bank switches
207  */
208 static inline int w83791d_read(struct i2c_client *client, u8 reg)
209 {
210 	return i2c_smbus_read_byte_data(client, reg);
211 }
212 
213 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
214 {
215 	return i2c_smbus_write_byte_data(client, reg, value);
216 }
217 
218 /*
219  * The analog voltage inputs have 16mV LSB. Since the sysfs output is
220  * in mV as would be measured on the chip input pin, need to just
221  * multiply/divide by 16 to translate from/to register values.
222  */
223 #define IN_TO_REG(val)		(clamp_val((((val) + 8) / 16), 0, 255))
224 #define IN_FROM_REG(val)	((val) * 16)
225 
226 static u8 fan_to_reg(long rpm, int div)
227 {
228 	if (rpm == 0)
229 		return 255;
230 	rpm = clamp_val(rpm, 1, 1000000);
231 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
232 }
233 
234 #define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
235 				((val) == 255 ? 0 : \
236 					1350000 / ((val) * (div))))
237 
238 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
239 #define TEMP1_FROM_REG(val)	((val) * 1000)
240 #define TEMP1_TO_REG(val)	((val) <= -128000 ? -128 : \
241 				 (val) >= 127000 ? 127 : \
242 				 (val) < 0 ? ((val) - 500) / 1000 : \
243 				 ((val) + 500) / 1000)
244 
245 /*
246  * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
247  * Assumes the top 8 bits are the integral amount and the bottom 8 bits
248  * are the fractional amount. Since we only have 0.5 degree resolution,
249  * the bottom 7 bits will always be zero
250  */
251 #define TEMP23_FROM_REG(val)	((val) / 128 * 500)
252 #define TEMP23_TO_REG(val)	((val) <= -128000 ? 0x8000 : \
253 				 (val) >= 127500 ? 0x7F80 : \
254 				 (val) < 0 ? ((val) - 250) / 500 * 128 : \
255 				 ((val) + 250) / 500 * 128)
256 
257 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
258 #define TARGET_TEMP_TO_REG(val)		((val) < 0 ? 0 : \
259 					(val) >= 127000 ? 127 : \
260 					((val) + 500) / 1000)
261 
262 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
263 #define TOL_TEMP_TO_REG(val)		((val) >= 15000 ? 15 : \
264 					((val) + 500) / 1000)
265 
266 #define BEEP_MASK_TO_REG(val)		((val) & 0xffffff)
267 #define BEEP_MASK_FROM_REG(val)		((val) & 0xffffff)
268 
269 #define DIV_FROM_REG(val)		(1 << (val))
270 
271 static u8 div_to_reg(int nr, long val)
272 {
273 	int i;
274 
275 	/* fan divisors max out at 128 */
276 	val = clamp_val(val, 1, 128) >> 1;
277 	for (i = 0; i < 7; i++) {
278 		if (val == 0)
279 			break;
280 		val >>= 1;
281 	}
282 	return (u8) i;
283 }
284 
285 struct w83791d_data {
286 	struct device *hwmon_dev;
287 	struct mutex update_lock;
288 
289 	char valid;			/* !=0 if following fields are valid */
290 	unsigned long last_updated;	/* In jiffies */
291 
292 	/* array of 2 pointers to subclients */
293 	struct i2c_client *lm75[2];
294 
295 	/* volts */
296 	u8 in[NUMBER_OF_VIN];		/* Register value */
297 	u8 in_max[NUMBER_OF_VIN];	/* Register value */
298 	u8 in_min[NUMBER_OF_VIN];	/* Register value */
299 
300 	/* fans */
301 	u8 fan[NUMBER_OF_FANIN];	/* Register value */
302 	u8 fan_min[NUMBER_OF_FANIN];	/* Register value */
303 	u8 fan_div[NUMBER_OF_FANIN];	/* Register encoding, shifted right */
304 
305 	/* Temperature sensors */
306 
307 	s8 temp1[3];		/* current, over, thyst */
308 	s16 temp_add[2][3];	/* fixed point value. Top 8 bits are the
309 				 * integral part, bottom 8 bits are the
310 				 * fractional part. We only use the top
311 				 * 9 bits as the resolution is only
312 				 * to the 0.5 degree C...
313 				 * two sensors with three values
314 				 * (cur, over, hyst)
315 				 */
316 
317 	/* PWMs */
318 	u8 pwm[5];		/* pwm duty cycle */
319 	u8 pwm_enable[3];	/* pwm enable status for fan 1-3
320 				 * (fan 4-5 only support manual mode)
321 				 */
322 
323 	u8 temp_target[3];	/* pwm 1-3 target temperature */
324 	u8 temp_tolerance[3];	/* pwm 1-3 temperature tolerance */
325 
326 	/* Misc */
327 	u32 alarms;		/* realtime status register encoding,combined */
328 	u8 beep_enable;		/* Global beep enable */
329 	u32 beep_mask;		/* Mask off specific beeps */
330 	u8 vid;			/* Register encoding, combined */
331 	u8 vrm;			/* hwmon-vid */
332 };
333 
334 static int w83791d_probe(struct i2c_client *client,
335 			 const struct i2c_device_id *id);
336 static int w83791d_detect(struct i2c_client *client,
337 			  struct i2c_board_info *info);
338 static int w83791d_remove(struct i2c_client *client);
339 
340 static int w83791d_read(struct i2c_client *client, u8 reg);
341 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
342 static struct w83791d_data *w83791d_update_device(struct device *dev);
343 
344 #ifdef DEBUG
345 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
346 #endif
347 
348 static void w83791d_init_client(struct i2c_client *client);
349 
350 static const struct i2c_device_id w83791d_id[] = {
351 	{ "w83791d", 0 },
352 	{ }
353 };
354 MODULE_DEVICE_TABLE(i2c, w83791d_id);
355 
356 static struct i2c_driver w83791d_driver = {
357 	.class		= I2C_CLASS_HWMON,
358 	.driver = {
359 		.name = "w83791d",
360 	},
361 	.probe		= w83791d_probe,
362 	.remove		= w83791d_remove,
363 	.id_table	= w83791d_id,
364 	.detect		= w83791d_detect,
365 	.address_list	= normal_i2c,
366 };
367 
368 /* following are the sysfs callback functions */
369 #define show_in_reg(reg) \
370 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
371 			char *buf) \
372 { \
373 	struct sensor_device_attribute *sensor_attr = \
374 						to_sensor_dev_attr(attr); \
375 	struct w83791d_data *data = w83791d_update_device(dev); \
376 	int nr = sensor_attr->index; \
377 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
378 }
379 
380 show_in_reg(in);
381 show_in_reg(in_min);
382 show_in_reg(in_max);
383 
384 #define store_in_reg(REG, reg) \
385 static ssize_t store_in_##reg(struct device *dev, \
386 				struct device_attribute *attr, \
387 				const char *buf, size_t count) \
388 { \
389 	struct sensor_device_attribute *sensor_attr = \
390 						to_sensor_dev_attr(attr); \
391 	struct i2c_client *client = to_i2c_client(dev); \
392 	struct w83791d_data *data = i2c_get_clientdata(client); \
393 	int nr = sensor_attr->index; \
394 	unsigned long val; \
395 	int err = kstrtoul(buf, 10, &val); \
396 	if (err) \
397 		return err; \
398 	mutex_lock(&data->update_lock); \
399 	data->in_##reg[nr] = IN_TO_REG(val); \
400 	w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
401 	mutex_unlock(&data->update_lock); \
402 	 \
403 	return count; \
404 }
405 store_in_reg(MIN, min);
406 store_in_reg(MAX, max);
407 
408 static struct sensor_device_attribute sda_in_input[] = {
409 	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
410 	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
411 	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
412 	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
413 	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
414 	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
415 	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
416 	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
417 	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
418 	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
419 };
420 
421 static struct sensor_device_attribute sda_in_min[] = {
422 	SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
423 	SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
424 	SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
425 	SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
426 	SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
427 	SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
428 	SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
429 	SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
430 	SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
431 	SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
432 };
433 
434 static struct sensor_device_attribute sda_in_max[] = {
435 	SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
436 	SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
437 	SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
438 	SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
439 	SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
440 	SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
441 	SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
442 	SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
443 	SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
444 	SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
445 };
446 
447 
448 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
449 			char *buf)
450 {
451 	struct sensor_device_attribute *sensor_attr =
452 						to_sensor_dev_attr(attr);
453 	struct w83791d_data *data = w83791d_update_device(dev);
454 	int bitnr = sensor_attr->index;
455 
456 	return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
457 }
458 
459 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
460 			const char *buf, size_t count)
461 {
462 	struct sensor_device_attribute *sensor_attr =
463 						to_sensor_dev_attr(attr);
464 	struct i2c_client *client = to_i2c_client(dev);
465 	struct w83791d_data *data = i2c_get_clientdata(client);
466 	int bitnr = sensor_attr->index;
467 	int bytenr = bitnr / 8;
468 	unsigned long val;
469 	int err;
470 
471 	err = kstrtoul(buf, 10, &val);
472 	if (err)
473 		return err;
474 
475 	val = val ? 1 : 0;
476 
477 	mutex_lock(&data->update_lock);
478 
479 	data->beep_mask &= ~(0xff << (bytenr * 8));
480 	data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
481 		<< (bytenr * 8);
482 
483 	data->beep_mask &= ~(1 << bitnr);
484 	data->beep_mask |= val << bitnr;
485 
486 	w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
487 		(data->beep_mask >> (bytenr * 8)) & 0xff);
488 
489 	mutex_unlock(&data->update_lock);
490 
491 	return count;
492 }
493 
494 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
495 			char *buf)
496 {
497 	struct sensor_device_attribute *sensor_attr =
498 						to_sensor_dev_attr(attr);
499 	struct w83791d_data *data = w83791d_update_device(dev);
500 	int bitnr = sensor_attr->index;
501 
502 	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
503 }
504 
505 /*
506  * Note: The bitmask for the beep enable/disable is different than
507  * the bitmask for the alarm.
508  */
509 static struct sensor_device_attribute sda_in_beep[] = {
510 	SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
511 	SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
512 	SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
513 	SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
514 	SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
515 	SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
516 	SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
517 	SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
518 	SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
519 	SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
520 };
521 
522 static struct sensor_device_attribute sda_in_alarm[] = {
523 	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
524 	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
525 	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
526 	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
527 	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
528 	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
529 	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
530 	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
531 	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
532 	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
533 };
534 
535 #define show_fan_reg(reg) \
536 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
537 				char *buf) \
538 { \
539 	struct sensor_device_attribute *sensor_attr = \
540 						to_sensor_dev_attr(attr); \
541 	struct w83791d_data *data = w83791d_update_device(dev); \
542 	int nr = sensor_attr->index; \
543 	return sprintf(buf, "%d\n", \
544 		FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
545 }
546 
547 show_fan_reg(fan);
548 show_fan_reg(fan_min);
549 
550 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
551 				const char *buf, size_t count)
552 {
553 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
554 	struct i2c_client *client = to_i2c_client(dev);
555 	struct w83791d_data *data = i2c_get_clientdata(client);
556 	int nr = sensor_attr->index;
557 	unsigned long val;
558 	int err;
559 
560 	err = kstrtoul(buf, 10, &val);
561 	if (err)
562 		return err;
563 
564 	mutex_lock(&data->update_lock);
565 	data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
566 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
567 	mutex_unlock(&data->update_lock);
568 
569 	return count;
570 }
571 
572 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
573 				char *buf)
574 {
575 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
576 	int nr = sensor_attr->index;
577 	struct w83791d_data *data = w83791d_update_device(dev);
578 	return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
579 }
580 
581 /*
582  * Note: we save and restore the fan minimum here, because its value is
583  * determined in part by the fan divisor.  This follows the principle of
584  * least surprise; the user doesn't expect the fan minimum to change just
585  * because the divisor changed.
586  */
587 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
588 				const char *buf, size_t count)
589 {
590 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
591 	struct i2c_client *client = to_i2c_client(dev);
592 	struct w83791d_data *data = i2c_get_clientdata(client);
593 	int nr = sensor_attr->index;
594 	unsigned long min;
595 	u8 tmp_fan_div;
596 	u8 fan_div_reg;
597 	u8 vbat_reg;
598 	int indx = 0;
599 	u8 keep_mask = 0;
600 	u8 new_shift = 0;
601 	unsigned long val;
602 	int err;
603 
604 	err = kstrtoul(buf, 10, &val);
605 	if (err)
606 		return err;
607 
608 	/* Save fan_min */
609 	min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
610 
611 	mutex_lock(&data->update_lock);
612 	data->fan_div[nr] = div_to_reg(nr, val);
613 
614 	switch (nr) {
615 	case 0:
616 		indx = 0;
617 		keep_mask = 0xcf;
618 		new_shift = 4;
619 		break;
620 	case 1:
621 		indx = 0;
622 		keep_mask = 0x3f;
623 		new_shift = 6;
624 		break;
625 	case 2:
626 		indx = 1;
627 		keep_mask = 0x3f;
628 		new_shift = 6;
629 		break;
630 	case 3:
631 		indx = 2;
632 		keep_mask = 0xf8;
633 		new_shift = 0;
634 		break;
635 	case 4:
636 		indx = 2;
637 		keep_mask = 0x8f;
638 		new_shift = 4;
639 		break;
640 #ifdef DEBUG
641 	default:
642 		dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
643 		count = -EINVAL;
644 		goto err_exit;
645 #endif
646 	}
647 
648 	fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
649 			& keep_mask;
650 	tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
651 
652 	w83791d_write(client, W83791D_REG_FAN_DIV[indx],
653 				fan_div_reg | tmp_fan_div);
654 
655 	/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
656 	if (nr < 3) {
657 		keep_mask = ~(1 << (nr + 5));
658 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
659 				& keep_mask;
660 		tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
661 		w83791d_write(client, W83791D_REG_VBAT,
662 				vbat_reg | tmp_fan_div);
663 	}
664 
665 	/* Restore fan_min */
666 	data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
667 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
668 
669 #ifdef DEBUG
670 err_exit:
671 #endif
672 	mutex_unlock(&data->update_lock);
673 
674 	return count;
675 }
676 
677 static struct sensor_device_attribute sda_fan_input[] = {
678 	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
679 	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
680 	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
681 	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
682 	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
683 };
684 
685 static struct sensor_device_attribute sda_fan_min[] = {
686 	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
687 			show_fan_min, store_fan_min, 0),
688 	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
689 			show_fan_min, store_fan_min, 1),
690 	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
691 			show_fan_min, store_fan_min, 2),
692 	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
693 			show_fan_min, store_fan_min, 3),
694 	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
695 			show_fan_min, store_fan_min, 4),
696 };
697 
698 static struct sensor_device_attribute sda_fan_div[] = {
699 	SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
700 			show_fan_div, store_fan_div, 0),
701 	SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
702 			show_fan_div, store_fan_div, 1),
703 	SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
704 			show_fan_div, store_fan_div, 2),
705 	SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
706 			show_fan_div, store_fan_div, 3),
707 	SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
708 			show_fan_div, store_fan_div, 4),
709 };
710 
711 static struct sensor_device_attribute sda_fan_beep[] = {
712 	SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
713 	SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
714 	SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
715 	SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
716 	SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
717 };
718 
719 static struct sensor_device_attribute sda_fan_alarm[] = {
720 	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
721 	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
722 	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
723 	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
724 	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
725 };
726 
727 /* read/write PWMs */
728 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
729 				char *buf)
730 {
731 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
732 	int nr = sensor_attr->index;
733 	struct w83791d_data *data = w83791d_update_device(dev);
734 	return sprintf(buf, "%u\n", data->pwm[nr]);
735 }
736 
737 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
738 		const char *buf, size_t count)
739 {
740 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
741 	struct i2c_client *client = to_i2c_client(dev);
742 	struct w83791d_data *data = i2c_get_clientdata(client);
743 	int nr = sensor_attr->index;
744 	unsigned long val;
745 
746 	if (kstrtoul(buf, 10, &val))
747 		return -EINVAL;
748 
749 	mutex_lock(&data->update_lock);
750 	data->pwm[nr] = clamp_val(val, 0, 255);
751 	w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
752 	mutex_unlock(&data->update_lock);
753 	return count;
754 }
755 
756 static struct sensor_device_attribute sda_pwm[] = {
757 	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
758 			show_pwm, store_pwm, 0),
759 	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
760 			show_pwm, store_pwm, 1),
761 	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
762 			show_pwm, store_pwm, 2),
763 	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
764 			show_pwm, store_pwm, 3),
765 	SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
766 			show_pwm, store_pwm, 4),
767 };
768 
769 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
770 				char *buf)
771 {
772 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
773 	int nr = sensor_attr->index;
774 	struct w83791d_data *data = w83791d_update_device(dev);
775 	return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
776 }
777 
778 static ssize_t store_pwmenable(struct device *dev,
779 		struct device_attribute *attr, const char *buf, size_t count)
780 {
781 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
782 	struct i2c_client *client = to_i2c_client(dev);
783 	struct w83791d_data *data = i2c_get_clientdata(client);
784 	int nr = sensor_attr->index;
785 	unsigned long val;
786 	u8 reg_cfg_tmp;
787 	u8 reg_idx = 0;
788 	u8 val_shift = 0;
789 	u8 keep_mask = 0;
790 
791 	int ret = kstrtoul(buf, 10, &val);
792 
793 	if (ret || val < 1 || val > 3)
794 		return -EINVAL;
795 
796 	mutex_lock(&data->update_lock);
797 	data->pwm_enable[nr] = val - 1;
798 	switch (nr) {
799 	case 0:
800 		reg_idx = 0;
801 		val_shift = 2;
802 		keep_mask = 0xf3;
803 		break;
804 	case 1:
805 		reg_idx = 0;
806 		val_shift = 4;
807 		keep_mask = 0xcf;
808 		break;
809 	case 2:
810 		reg_idx = 1;
811 		val_shift = 2;
812 		keep_mask = 0xf3;
813 		break;
814 	}
815 
816 	reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
817 	reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
818 					data->pwm_enable[nr] << val_shift;
819 
820 	w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
821 	mutex_unlock(&data->update_lock);
822 
823 	return count;
824 }
825 static struct sensor_device_attribute sda_pwmenable[] = {
826 	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
827 			show_pwmenable, store_pwmenable, 0),
828 	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
829 			show_pwmenable, store_pwmenable, 1),
830 	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
831 			show_pwmenable, store_pwmenable, 2),
832 };
833 
834 /* For Smart Fan I / Thermal Cruise */
835 static ssize_t show_temp_target(struct device *dev,
836 			struct device_attribute *attr, char *buf)
837 {
838 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
839 	struct w83791d_data *data = w83791d_update_device(dev);
840 	int nr = sensor_attr->index;
841 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
842 }
843 
844 static ssize_t store_temp_target(struct device *dev,
845 		struct device_attribute *attr, const char *buf, size_t count)
846 {
847 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
848 	struct i2c_client *client = to_i2c_client(dev);
849 	struct w83791d_data *data = i2c_get_clientdata(client);
850 	int nr = sensor_attr->index;
851 	long val;
852 	u8 target_mask;
853 
854 	if (kstrtol(buf, 10, &val))
855 		return -EINVAL;
856 
857 	mutex_lock(&data->update_lock);
858 	data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
859 	target_mask = w83791d_read(client,
860 				W83791D_REG_TEMP_TARGET[nr]) & 0x80;
861 	w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
862 				data->temp_target[nr] | target_mask);
863 	mutex_unlock(&data->update_lock);
864 	return count;
865 }
866 
867 static struct sensor_device_attribute sda_temp_target[] = {
868 	SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
869 			show_temp_target, store_temp_target, 0),
870 	SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
871 			show_temp_target, store_temp_target, 1),
872 	SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
873 			show_temp_target, store_temp_target, 2),
874 };
875 
876 static ssize_t show_temp_tolerance(struct device *dev,
877 			struct device_attribute *attr, char *buf)
878 {
879 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
880 	struct w83791d_data *data = w83791d_update_device(dev);
881 	int nr = sensor_attr->index;
882 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
883 }
884 
885 static ssize_t store_temp_tolerance(struct device *dev,
886 		struct device_attribute *attr, const char *buf, size_t count)
887 {
888 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
889 	struct i2c_client *client = to_i2c_client(dev);
890 	struct w83791d_data *data = i2c_get_clientdata(client);
891 	int nr = sensor_attr->index;
892 	unsigned long val;
893 	u8 target_mask;
894 	u8 reg_idx = 0;
895 	u8 val_shift = 0;
896 	u8 keep_mask = 0;
897 
898 	if (kstrtoul(buf, 10, &val))
899 		return -EINVAL;
900 
901 	switch (nr) {
902 	case 0:
903 		reg_idx = 0;
904 		val_shift = 0;
905 		keep_mask = 0xf0;
906 		break;
907 	case 1:
908 		reg_idx = 0;
909 		val_shift = 4;
910 		keep_mask = 0x0f;
911 		break;
912 	case 2:
913 		reg_idx = 1;
914 		val_shift = 0;
915 		keep_mask = 0xf0;
916 		break;
917 	}
918 
919 	mutex_lock(&data->update_lock);
920 	data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
921 	target_mask = w83791d_read(client,
922 			W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
923 	w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
924 			(data->temp_tolerance[nr] << val_shift) | target_mask);
925 	mutex_unlock(&data->update_lock);
926 	return count;
927 }
928 
929 static struct sensor_device_attribute sda_temp_tolerance[] = {
930 	SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
931 			show_temp_tolerance, store_temp_tolerance, 0),
932 	SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
933 			show_temp_tolerance, store_temp_tolerance, 1),
934 	SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
935 			show_temp_tolerance, store_temp_tolerance, 2),
936 };
937 
938 /* read/write the temperature1, includes measured value and limits */
939 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
940 				char *buf)
941 {
942 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
943 	struct w83791d_data *data = w83791d_update_device(dev);
944 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
945 }
946 
947 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
948 				const char *buf, size_t count)
949 {
950 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
951 	struct i2c_client *client = to_i2c_client(dev);
952 	struct w83791d_data *data = i2c_get_clientdata(client);
953 	int nr = attr->index;
954 	long val;
955 	int err;
956 
957 	err = kstrtol(buf, 10, &val);
958 	if (err)
959 		return err;
960 
961 	mutex_lock(&data->update_lock);
962 	data->temp1[nr] = TEMP1_TO_REG(val);
963 	w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
964 	mutex_unlock(&data->update_lock);
965 	return count;
966 }
967 
968 /* read/write temperature2-3, includes measured value and limits */
969 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
970 				char *buf)
971 {
972 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
973 	struct w83791d_data *data = w83791d_update_device(dev);
974 	int nr = attr->nr;
975 	int index = attr->index;
976 	return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
977 }
978 
979 static ssize_t store_temp23(struct device *dev,
980 				struct device_attribute *devattr,
981 				const char *buf, size_t count)
982 {
983 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
984 	struct i2c_client *client = to_i2c_client(dev);
985 	struct w83791d_data *data = i2c_get_clientdata(client);
986 	long val;
987 	int err;
988 	int nr = attr->nr;
989 	int index = attr->index;
990 
991 	err = kstrtol(buf, 10, &val);
992 	if (err)
993 		return err;
994 
995 	mutex_lock(&data->update_lock);
996 	data->temp_add[nr][index] = TEMP23_TO_REG(val);
997 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
998 				data->temp_add[nr][index] >> 8);
999 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
1000 				data->temp_add[nr][index] & 0x80);
1001 	mutex_unlock(&data->update_lock);
1002 
1003 	return count;
1004 }
1005 
1006 static struct sensor_device_attribute_2 sda_temp_input[] = {
1007 	SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
1008 	SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
1009 	SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
1010 };
1011 
1012 static struct sensor_device_attribute_2 sda_temp_max[] = {
1013 	SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
1014 			show_temp1, store_temp1, 0, 1),
1015 	SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
1016 			show_temp23, store_temp23, 0, 1),
1017 	SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
1018 			show_temp23, store_temp23, 1, 1),
1019 };
1020 
1021 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1022 	SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1023 			show_temp1, store_temp1, 0, 2),
1024 	SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1025 			show_temp23, store_temp23, 0, 2),
1026 	SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1027 			show_temp23, store_temp23, 1, 2),
1028 };
1029 
1030 /*
1031  * Note: The bitmask for the beep enable/disable is different than
1032  * the bitmask for the alarm.
1033  */
1034 static struct sensor_device_attribute sda_temp_beep[] = {
1035 	SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1036 	SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1037 	SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1038 };
1039 
1040 static struct sensor_device_attribute sda_temp_alarm[] = {
1041 	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1042 	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1043 	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1044 };
1045 
1046 /* get realtime status of all sensors items: voltage, temp, fan */
1047 static ssize_t show_alarms_reg(struct device *dev,
1048 				struct device_attribute *attr, char *buf)
1049 {
1050 	struct w83791d_data *data = w83791d_update_device(dev);
1051 	return sprintf(buf, "%u\n", data->alarms);
1052 }
1053 
1054 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
1055 
1056 /* Beep control */
1057 
1058 #define GLOBAL_BEEP_ENABLE_SHIFT	15
1059 #define GLOBAL_BEEP_ENABLE_MASK		(1 << GLOBAL_BEEP_ENABLE_SHIFT)
1060 
1061 static ssize_t show_beep_enable(struct device *dev,
1062 				struct device_attribute *attr, char *buf)
1063 {
1064 	struct w83791d_data *data = w83791d_update_device(dev);
1065 	return sprintf(buf, "%d\n", data->beep_enable);
1066 }
1067 
1068 static ssize_t show_beep_mask(struct device *dev,
1069 				struct device_attribute *attr, char *buf)
1070 {
1071 	struct w83791d_data *data = w83791d_update_device(dev);
1072 	return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1073 }
1074 
1075 
1076 static ssize_t store_beep_mask(struct device *dev,
1077 				struct device_attribute *attr,
1078 				const char *buf, size_t count)
1079 {
1080 	struct i2c_client *client = to_i2c_client(dev);
1081 	struct w83791d_data *data = i2c_get_clientdata(client);
1082 	int i;
1083 	long val;
1084 	int err;
1085 
1086 	err = kstrtol(buf, 10, &val);
1087 	if (err)
1088 		return err;
1089 
1090 	mutex_lock(&data->update_lock);
1091 
1092 	/*
1093 	 * The beep_enable state overrides any enabling request from
1094 	 * the masks
1095 	 */
1096 	data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1097 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1098 
1099 	val = data->beep_mask;
1100 
1101 	for (i = 0; i < 3; i++) {
1102 		w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1103 		val >>= 8;
1104 	}
1105 
1106 	mutex_unlock(&data->update_lock);
1107 
1108 	return count;
1109 }
1110 
1111 static ssize_t store_beep_enable(struct device *dev,
1112 				struct device_attribute *attr,
1113 				const char *buf, size_t count)
1114 {
1115 	struct i2c_client *client = to_i2c_client(dev);
1116 	struct w83791d_data *data = i2c_get_clientdata(client);
1117 	long val;
1118 	int err;
1119 
1120 	err = kstrtol(buf, 10, &val);
1121 	if (err)
1122 		return err;
1123 
1124 	mutex_lock(&data->update_lock);
1125 
1126 	data->beep_enable = val ? 1 : 0;
1127 
1128 	/* Keep the full mask value in sync with the current enable */
1129 	data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1130 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1131 
1132 	/*
1133 	 * The global control is in the second beep control register
1134 	 * so only need to update that register
1135 	 */
1136 	val = (data->beep_mask >> 8) & 0xff;
1137 
1138 	w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1139 
1140 	mutex_unlock(&data->update_lock);
1141 
1142 	return count;
1143 }
1144 
1145 static struct sensor_device_attribute sda_beep_ctrl[] = {
1146 	SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1147 			show_beep_enable, store_beep_enable, 0),
1148 	SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1149 			show_beep_mask, store_beep_mask, 1)
1150 };
1151 
1152 /* cpu voltage regulation information */
1153 static ssize_t show_vid_reg(struct device *dev,
1154 				struct device_attribute *attr, char *buf)
1155 {
1156 	struct w83791d_data *data = w83791d_update_device(dev);
1157 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1158 }
1159 
1160 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
1161 
1162 static ssize_t show_vrm_reg(struct device *dev,
1163 				struct device_attribute *attr, char *buf)
1164 {
1165 	struct w83791d_data *data = dev_get_drvdata(dev);
1166 	return sprintf(buf, "%d\n", data->vrm);
1167 }
1168 
1169 static ssize_t store_vrm_reg(struct device *dev,
1170 				struct device_attribute *attr,
1171 				const char *buf, size_t count)
1172 {
1173 	struct w83791d_data *data = dev_get_drvdata(dev);
1174 	unsigned long val;
1175 	int err;
1176 
1177 	/*
1178 	 * No lock needed as vrm is internal to the driver
1179 	 * (not read from a chip register) and so is not
1180 	 * updated in w83791d_update_device()
1181 	 */
1182 
1183 	err = kstrtoul(buf, 10, &val);
1184 	if (err)
1185 		return err;
1186 
1187 	data->vrm = val;
1188 	return count;
1189 }
1190 
1191 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
1192 
1193 #define IN_UNIT_ATTRS(X) \
1194 	&sda_in_input[X].dev_attr.attr,	\
1195 	&sda_in_min[X].dev_attr.attr,	\
1196 	&sda_in_max[X].dev_attr.attr,	\
1197 	&sda_in_beep[X].dev_attr.attr,	\
1198 	&sda_in_alarm[X].dev_attr.attr
1199 
1200 #define FAN_UNIT_ATTRS(X) \
1201 	&sda_fan_input[X].dev_attr.attr,	\
1202 	&sda_fan_min[X].dev_attr.attr,		\
1203 	&sda_fan_div[X].dev_attr.attr,		\
1204 	&sda_fan_beep[X].dev_attr.attr,		\
1205 	&sda_fan_alarm[X].dev_attr.attr
1206 
1207 #define TEMP_UNIT_ATTRS(X) \
1208 	&sda_temp_input[X].dev_attr.attr,	\
1209 	&sda_temp_max[X].dev_attr.attr,		\
1210 	&sda_temp_max_hyst[X].dev_attr.attr,	\
1211 	&sda_temp_beep[X].dev_attr.attr,	\
1212 	&sda_temp_alarm[X].dev_attr.attr
1213 
1214 static struct attribute *w83791d_attributes[] = {
1215 	IN_UNIT_ATTRS(0),
1216 	IN_UNIT_ATTRS(1),
1217 	IN_UNIT_ATTRS(2),
1218 	IN_UNIT_ATTRS(3),
1219 	IN_UNIT_ATTRS(4),
1220 	IN_UNIT_ATTRS(5),
1221 	IN_UNIT_ATTRS(6),
1222 	IN_UNIT_ATTRS(7),
1223 	IN_UNIT_ATTRS(8),
1224 	IN_UNIT_ATTRS(9),
1225 	FAN_UNIT_ATTRS(0),
1226 	FAN_UNIT_ATTRS(1),
1227 	FAN_UNIT_ATTRS(2),
1228 	TEMP_UNIT_ATTRS(0),
1229 	TEMP_UNIT_ATTRS(1),
1230 	TEMP_UNIT_ATTRS(2),
1231 	&dev_attr_alarms.attr,
1232 	&sda_beep_ctrl[0].dev_attr.attr,
1233 	&sda_beep_ctrl[1].dev_attr.attr,
1234 	&dev_attr_cpu0_vid.attr,
1235 	&dev_attr_vrm.attr,
1236 	&sda_pwm[0].dev_attr.attr,
1237 	&sda_pwm[1].dev_attr.attr,
1238 	&sda_pwm[2].dev_attr.attr,
1239 	&sda_pwmenable[0].dev_attr.attr,
1240 	&sda_pwmenable[1].dev_attr.attr,
1241 	&sda_pwmenable[2].dev_attr.attr,
1242 	&sda_temp_target[0].dev_attr.attr,
1243 	&sda_temp_target[1].dev_attr.attr,
1244 	&sda_temp_target[2].dev_attr.attr,
1245 	&sda_temp_tolerance[0].dev_attr.attr,
1246 	&sda_temp_tolerance[1].dev_attr.attr,
1247 	&sda_temp_tolerance[2].dev_attr.attr,
1248 	NULL
1249 };
1250 
1251 static const struct attribute_group w83791d_group = {
1252 	.attrs = w83791d_attributes,
1253 };
1254 
1255 /*
1256  * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1257  * in use for GPIO in which case their sysfs-interface should not be made
1258  * available
1259  */
1260 static struct attribute *w83791d_attributes_fanpwm45[] = {
1261 	FAN_UNIT_ATTRS(3),
1262 	FAN_UNIT_ATTRS(4),
1263 	&sda_pwm[3].dev_attr.attr,
1264 	&sda_pwm[4].dev_attr.attr,
1265 	NULL
1266 };
1267 
1268 static const struct attribute_group w83791d_group_fanpwm45 = {
1269 	.attrs = w83791d_attributes_fanpwm45,
1270 };
1271 
1272 static int w83791d_detect_subclients(struct i2c_client *client)
1273 {
1274 	struct i2c_adapter *adapter = client->adapter;
1275 	struct w83791d_data *data = i2c_get_clientdata(client);
1276 	int address = client->addr;
1277 	int i, id, err;
1278 	u8 val;
1279 
1280 	id = i2c_adapter_id(adapter);
1281 	if (force_subclients[0] == id && force_subclients[1] == address) {
1282 		for (i = 2; i <= 3; i++) {
1283 			if (force_subclients[i] < 0x48 ||
1284 			    force_subclients[i] > 0x4f) {
1285 				dev_err(&client->dev,
1286 					"invalid subclient "
1287 					"address %d; must be 0x48-0x4f\n",
1288 					force_subclients[i]);
1289 				err = -ENODEV;
1290 				goto error_sc_0;
1291 			}
1292 		}
1293 		w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1294 					(force_subclients[2] & 0x07) |
1295 					((force_subclients[3] & 0x07) << 4));
1296 	}
1297 
1298 	val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1299 	if (!(val & 0x08))
1300 		data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
1301 	if (!(val & 0x80)) {
1302 		if ((data->lm75[0] != NULL) &&
1303 				((val & 0x7) == ((val >> 4) & 0x7))) {
1304 			dev_err(&client->dev,
1305 				"duplicate addresses 0x%x, "
1306 				"use force_subclient\n",
1307 				data->lm75[0]->addr);
1308 			err = -ENODEV;
1309 			goto error_sc_1;
1310 		}
1311 		data->lm75[1] = i2c_new_dummy(adapter,
1312 					      0x48 + ((val >> 4) & 0x7));
1313 	}
1314 
1315 	return 0;
1316 
1317 /* Undo inits in case of errors */
1318 
1319 error_sc_1:
1320 	if (data->lm75[0] != NULL)
1321 		i2c_unregister_device(data->lm75[0]);
1322 error_sc_0:
1323 	return err;
1324 }
1325 
1326 
1327 /* Return 0 if detection is successful, -ENODEV otherwise */
1328 static int w83791d_detect(struct i2c_client *client,
1329 			  struct i2c_board_info *info)
1330 {
1331 	struct i2c_adapter *adapter = client->adapter;
1332 	int val1, val2;
1333 	unsigned short address = client->addr;
1334 
1335 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1336 		return -ENODEV;
1337 
1338 	if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1339 		return -ENODEV;
1340 
1341 	val1 = w83791d_read(client, W83791D_REG_BANK);
1342 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1343 	/* Check for Winbond ID if in bank 0 */
1344 	if (!(val1 & 0x07)) {
1345 		if ((!(val1 & 0x80) && val2 != 0xa3) ||
1346 		    ((val1 & 0x80) && val2 != 0x5c)) {
1347 			return -ENODEV;
1348 		}
1349 	}
1350 	/*
1351 	 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1352 	 * should match
1353 	 */
1354 	if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1355 		return -ENODEV;
1356 
1357 	/* We want bank 0 and Vendor ID high byte */
1358 	val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1359 	w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1360 
1361 	/* Verify it is a Winbond w83791d */
1362 	val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1363 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1364 	if (val1 != 0x71 || val2 != 0x5c)
1365 		return -ENODEV;
1366 
1367 	strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
1368 
1369 	return 0;
1370 }
1371 
1372 static int w83791d_probe(struct i2c_client *client,
1373 			 const struct i2c_device_id *id)
1374 {
1375 	struct w83791d_data *data;
1376 	struct device *dev = &client->dev;
1377 	int i, err;
1378 	u8 has_fanpwm45;
1379 
1380 #ifdef DEBUG
1381 	int val1;
1382 	val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1383 	dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1384 			(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1385 #endif
1386 
1387 	data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1388 			    GFP_KERNEL);
1389 	if (!data)
1390 		return -ENOMEM;
1391 
1392 	i2c_set_clientdata(client, data);
1393 	mutex_init(&data->update_lock);
1394 
1395 	err = w83791d_detect_subclients(client);
1396 	if (err)
1397 		return err;
1398 
1399 	/* Initialize the chip */
1400 	w83791d_init_client(client);
1401 
1402 	/*
1403 	 * If the fan_div is changed, make sure there is a rational
1404 	 * fan_min in place
1405 	 */
1406 	for (i = 0; i < NUMBER_OF_FANIN; i++)
1407 		data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1408 
1409 	/* Register sysfs hooks */
1410 	err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1411 	if (err)
1412 		goto error3;
1413 
1414 	/* Check if pins of fan/pwm 4-5 are in use as GPIO */
1415 	has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1416 	if (has_fanpwm45) {
1417 		err = sysfs_create_group(&client->dev.kobj,
1418 					 &w83791d_group_fanpwm45);
1419 		if (err)
1420 			goto error4;
1421 	}
1422 
1423 	/* Everything is ready, now register the working device */
1424 	data->hwmon_dev = hwmon_device_register(dev);
1425 	if (IS_ERR(data->hwmon_dev)) {
1426 		err = PTR_ERR(data->hwmon_dev);
1427 		goto error5;
1428 	}
1429 
1430 	return 0;
1431 
1432 error5:
1433 	if (has_fanpwm45)
1434 		sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1435 error4:
1436 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1437 error3:
1438 	if (data->lm75[0] != NULL)
1439 		i2c_unregister_device(data->lm75[0]);
1440 	if (data->lm75[1] != NULL)
1441 		i2c_unregister_device(data->lm75[1]);
1442 	return err;
1443 }
1444 
1445 static int w83791d_remove(struct i2c_client *client)
1446 {
1447 	struct w83791d_data *data = i2c_get_clientdata(client);
1448 
1449 	hwmon_device_unregister(data->hwmon_dev);
1450 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1451 
1452 	if (data->lm75[0] != NULL)
1453 		i2c_unregister_device(data->lm75[0]);
1454 	if (data->lm75[1] != NULL)
1455 		i2c_unregister_device(data->lm75[1]);
1456 
1457 	return 0;
1458 }
1459 
1460 static void w83791d_init_client(struct i2c_client *client)
1461 {
1462 	struct w83791d_data *data = i2c_get_clientdata(client);
1463 	u8 tmp;
1464 	u8 old_beep;
1465 
1466 	/*
1467 	 * The difference between reset and init is that reset
1468 	 * does a hard reset of the chip via index 0x40, bit 7,
1469 	 * but init simply forces certain registers to have "sane"
1470 	 * values. The hope is that the BIOS has done the right
1471 	 * thing (which is why the default is reset=0, init=0),
1472 	 * but if not, reset is the hard hammer and init
1473 	 * is the soft mallet both of which are trying to whack
1474 	 * things into place...
1475 	 * NOTE: The data sheet makes a distinction between
1476 	 * "power on defaults" and "reset by MR". As far as I can tell,
1477 	 * the hard reset puts everything into a power-on state so I'm
1478 	 * not sure what "reset by MR" means or how it can happen.
1479 	 */
1480 	if (reset || init) {
1481 		/* keep some BIOS settings when we... */
1482 		old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1483 
1484 		if (reset) {
1485 			/* ... reset the chip and ... */
1486 			w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1487 		}
1488 
1489 		/* ... disable power-on abnormal beep */
1490 		w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1491 
1492 		/* disable the global beep (not done by hard reset) */
1493 		tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1494 		w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1495 
1496 		if (init) {
1497 			/* Make sure monitoring is turned on for add-ons */
1498 			tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1499 			if (tmp & 1) {
1500 				w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1501 					tmp & 0xfe);
1502 			}
1503 
1504 			tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1505 			if (tmp & 1) {
1506 				w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1507 					tmp & 0xfe);
1508 			}
1509 
1510 			/* Start monitoring */
1511 			tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1512 			w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1513 		}
1514 	}
1515 
1516 	data->vrm = vid_which_vrm();
1517 }
1518 
1519 static struct w83791d_data *w83791d_update_device(struct device *dev)
1520 {
1521 	struct i2c_client *client = to_i2c_client(dev);
1522 	struct w83791d_data *data = i2c_get_clientdata(client);
1523 	int i, j;
1524 	u8 reg_array_tmp[3];
1525 	u8 vbat_reg;
1526 
1527 	mutex_lock(&data->update_lock);
1528 
1529 	if (time_after(jiffies, data->last_updated + (HZ * 3))
1530 			|| !data->valid) {
1531 		dev_dbg(dev, "Starting w83791d device update\n");
1532 
1533 		/* Update the voltages measured value and limits */
1534 		for (i = 0; i < NUMBER_OF_VIN; i++) {
1535 			data->in[i] = w83791d_read(client,
1536 						W83791D_REG_IN[i]);
1537 			data->in_max[i] = w83791d_read(client,
1538 						W83791D_REG_IN_MAX[i]);
1539 			data->in_min[i] = w83791d_read(client,
1540 						W83791D_REG_IN_MIN[i]);
1541 		}
1542 
1543 		/* Update the fan counts and limits */
1544 		for (i = 0; i < NUMBER_OF_FANIN; i++) {
1545 			/* Update the Fan measured value and limits */
1546 			data->fan[i] = w83791d_read(client,
1547 						W83791D_REG_FAN[i]);
1548 			data->fan_min[i] = w83791d_read(client,
1549 						W83791D_REG_FAN_MIN[i]);
1550 		}
1551 
1552 		/* Update the fan divisor */
1553 		for (i = 0; i < 3; i++) {
1554 			reg_array_tmp[i] = w83791d_read(client,
1555 						W83791D_REG_FAN_DIV[i]);
1556 		}
1557 		data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1558 		data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1559 		data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1560 		data->fan_div[3] = reg_array_tmp[2] & 0x07;
1561 		data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1562 
1563 		/*
1564 		 * The fan divisor for fans 0-2 get bit 2 from
1565 		 * bits 5-7 respectively of vbat register
1566 		 */
1567 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1568 		for (i = 0; i < 3; i++)
1569 			data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1570 
1571 		/* Update PWM duty cycle */
1572 		for (i = 0; i < NUMBER_OF_PWM; i++) {
1573 			data->pwm[i] =  w83791d_read(client,
1574 						W83791D_REG_PWM[i]);
1575 		}
1576 
1577 		/* Update PWM enable status */
1578 		for (i = 0; i < 2; i++) {
1579 			reg_array_tmp[i] = w83791d_read(client,
1580 						W83791D_REG_FAN_CFG[i]);
1581 		}
1582 		data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1583 		data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1584 		data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1585 
1586 		/* Update PWM target temperature */
1587 		for (i = 0; i < 3; i++) {
1588 			data->temp_target[i] = w83791d_read(client,
1589 				W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1590 		}
1591 
1592 		/* Update PWM temperature tolerance */
1593 		for (i = 0; i < 2; i++) {
1594 			reg_array_tmp[i] = w83791d_read(client,
1595 					W83791D_REG_TEMP_TOL[i]);
1596 		}
1597 		data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1598 		data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1599 		data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1600 
1601 		/* Update the first temperature sensor */
1602 		for (i = 0; i < 3; i++) {
1603 			data->temp1[i] = w83791d_read(client,
1604 						W83791D_REG_TEMP1[i]);
1605 		}
1606 
1607 		/* Update the rest of the temperature sensors */
1608 		for (i = 0; i < 2; i++) {
1609 			for (j = 0; j < 3; j++) {
1610 				data->temp_add[i][j] =
1611 					(w83791d_read(client,
1612 					W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1613 					w83791d_read(client,
1614 					W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1615 			}
1616 		}
1617 
1618 		/* Update the realtime status */
1619 		data->alarms =
1620 			w83791d_read(client, W83791D_REG_ALARM1) +
1621 			(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1622 			(w83791d_read(client, W83791D_REG_ALARM3) << 16);
1623 
1624 		/* Update the beep configuration information */
1625 		data->beep_mask =
1626 			w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1627 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1628 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1629 
1630 		/* Extract global beep enable flag */
1631 		data->beep_enable =
1632 			(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1633 
1634 		/* Update the cpu voltage information */
1635 		i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1636 		data->vid = i & 0x0f;
1637 		data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1638 				<< 4;
1639 
1640 		data->last_updated = jiffies;
1641 		data->valid = 1;
1642 	}
1643 
1644 	mutex_unlock(&data->update_lock);
1645 
1646 #ifdef DEBUG
1647 	w83791d_print_debug(data, dev);
1648 #endif
1649 
1650 	return data;
1651 }
1652 
1653 #ifdef DEBUG
1654 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1655 {
1656 	int i = 0, j = 0;
1657 
1658 	dev_dbg(dev, "======Start of w83791d debug values======\n");
1659 	dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1660 	for (i = 0; i < NUMBER_OF_VIN; i++) {
1661 		dev_dbg(dev, "vin[%d] is:     0x%02x\n", i, data->in[i]);
1662 		dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1663 		dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1664 	}
1665 	dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1666 	for (i = 0; i < NUMBER_OF_FANIN; i++) {
1667 		dev_dbg(dev, "fan[%d] is:     0x%02x\n", i, data->fan[i]);
1668 		dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1669 		dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1670 	}
1671 
1672 	/*
1673 	 * temperature math is signed, but only print out the
1674 	 * bits that matter
1675 	 */
1676 	dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1677 	for (i = 0; i < 3; i++)
1678 		dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1679 	for (i = 0; i < 2; i++) {
1680 		for (j = 0; j < 3; j++) {
1681 			dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1682 				(u16) data->temp_add[i][j]);
1683 		}
1684 	}
1685 
1686 	dev_dbg(dev, "Misc Information: ===>\n");
1687 	dev_dbg(dev, "alarm is:     0x%08x\n", data->alarms);
1688 	dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1689 	dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1690 	dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1691 	dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1692 	dev_dbg(dev, "=======End of w83791d debug values========\n");
1693 	dev_dbg(dev, "\n");
1694 }
1695 #endif
1696 
1697 module_i2c_driver(w83791d_driver);
1698 
1699 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1700 MODULE_DESCRIPTION("W83791D driver");
1701 MODULE_LICENSE("GPL");
1702