xref: /openbmc/linux/drivers/hwmon/w83791d.c (revision 3d40aed8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	       monitoring
5  *
6  * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
7  */
8 
9 /*
10  * Supports following chips:
11  *
12  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
13  * w83791d	10	5	5	3	0x71	0x5ca3	yes	no
14  *
15  * The w83791d chip appears to be part way between the 83781d and the
16  * 83792d. Thus, this file is derived from both the w83792d.c and
17  * w83781d.c files.
18  *
19  * The w83791g chip is the same as the w83791d but lead-free.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/i2c.h>
26 #include <linux/hwmon.h>
27 #include <linux/hwmon-vid.h>
28 #include <linux/hwmon-sysfs.h>
29 #include <linux/err.h>
30 #include <linux/mutex.h>
31 #include <linux/jiffies.h>
32 
33 #define NUMBER_OF_VIN		10
34 #define NUMBER_OF_FANIN		5
35 #define NUMBER_OF_TEMPIN	3
36 #define NUMBER_OF_PWM		5
37 
38 /* Addresses to scan */
39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
40 						I2C_CLIENT_END };
41 
42 /* Insmod parameters */
43 
44 static unsigned short force_subclients[4];
45 module_param_array(force_subclients, short, NULL, 0);
46 MODULE_PARM_DESC(force_subclients,
47 		 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
48 
49 static bool reset;
50 module_param(reset, bool, 0);
51 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
52 
53 static bool init;
54 module_param(init, bool, 0);
55 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
56 
57 /* The W83791D registers */
58 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
59 	0x20,			/* VCOREA in DataSheet */
60 	0x21,			/* VINR0 in DataSheet */
61 	0x22,			/* +3.3VIN in DataSheet */
62 	0x23,			/* VDD5V in DataSheet */
63 	0x24,			/* +12VIN in DataSheet */
64 	0x25,			/* -12VIN in DataSheet */
65 	0x26,			/* -5VIN in DataSheet */
66 	0xB0,			/* 5VSB in DataSheet */
67 	0xB1,			/* VBAT in DataSheet */
68 	0xB2			/* VINR1 in DataSheet */
69 };
70 
71 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
72 	0x2B,			/* VCOREA High Limit in DataSheet */
73 	0x2D,			/* VINR0 High Limit in DataSheet */
74 	0x2F,			/* +3.3VIN High Limit in DataSheet */
75 	0x31,			/* VDD5V High Limit in DataSheet */
76 	0x33,			/* +12VIN High Limit in DataSheet */
77 	0x35,			/* -12VIN High Limit in DataSheet */
78 	0x37,			/* -5VIN High Limit in DataSheet */
79 	0xB4,			/* 5VSB High Limit in DataSheet */
80 	0xB6,			/* VBAT High Limit in DataSheet */
81 	0xB8			/* VINR1 High Limit in DataSheet */
82 };
83 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
84 	0x2C,			/* VCOREA Low Limit in DataSheet */
85 	0x2E,			/* VINR0 Low Limit in DataSheet */
86 	0x30,			/* +3.3VIN Low Limit in DataSheet */
87 	0x32,			/* VDD5V Low Limit in DataSheet */
88 	0x34,			/* +12VIN Low Limit in DataSheet */
89 	0x36,			/* -12VIN Low Limit in DataSheet */
90 	0x38,			/* -5VIN Low Limit in DataSheet */
91 	0xB5,			/* 5VSB Low Limit in DataSheet */
92 	0xB7,			/* VBAT Low Limit in DataSheet */
93 	0xB9			/* VINR1 Low Limit in DataSheet */
94 };
95 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
96 	0x28,			/* FAN 1 Count in DataSheet */
97 	0x29,			/* FAN 2 Count in DataSheet */
98 	0x2A,			/* FAN 3 Count in DataSheet */
99 	0xBA,			/* FAN 4 Count in DataSheet */
100 	0xBB,			/* FAN 5 Count in DataSheet */
101 };
102 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
103 	0x3B,			/* FAN 1 Count Low Limit in DataSheet */
104 	0x3C,			/* FAN 2 Count Low Limit in DataSheet */
105 	0x3D,			/* FAN 3 Count Low Limit in DataSheet */
106 	0xBC,			/* FAN 4 Count Low Limit in DataSheet */
107 	0xBD,			/* FAN 5 Count Low Limit in DataSheet */
108 };
109 
110 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
111 	0x81,			/* PWM 1 duty cycle register in DataSheet */
112 	0x83,			/* PWM 2 duty cycle register in DataSheet */
113 	0x94,			/* PWM 3 duty cycle register in DataSheet */
114 	0xA0,			/* PWM 4 duty cycle register in DataSheet */
115 	0xA1,			/* PWM 5 duty cycle register in DataSheet */
116 };
117 
118 static const u8 W83791D_REG_TEMP_TARGET[3] = {
119 	0x85,			/* PWM 1 target temperature for temp 1 */
120 	0x86,			/* PWM 2 target temperature for temp 2 */
121 	0x96,			/* PWM 3 target temperature for temp 3 */
122 };
123 
124 static const u8 W83791D_REG_TEMP_TOL[2] = {
125 	0x87,			/* PWM 1/2 temperature tolerance */
126 	0x97,			/* PWM 3 temperature tolerance */
127 };
128 
129 static const u8 W83791D_REG_FAN_CFG[2] = {
130 	0x84,			/* FAN 1/2 configuration */
131 	0x95,			/* FAN 3 configuration */
132 };
133 
134 static const u8 W83791D_REG_FAN_DIV[3] = {
135 	0x47,			/* contains FAN1 and FAN2 Divisor */
136 	0x4b,			/* contains FAN3 Divisor */
137 	0x5C,			/* contains FAN4 and FAN5 Divisor */
138 };
139 
140 #define W83791D_REG_BANK		0x4E
141 #define W83791D_REG_TEMP2_CONFIG	0xC2
142 #define W83791D_REG_TEMP3_CONFIG	0xCA
143 
144 static const u8 W83791D_REG_TEMP1[3] = {
145 	0x27,			/* TEMP 1 in DataSheet */
146 	0x39,			/* TEMP 1 Over in DataSheet */
147 	0x3A,			/* TEMP 1 Hyst in DataSheet */
148 };
149 
150 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
151 	{0xC0,			/* TEMP 2 in DataSheet */
152 	 0xC1,			/* TEMP 2(0.5 deg) in DataSheet */
153 	 0xC5,			/* TEMP 2 Over High part in DataSheet */
154 	 0xC6,			/* TEMP 2 Over Low part in DataSheet */
155 	 0xC3,			/* TEMP 2 Thyst High part in DataSheet */
156 	 0xC4},			/* TEMP 2 Thyst Low part in DataSheet */
157 	{0xC8,			/* TEMP 3 in DataSheet */
158 	 0xC9,			/* TEMP 3(0.5 deg) in DataSheet */
159 	 0xCD,			/* TEMP 3 Over High part in DataSheet */
160 	 0xCE,			/* TEMP 3 Over Low part in DataSheet */
161 	 0xCB,			/* TEMP 3 Thyst High part in DataSheet */
162 	 0xCC}			/* TEMP 3 Thyst Low part in DataSheet */
163 };
164 
165 #define W83791D_REG_BEEP_CONFIG		0x4D
166 
167 static const u8 W83791D_REG_BEEP_CTRL[3] = {
168 	0x56,			/* BEEP Control Register 1 */
169 	0x57,			/* BEEP Control Register 2 */
170 	0xA3,			/* BEEP Control Register 3 */
171 };
172 
173 #define W83791D_REG_GPIO		0x15
174 #define W83791D_REG_CONFIG		0x40
175 #define W83791D_REG_VID_FANDIV		0x47
176 #define W83791D_REG_DID_VID4		0x49
177 #define W83791D_REG_WCHIPID		0x58
178 #define W83791D_REG_CHIPMAN		0x4F
179 #define W83791D_REG_PIN			0x4B
180 #define W83791D_REG_I2C_SUBADDR		0x4A
181 
182 #define W83791D_REG_ALARM1 0xA9	/* realtime status register1 */
183 #define W83791D_REG_ALARM2 0xAA	/* realtime status register2 */
184 #define W83791D_REG_ALARM3 0xAB	/* realtime status register3 */
185 
186 #define W83791D_REG_VBAT		0x5D
187 #define W83791D_REG_I2C_ADDR		0x48
188 
189 /*
190  * The SMBus locks itself. The Winbond W83791D has a bank select register
191  * (index 0x4e), but the driver only accesses registers in bank 0. Since
192  * we don't switch banks, we don't need any special code to handle
193  * locking access between bank switches
194  */
195 static inline int w83791d_read(struct i2c_client *client, u8 reg)
196 {
197 	return i2c_smbus_read_byte_data(client, reg);
198 }
199 
200 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
201 {
202 	return i2c_smbus_write_byte_data(client, reg, value);
203 }
204 
205 /*
206  * The analog voltage inputs have 16mV LSB. Since the sysfs output is
207  * in mV as would be measured on the chip input pin, need to just
208  * multiply/divide by 16 to translate from/to register values.
209  */
210 #define IN_TO_REG(val)		(clamp_val((((val) + 8) / 16), 0, 255))
211 #define IN_FROM_REG(val)	((val) * 16)
212 
213 static u8 fan_to_reg(long rpm, int div)
214 {
215 	if (rpm == 0)
216 		return 255;
217 	rpm = clamp_val(rpm, 1, 1000000);
218 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
219 }
220 
221 #define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
222 				((val) == 255 ? 0 : \
223 					1350000 / ((val) * (div))))
224 
225 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
226 #define TEMP1_FROM_REG(val)	((val) * 1000)
227 #define TEMP1_TO_REG(val)	((val) <= -128000 ? -128 : \
228 				 (val) >= 127000 ? 127 : \
229 				 (val) < 0 ? ((val) - 500) / 1000 : \
230 				 ((val) + 500) / 1000)
231 
232 /*
233  * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
234  * Assumes the top 8 bits are the integral amount and the bottom 8 bits
235  * are the fractional amount. Since we only have 0.5 degree resolution,
236  * the bottom 7 bits will always be zero
237  */
238 #define TEMP23_FROM_REG(val)	((val) / 128 * 500)
239 #define TEMP23_TO_REG(val)	(DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
240 						   127500), 500) * 128)
241 
242 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
243 #define TARGET_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
244 						  1000)
245 
246 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
247 #define TOL_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
248 						  1000)
249 
250 #define BEEP_MASK_TO_REG(val)		((val) & 0xffffff)
251 #define BEEP_MASK_FROM_REG(val)		((val) & 0xffffff)
252 
253 #define DIV_FROM_REG(val)		(1 << (val))
254 
255 static u8 div_to_reg(int nr, long val)
256 {
257 	int i;
258 
259 	/* fan divisors max out at 128 */
260 	val = clamp_val(val, 1, 128) >> 1;
261 	for (i = 0; i < 7; i++) {
262 		if (val == 0)
263 			break;
264 		val >>= 1;
265 	}
266 	return (u8) i;
267 }
268 
269 struct w83791d_data {
270 	struct device *hwmon_dev;
271 	struct mutex update_lock;
272 
273 	bool valid;			/* true if following fields are valid */
274 	unsigned long last_updated;	/* In jiffies */
275 
276 	/* volts */
277 	u8 in[NUMBER_OF_VIN];		/* Register value */
278 	u8 in_max[NUMBER_OF_VIN];	/* Register value */
279 	u8 in_min[NUMBER_OF_VIN];	/* Register value */
280 
281 	/* fans */
282 	u8 fan[NUMBER_OF_FANIN];	/* Register value */
283 	u8 fan_min[NUMBER_OF_FANIN];	/* Register value */
284 	u8 fan_div[NUMBER_OF_FANIN];	/* Register encoding, shifted right */
285 
286 	/* Temperature sensors */
287 
288 	s8 temp1[3];		/* current, over, thyst */
289 	s16 temp_add[2][3];	/* fixed point value. Top 8 bits are the
290 				 * integral part, bottom 8 bits are the
291 				 * fractional part. We only use the top
292 				 * 9 bits as the resolution is only
293 				 * to the 0.5 degree C...
294 				 * two sensors with three values
295 				 * (cur, over, hyst)
296 				 */
297 
298 	/* PWMs */
299 	u8 pwm[5];		/* pwm duty cycle */
300 	u8 pwm_enable[3];	/* pwm enable status for fan 1-3
301 				 * (fan 4-5 only support manual mode)
302 				 */
303 
304 	u8 temp_target[3];	/* pwm 1-3 target temperature */
305 	u8 temp_tolerance[3];	/* pwm 1-3 temperature tolerance */
306 
307 	/* Misc */
308 	u32 alarms;		/* realtime status register encoding,combined */
309 	u8 beep_enable;		/* Global beep enable */
310 	u32 beep_mask;		/* Mask off specific beeps */
311 	u8 vid;			/* Register encoding, combined */
312 	u8 vrm;			/* hwmon-vid */
313 };
314 
315 static int w83791d_probe(struct i2c_client *client);
316 static int w83791d_detect(struct i2c_client *client,
317 			  struct i2c_board_info *info);
318 static void w83791d_remove(struct i2c_client *client);
319 
320 static int w83791d_read(struct i2c_client *client, u8 reg);
321 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
322 static struct w83791d_data *w83791d_update_device(struct device *dev);
323 
324 #ifdef DEBUG
325 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
326 #endif
327 
328 static void w83791d_init_client(struct i2c_client *client);
329 
330 static const struct i2c_device_id w83791d_id[] = {
331 	{ "w83791d", 0 },
332 	{ }
333 };
334 MODULE_DEVICE_TABLE(i2c, w83791d_id);
335 
336 static struct i2c_driver w83791d_driver = {
337 	.class		= I2C_CLASS_HWMON,
338 	.driver = {
339 		.name = "w83791d",
340 	},
341 	.probe		= w83791d_probe,
342 	.remove		= w83791d_remove,
343 	.id_table	= w83791d_id,
344 	.detect		= w83791d_detect,
345 	.address_list	= normal_i2c,
346 };
347 
348 /* following are the sysfs callback functions */
349 #define show_in_reg(reg) \
350 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
351 			char *buf) \
352 { \
353 	struct sensor_device_attribute *sensor_attr = \
354 						to_sensor_dev_attr(attr); \
355 	struct w83791d_data *data = w83791d_update_device(dev); \
356 	int nr = sensor_attr->index; \
357 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
358 }
359 
360 show_in_reg(in);
361 show_in_reg(in_min);
362 show_in_reg(in_max);
363 
364 #define store_in_reg(REG, reg) \
365 static ssize_t store_in_##reg(struct device *dev, \
366 				struct device_attribute *attr, \
367 				const char *buf, size_t count) \
368 { \
369 	struct sensor_device_attribute *sensor_attr = \
370 						to_sensor_dev_attr(attr); \
371 	struct i2c_client *client = to_i2c_client(dev); \
372 	struct w83791d_data *data = i2c_get_clientdata(client); \
373 	int nr = sensor_attr->index; \
374 	unsigned long val; \
375 	int err = kstrtoul(buf, 10, &val); \
376 	if (err) \
377 		return err; \
378 	mutex_lock(&data->update_lock); \
379 	data->in_##reg[nr] = IN_TO_REG(val); \
380 	w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
381 	mutex_unlock(&data->update_lock); \
382 	 \
383 	return count; \
384 }
385 store_in_reg(MIN, min);
386 store_in_reg(MAX, max);
387 
388 static struct sensor_device_attribute sda_in_input[] = {
389 	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
390 	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
391 	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
392 	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
393 	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
394 	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
395 	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
396 	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
397 	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
398 	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
399 };
400 
401 static struct sensor_device_attribute sda_in_min[] = {
402 	SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
403 	SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
404 	SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
405 	SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
406 	SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
407 	SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
408 	SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
409 	SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
410 	SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
411 	SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
412 };
413 
414 static struct sensor_device_attribute sda_in_max[] = {
415 	SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
416 	SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
417 	SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
418 	SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
419 	SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
420 	SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
421 	SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
422 	SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
423 	SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
424 	SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
425 };
426 
427 
428 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
429 			char *buf)
430 {
431 	struct sensor_device_attribute *sensor_attr =
432 						to_sensor_dev_attr(attr);
433 	struct w83791d_data *data = w83791d_update_device(dev);
434 	int bitnr = sensor_attr->index;
435 
436 	return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
437 }
438 
439 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
440 			const char *buf, size_t count)
441 {
442 	struct sensor_device_attribute *sensor_attr =
443 						to_sensor_dev_attr(attr);
444 	struct i2c_client *client = to_i2c_client(dev);
445 	struct w83791d_data *data = i2c_get_clientdata(client);
446 	int bitnr = sensor_attr->index;
447 	int bytenr = bitnr / 8;
448 	unsigned long val;
449 	int err;
450 
451 	err = kstrtoul(buf, 10, &val);
452 	if (err)
453 		return err;
454 
455 	val = val ? 1 : 0;
456 
457 	mutex_lock(&data->update_lock);
458 
459 	data->beep_mask &= ~(0xff << (bytenr * 8));
460 	data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
461 		<< (bytenr * 8);
462 
463 	data->beep_mask &= ~(1 << bitnr);
464 	data->beep_mask |= val << bitnr;
465 
466 	w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
467 		(data->beep_mask >> (bytenr * 8)) & 0xff);
468 
469 	mutex_unlock(&data->update_lock);
470 
471 	return count;
472 }
473 
474 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
475 			char *buf)
476 {
477 	struct sensor_device_attribute *sensor_attr =
478 						to_sensor_dev_attr(attr);
479 	struct w83791d_data *data = w83791d_update_device(dev);
480 	int bitnr = sensor_attr->index;
481 
482 	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
483 }
484 
485 /*
486  * Note: The bitmask for the beep enable/disable is different than
487  * the bitmask for the alarm.
488  */
489 static struct sensor_device_attribute sda_in_beep[] = {
490 	SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
491 	SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
492 	SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
493 	SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
494 	SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
495 	SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
496 	SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
497 	SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
498 	SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
499 	SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
500 };
501 
502 static struct sensor_device_attribute sda_in_alarm[] = {
503 	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
504 	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
505 	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
506 	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
507 	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
508 	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
509 	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
510 	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
511 	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
512 	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
513 };
514 
515 #define show_fan_reg(reg) \
516 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
517 				char *buf) \
518 { \
519 	struct sensor_device_attribute *sensor_attr = \
520 						to_sensor_dev_attr(attr); \
521 	struct w83791d_data *data = w83791d_update_device(dev); \
522 	int nr = sensor_attr->index; \
523 	return sprintf(buf, "%d\n", \
524 		FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
525 }
526 
527 show_fan_reg(fan);
528 show_fan_reg(fan_min);
529 
530 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
531 				const char *buf, size_t count)
532 {
533 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
534 	struct i2c_client *client = to_i2c_client(dev);
535 	struct w83791d_data *data = i2c_get_clientdata(client);
536 	int nr = sensor_attr->index;
537 	unsigned long val;
538 	int err;
539 
540 	err = kstrtoul(buf, 10, &val);
541 	if (err)
542 		return err;
543 
544 	mutex_lock(&data->update_lock);
545 	data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
546 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
547 	mutex_unlock(&data->update_lock);
548 
549 	return count;
550 }
551 
552 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
553 				char *buf)
554 {
555 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
556 	int nr = sensor_attr->index;
557 	struct w83791d_data *data = w83791d_update_device(dev);
558 	return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
559 }
560 
561 /*
562  * Note: we save and restore the fan minimum here, because its value is
563  * determined in part by the fan divisor.  This follows the principle of
564  * least surprise; the user doesn't expect the fan minimum to change just
565  * because the divisor changed.
566  */
567 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
568 				const char *buf, size_t count)
569 {
570 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
571 	struct i2c_client *client = to_i2c_client(dev);
572 	struct w83791d_data *data = i2c_get_clientdata(client);
573 	int nr = sensor_attr->index;
574 	unsigned long min;
575 	u8 tmp_fan_div;
576 	u8 fan_div_reg;
577 	u8 vbat_reg;
578 	int indx = 0;
579 	u8 keep_mask = 0;
580 	u8 new_shift = 0;
581 	unsigned long val;
582 	int err;
583 
584 	err = kstrtoul(buf, 10, &val);
585 	if (err)
586 		return err;
587 
588 	/* Save fan_min */
589 	min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
590 
591 	mutex_lock(&data->update_lock);
592 	data->fan_div[nr] = div_to_reg(nr, val);
593 
594 	switch (nr) {
595 	case 0:
596 		indx = 0;
597 		keep_mask = 0xcf;
598 		new_shift = 4;
599 		break;
600 	case 1:
601 		indx = 0;
602 		keep_mask = 0x3f;
603 		new_shift = 6;
604 		break;
605 	case 2:
606 		indx = 1;
607 		keep_mask = 0x3f;
608 		new_shift = 6;
609 		break;
610 	case 3:
611 		indx = 2;
612 		keep_mask = 0xf8;
613 		new_shift = 0;
614 		break;
615 	case 4:
616 		indx = 2;
617 		keep_mask = 0x8f;
618 		new_shift = 4;
619 		break;
620 #ifdef DEBUG
621 	default:
622 		dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
623 		count = -EINVAL;
624 		goto err_exit;
625 #endif
626 	}
627 
628 	fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
629 			& keep_mask;
630 	tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
631 
632 	w83791d_write(client, W83791D_REG_FAN_DIV[indx],
633 				fan_div_reg | tmp_fan_div);
634 
635 	/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
636 	if (nr < 3) {
637 		keep_mask = ~(1 << (nr + 5));
638 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
639 				& keep_mask;
640 		tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
641 		w83791d_write(client, W83791D_REG_VBAT,
642 				vbat_reg | tmp_fan_div);
643 	}
644 
645 	/* Restore fan_min */
646 	data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
647 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
648 
649 #ifdef DEBUG
650 err_exit:
651 #endif
652 	mutex_unlock(&data->update_lock);
653 
654 	return count;
655 }
656 
657 static struct sensor_device_attribute sda_fan_input[] = {
658 	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
659 	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
660 	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
661 	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
662 	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
663 };
664 
665 static struct sensor_device_attribute sda_fan_min[] = {
666 	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
667 			show_fan_min, store_fan_min, 0),
668 	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
669 			show_fan_min, store_fan_min, 1),
670 	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
671 			show_fan_min, store_fan_min, 2),
672 	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
673 			show_fan_min, store_fan_min, 3),
674 	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
675 			show_fan_min, store_fan_min, 4),
676 };
677 
678 static struct sensor_device_attribute sda_fan_div[] = {
679 	SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
680 			show_fan_div, store_fan_div, 0),
681 	SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
682 			show_fan_div, store_fan_div, 1),
683 	SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
684 			show_fan_div, store_fan_div, 2),
685 	SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
686 			show_fan_div, store_fan_div, 3),
687 	SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
688 			show_fan_div, store_fan_div, 4),
689 };
690 
691 static struct sensor_device_attribute sda_fan_beep[] = {
692 	SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
693 	SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
694 	SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
695 	SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
696 	SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
697 };
698 
699 static struct sensor_device_attribute sda_fan_alarm[] = {
700 	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
701 	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
702 	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
703 	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
704 	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
705 };
706 
707 /* read/write PWMs */
708 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
709 				char *buf)
710 {
711 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
712 	int nr = sensor_attr->index;
713 	struct w83791d_data *data = w83791d_update_device(dev);
714 	return sprintf(buf, "%u\n", data->pwm[nr]);
715 }
716 
717 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
718 		const char *buf, size_t count)
719 {
720 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
721 	struct i2c_client *client = to_i2c_client(dev);
722 	struct w83791d_data *data = i2c_get_clientdata(client);
723 	int nr = sensor_attr->index;
724 	unsigned long val;
725 
726 	if (kstrtoul(buf, 10, &val))
727 		return -EINVAL;
728 
729 	mutex_lock(&data->update_lock);
730 	data->pwm[nr] = clamp_val(val, 0, 255);
731 	w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
732 	mutex_unlock(&data->update_lock);
733 	return count;
734 }
735 
736 static struct sensor_device_attribute sda_pwm[] = {
737 	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
738 			show_pwm, store_pwm, 0),
739 	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
740 			show_pwm, store_pwm, 1),
741 	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
742 			show_pwm, store_pwm, 2),
743 	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
744 			show_pwm, store_pwm, 3),
745 	SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
746 			show_pwm, store_pwm, 4),
747 };
748 
749 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
750 				char *buf)
751 {
752 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
753 	int nr = sensor_attr->index;
754 	struct w83791d_data *data = w83791d_update_device(dev);
755 	return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
756 }
757 
758 static ssize_t store_pwmenable(struct device *dev,
759 		struct device_attribute *attr, const char *buf, size_t count)
760 {
761 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
762 	struct i2c_client *client = to_i2c_client(dev);
763 	struct w83791d_data *data = i2c_get_clientdata(client);
764 	int nr = sensor_attr->index;
765 	unsigned long val;
766 	u8 reg_cfg_tmp;
767 	u8 reg_idx = 0;
768 	u8 val_shift = 0;
769 	u8 keep_mask = 0;
770 
771 	int ret = kstrtoul(buf, 10, &val);
772 
773 	if (ret || val < 1 || val > 3)
774 		return -EINVAL;
775 
776 	mutex_lock(&data->update_lock);
777 	data->pwm_enable[nr] = val - 1;
778 	switch (nr) {
779 	case 0:
780 		reg_idx = 0;
781 		val_shift = 2;
782 		keep_mask = 0xf3;
783 		break;
784 	case 1:
785 		reg_idx = 0;
786 		val_shift = 4;
787 		keep_mask = 0xcf;
788 		break;
789 	case 2:
790 		reg_idx = 1;
791 		val_shift = 2;
792 		keep_mask = 0xf3;
793 		break;
794 	}
795 
796 	reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
797 	reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
798 					data->pwm_enable[nr] << val_shift;
799 
800 	w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
801 	mutex_unlock(&data->update_lock);
802 
803 	return count;
804 }
805 static struct sensor_device_attribute sda_pwmenable[] = {
806 	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
807 			show_pwmenable, store_pwmenable, 0),
808 	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
809 			show_pwmenable, store_pwmenable, 1),
810 	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
811 			show_pwmenable, store_pwmenable, 2),
812 };
813 
814 /* For Smart Fan I / Thermal Cruise */
815 static ssize_t show_temp_target(struct device *dev,
816 			struct device_attribute *attr, char *buf)
817 {
818 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
819 	struct w83791d_data *data = w83791d_update_device(dev);
820 	int nr = sensor_attr->index;
821 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
822 }
823 
824 static ssize_t store_temp_target(struct device *dev,
825 		struct device_attribute *attr, const char *buf, size_t count)
826 {
827 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
828 	struct i2c_client *client = to_i2c_client(dev);
829 	struct w83791d_data *data = i2c_get_clientdata(client);
830 	int nr = sensor_attr->index;
831 	long val;
832 	u8 target_mask;
833 
834 	if (kstrtol(buf, 10, &val))
835 		return -EINVAL;
836 
837 	mutex_lock(&data->update_lock);
838 	data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
839 	target_mask = w83791d_read(client,
840 				W83791D_REG_TEMP_TARGET[nr]) & 0x80;
841 	w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
842 				data->temp_target[nr] | target_mask);
843 	mutex_unlock(&data->update_lock);
844 	return count;
845 }
846 
847 static struct sensor_device_attribute sda_temp_target[] = {
848 	SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
849 			show_temp_target, store_temp_target, 0),
850 	SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
851 			show_temp_target, store_temp_target, 1),
852 	SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
853 			show_temp_target, store_temp_target, 2),
854 };
855 
856 static ssize_t show_temp_tolerance(struct device *dev,
857 			struct device_attribute *attr, char *buf)
858 {
859 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
860 	struct w83791d_data *data = w83791d_update_device(dev);
861 	int nr = sensor_attr->index;
862 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
863 }
864 
865 static ssize_t store_temp_tolerance(struct device *dev,
866 		struct device_attribute *attr, const char *buf, size_t count)
867 {
868 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
869 	struct i2c_client *client = to_i2c_client(dev);
870 	struct w83791d_data *data = i2c_get_clientdata(client);
871 	int nr = sensor_attr->index;
872 	unsigned long val;
873 	u8 target_mask;
874 	u8 reg_idx = 0;
875 	u8 val_shift = 0;
876 	u8 keep_mask = 0;
877 
878 	if (kstrtoul(buf, 10, &val))
879 		return -EINVAL;
880 
881 	switch (nr) {
882 	case 0:
883 		reg_idx = 0;
884 		val_shift = 0;
885 		keep_mask = 0xf0;
886 		break;
887 	case 1:
888 		reg_idx = 0;
889 		val_shift = 4;
890 		keep_mask = 0x0f;
891 		break;
892 	case 2:
893 		reg_idx = 1;
894 		val_shift = 0;
895 		keep_mask = 0xf0;
896 		break;
897 	}
898 
899 	mutex_lock(&data->update_lock);
900 	data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
901 	target_mask = w83791d_read(client,
902 			W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
903 	w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
904 			(data->temp_tolerance[nr] << val_shift) | target_mask);
905 	mutex_unlock(&data->update_lock);
906 	return count;
907 }
908 
909 static struct sensor_device_attribute sda_temp_tolerance[] = {
910 	SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
911 			show_temp_tolerance, store_temp_tolerance, 0),
912 	SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
913 			show_temp_tolerance, store_temp_tolerance, 1),
914 	SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
915 			show_temp_tolerance, store_temp_tolerance, 2),
916 };
917 
918 /* read/write the temperature1, includes measured value and limits */
919 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
920 				char *buf)
921 {
922 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
923 	struct w83791d_data *data = w83791d_update_device(dev);
924 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
925 }
926 
927 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
928 				const char *buf, size_t count)
929 {
930 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
931 	struct i2c_client *client = to_i2c_client(dev);
932 	struct w83791d_data *data = i2c_get_clientdata(client);
933 	int nr = attr->index;
934 	long val;
935 	int err;
936 
937 	err = kstrtol(buf, 10, &val);
938 	if (err)
939 		return err;
940 
941 	mutex_lock(&data->update_lock);
942 	data->temp1[nr] = TEMP1_TO_REG(val);
943 	w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
944 	mutex_unlock(&data->update_lock);
945 	return count;
946 }
947 
948 /* read/write temperature2-3, includes measured value and limits */
949 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
950 				char *buf)
951 {
952 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
953 	struct w83791d_data *data = w83791d_update_device(dev);
954 	int nr = attr->nr;
955 	int index = attr->index;
956 	return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
957 }
958 
959 static ssize_t store_temp23(struct device *dev,
960 				struct device_attribute *devattr,
961 				const char *buf, size_t count)
962 {
963 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
964 	struct i2c_client *client = to_i2c_client(dev);
965 	struct w83791d_data *data = i2c_get_clientdata(client);
966 	long val;
967 	int err;
968 	int nr = attr->nr;
969 	int index = attr->index;
970 
971 	err = kstrtol(buf, 10, &val);
972 	if (err)
973 		return err;
974 
975 	mutex_lock(&data->update_lock);
976 	data->temp_add[nr][index] = TEMP23_TO_REG(val);
977 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
978 				data->temp_add[nr][index] >> 8);
979 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
980 				data->temp_add[nr][index] & 0x80);
981 	mutex_unlock(&data->update_lock);
982 
983 	return count;
984 }
985 
986 static struct sensor_device_attribute_2 sda_temp_input[] = {
987 	SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
988 	SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
989 	SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
990 };
991 
992 static struct sensor_device_attribute_2 sda_temp_max[] = {
993 	SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
994 			show_temp1, store_temp1, 0, 1),
995 	SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
996 			show_temp23, store_temp23, 0, 1),
997 	SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
998 			show_temp23, store_temp23, 1, 1),
999 };
1000 
1001 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1002 	SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1003 			show_temp1, store_temp1, 0, 2),
1004 	SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1005 			show_temp23, store_temp23, 0, 2),
1006 	SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1007 			show_temp23, store_temp23, 1, 2),
1008 };
1009 
1010 /*
1011  * Note: The bitmask for the beep enable/disable is different than
1012  * the bitmask for the alarm.
1013  */
1014 static struct sensor_device_attribute sda_temp_beep[] = {
1015 	SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1016 	SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1017 	SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1018 };
1019 
1020 static struct sensor_device_attribute sda_temp_alarm[] = {
1021 	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1022 	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1023 	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1024 };
1025 
1026 /* get realtime status of all sensors items: voltage, temp, fan */
1027 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
1028 			   char *buf)
1029 {
1030 	struct w83791d_data *data = w83791d_update_device(dev);
1031 	return sprintf(buf, "%u\n", data->alarms);
1032 }
1033 
1034 static DEVICE_ATTR_RO(alarms);
1035 
1036 /* Beep control */
1037 
1038 #define GLOBAL_BEEP_ENABLE_SHIFT	15
1039 #define GLOBAL_BEEP_ENABLE_MASK		(1 << GLOBAL_BEEP_ENABLE_SHIFT)
1040 
1041 static ssize_t show_beep_enable(struct device *dev,
1042 				struct device_attribute *attr, char *buf)
1043 {
1044 	struct w83791d_data *data = w83791d_update_device(dev);
1045 	return sprintf(buf, "%d\n", data->beep_enable);
1046 }
1047 
1048 static ssize_t show_beep_mask(struct device *dev,
1049 				struct device_attribute *attr, char *buf)
1050 {
1051 	struct w83791d_data *data = w83791d_update_device(dev);
1052 	return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1053 }
1054 
1055 
1056 static ssize_t store_beep_mask(struct device *dev,
1057 				struct device_attribute *attr,
1058 				const char *buf, size_t count)
1059 {
1060 	struct i2c_client *client = to_i2c_client(dev);
1061 	struct w83791d_data *data = i2c_get_clientdata(client);
1062 	int i;
1063 	long val;
1064 	int err;
1065 
1066 	err = kstrtol(buf, 10, &val);
1067 	if (err)
1068 		return err;
1069 
1070 	mutex_lock(&data->update_lock);
1071 
1072 	/*
1073 	 * The beep_enable state overrides any enabling request from
1074 	 * the masks
1075 	 */
1076 	data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1077 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1078 
1079 	val = data->beep_mask;
1080 
1081 	for (i = 0; i < 3; i++) {
1082 		w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1083 		val >>= 8;
1084 	}
1085 
1086 	mutex_unlock(&data->update_lock);
1087 
1088 	return count;
1089 }
1090 
1091 static ssize_t store_beep_enable(struct device *dev,
1092 				struct device_attribute *attr,
1093 				const char *buf, size_t count)
1094 {
1095 	struct i2c_client *client = to_i2c_client(dev);
1096 	struct w83791d_data *data = i2c_get_clientdata(client);
1097 	long val;
1098 	int err;
1099 
1100 	err = kstrtol(buf, 10, &val);
1101 	if (err)
1102 		return err;
1103 
1104 	mutex_lock(&data->update_lock);
1105 
1106 	data->beep_enable = val ? 1 : 0;
1107 
1108 	/* Keep the full mask value in sync with the current enable */
1109 	data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1110 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1111 
1112 	/*
1113 	 * The global control is in the second beep control register
1114 	 * so only need to update that register
1115 	 */
1116 	val = (data->beep_mask >> 8) & 0xff;
1117 
1118 	w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1119 
1120 	mutex_unlock(&data->update_lock);
1121 
1122 	return count;
1123 }
1124 
1125 static struct sensor_device_attribute sda_beep_ctrl[] = {
1126 	SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1127 			show_beep_enable, store_beep_enable, 0),
1128 	SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1129 			show_beep_mask, store_beep_mask, 1)
1130 };
1131 
1132 /* cpu voltage regulation information */
1133 static ssize_t cpu0_vid_show(struct device *dev,
1134 			     struct device_attribute *attr, char *buf)
1135 {
1136 	struct w83791d_data *data = w83791d_update_device(dev);
1137 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1138 }
1139 
1140 static DEVICE_ATTR_RO(cpu0_vid);
1141 
1142 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
1143 			char *buf)
1144 {
1145 	struct w83791d_data *data = dev_get_drvdata(dev);
1146 	return sprintf(buf, "%d\n", data->vrm);
1147 }
1148 
1149 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
1150 			 const char *buf, size_t count)
1151 {
1152 	struct w83791d_data *data = dev_get_drvdata(dev);
1153 	unsigned long val;
1154 	int err;
1155 
1156 	/*
1157 	 * No lock needed as vrm is internal to the driver
1158 	 * (not read from a chip register) and so is not
1159 	 * updated in w83791d_update_device()
1160 	 */
1161 
1162 	err = kstrtoul(buf, 10, &val);
1163 	if (err)
1164 		return err;
1165 
1166 	if (val > 255)
1167 		return -EINVAL;
1168 
1169 	data->vrm = val;
1170 	return count;
1171 }
1172 
1173 static DEVICE_ATTR_RW(vrm);
1174 
1175 #define IN_UNIT_ATTRS(X) \
1176 	&sda_in_input[X].dev_attr.attr,	\
1177 	&sda_in_min[X].dev_attr.attr,	\
1178 	&sda_in_max[X].dev_attr.attr,	\
1179 	&sda_in_beep[X].dev_attr.attr,	\
1180 	&sda_in_alarm[X].dev_attr.attr
1181 
1182 #define FAN_UNIT_ATTRS(X) \
1183 	&sda_fan_input[X].dev_attr.attr,	\
1184 	&sda_fan_min[X].dev_attr.attr,		\
1185 	&sda_fan_div[X].dev_attr.attr,		\
1186 	&sda_fan_beep[X].dev_attr.attr,		\
1187 	&sda_fan_alarm[X].dev_attr.attr
1188 
1189 #define TEMP_UNIT_ATTRS(X) \
1190 	&sda_temp_input[X].dev_attr.attr,	\
1191 	&sda_temp_max[X].dev_attr.attr,		\
1192 	&sda_temp_max_hyst[X].dev_attr.attr,	\
1193 	&sda_temp_beep[X].dev_attr.attr,	\
1194 	&sda_temp_alarm[X].dev_attr.attr
1195 
1196 static struct attribute *w83791d_attributes[] = {
1197 	IN_UNIT_ATTRS(0),
1198 	IN_UNIT_ATTRS(1),
1199 	IN_UNIT_ATTRS(2),
1200 	IN_UNIT_ATTRS(3),
1201 	IN_UNIT_ATTRS(4),
1202 	IN_UNIT_ATTRS(5),
1203 	IN_UNIT_ATTRS(6),
1204 	IN_UNIT_ATTRS(7),
1205 	IN_UNIT_ATTRS(8),
1206 	IN_UNIT_ATTRS(9),
1207 	FAN_UNIT_ATTRS(0),
1208 	FAN_UNIT_ATTRS(1),
1209 	FAN_UNIT_ATTRS(2),
1210 	TEMP_UNIT_ATTRS(0),
1211 	TEMP_UNIT_ATTRS(1),
1212 	TEMP_UNIT_ATTRS(2),
1213 	&dev_attr_alarms.attr,
1214 	&sda_beep_ctrl[0].dev_attr.attr,
1215 	&sda_beep_ctrl[1].dev_attr.attr,
1216 	&dev_attr_cpu0_vid.attr,
1217 	&dev_attr_vrm.attr,
1218 	&sda_pwm[0].dev_attr.attr,
1219 	&sda_pwm[1].dev_attr.attr,
1220 	&sda_pwm[2].dev_attr.attr,
1221 	&sda_pwmenable[0].dev_attr.attr,
1222 	&sda_pwmenable[1].dev_attr.attr,
1223 	&sda_pwmenable[2].dev_attr.attr,
1224 	&sda_temp_target[0].dev_attr.attr,
1225 	&sda_temp_target[1].dev_attr.attr,
1226 	&sda_temp_target[2].dev_attr.attr,
1227 	&sda_temp_tolerance[0].dev_attr.attr,
1228 	&sda_temp_tolerance[1].dev_attr.attr,
1229 	&sda_temp_tolerance[2].dev_attr.attr,
1230 	NULL
1231 };
1232 
1233 static const struct attribute_group w83791d_group = {
1234 	.attrs = w83791d_attributes,
1235 };
1236 
1237 /*
1238  * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1239  * in use for GPIO in which case their sysfs-interface should not be made
1240  * available
1241  */
1242 static struct attribute *w83791d_attributes_fanpwm45[] = {
1243 	FAN_UNIT_ATTRS(3),
1244 	FAN_UNIT_ATTRS(4),
1245 	&sda_pwm[3].dev_attr.attr,
1246 	&sda_pwm[4].dev_attr.attr,
1247 	NULL
1248 };
1249 
1250 static const struct attribute_group w83791d_group_fanpwm45 = {
1251 	.attrs = w83791d_attributes_fanpwm45,
1252 };
1253 
1254 static int w83791d_detect_subclients(struct i2c_client *client)
1255 {
1256 	struct i2c_adapter *adapter = client->adapter;
1257 	int address = client->addr;
1258 	int i, id;
1259 	u8 val;
1260 
1261 	id = i2c_adapter_id(adapter);
1262 	if (force_subclients[0] == id && force_subclients[1] == address) {
1263 		for (i = 2; i <= 3; i++) {
1264 			if (force_subclients[i] < 0x48 ||
1265 			    force_subclients[i] > 0x4f) {
1266 				dev_err(&client->dev,
1267 					"invalid subclient "
1268 					"address %d; must be 0x48-0x4f\n",
1269 					force_subclients[i]);
1270 				return -ENODEV;
1271 			}
1272 		}
1273 		w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1274 					(force_subclients[2] & 0x07) |
1275 					((force_subclients[3] & 0x07) << 4));
1276 	}
1277 
1278 	val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1279 
1280 	if (!(val & 0x88) && (val & 0x7) == ((val >> 4) & 0x7)) {
1281 		dev_err(&client->dev,
1282 			"duplicate addresses 0x%x, use force_subclient\n", 0x48 + (val & 0x7));
1283 		return -ENODEV;
1284 	}
1285 
1286 	if (!(val & 0x08))
1287 		devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + (val & 0x7));
1288 
1289 	if (!(val & 0x80))
1290 		devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + ((val >> 4) & 0x7));
1291 
1292 	return 0;
1293 }
1294 
1295 
1296 /* Return 0 if detection is successful, -ENODEV otherwise */
1297 static int w83791d_detect(struct i2c_client *client,
1298 			  struct i2c_board_info *info)
1299 {
1300 	struct i2c_adapter *adapter = client->adapter;
1301 	int val1, val2;
1302 	unsigned short address = client->addr;
1303 
1304 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1305 		return -ENODEV;
1306 
1307 	if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1308 		return -ENODEV;
1309 
1310 	val1 = w83791d_read(client, W83791D_REG_BANK);
1311 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1312 	/* Check for Winbond ID if in bank 0 */
1313 	if (!(val1 & 0x07)) {
1314 		if ((!(val1 & 0x80) && val2 != 0xa3) ||
1315 		    ((val1 & 0x80) && val2 != 0x5c)) {
1316 			return -ENODEV;
1317 		}
1318 	}
1319 	/*
1320 	 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1321 	 * should match
1322 	 */
1323 	if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1324 		return -ENODEV;
1325 
1326 	/* We want bank 0 and Vendor ID high byte */
1327 	val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1328 	w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1329 
1330 	/* Verify it is a Winbond w83791d */
1331 	val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1332 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1333 	if (val1 != 0x71 || val2 != 0x5c)
1334 		return -ENODEV;
1335 
1336 	strscpy(info->type, "w83791d", I2C_NAME_SIZE);
1337 
1338 	return 0;
1339 }
1340 
1341 static int w83791d_probe(struct i2c_client *client)
1342 {
1343 	struct w83791d_data *data;
1344 	struct device *dev = &client->dev;
1345 	int i, err;
1346 	u8 has_fanpwm45;
1347 
1348 #ifdef DEBUG
1349 	int val1;
1350 	val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1351 	dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1352 			(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1353 #endif
1354 
1355 	data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1356 			    GFP_KERNEL);
1357 	if (!data)
1358 		return -ENOMEM;
1359 
1360 	i2c_set_clientdata(client, data);
1361 	mutex_init(&data->update_lock);
1362 
1363 	err = w83791d_detect_subclients(client);
1364 	if (err)
1365 		return err;
1366 
1367 	/* Initialize the chip */
1368 	w83791d_init_client(client);
1369 
1370 	/*
1371 	 * If the fan_div is changed, make sure there is a rational
1372 	 * fan_min in place
1373 	 */
1374 	for (i = 0; i < NUMBER_OF_FANIN; i++)
1375 		data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1376 
1377 	/* Register sysfs hooks */
1378 	err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1379 	if (err)
1380 		return err;
1381 
1382 	/* Check if pins of fan/pwm 4-5 are in use as GPIO */
1383 	has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1384 	if (has_fanpwm45) {
1385 		err = sysfs_create_group(&client->dev.kobj,
1386 					 &w83791d_group_fanpwm45);
1387 		if (err)
1388 			goto error4;
1389 	}
1390 
1391 	/* Everything is ready, now register the working device */
1392 	data->hwmon_dev = hwmon_device_register(dev);
1393 	if (IS_ERR(data->hwmon_dev)) {
1394 		err = PTR_ERR(data->hwmon_dev);
1395 		goto error5;
1396 	}
1397 
1398 	return 0;
1399 
1400 error5:
1401 	if (has_fanpwm45)
1402 		sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1403 error4:
1404 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1405 	return err;
1406 }
1407 
1408 static void w83791d_remove(struct i2c_client *client)
1409 {
1410 	struct w83791d_data *data = i2c_get_clientdata(client);
1411 
1412 	hwmon_device_unregister(data->hwmon_dev);
1413 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1414 }
1415 
1416 static void w83791d_init_client(struct i2c_client *client)
1417 {
1418 	struct w83791d_data *data = i2c_get_clientdata(client);
1419 	u8 tmp;
1420 	u8 old_beep;
1421 
1422 	/*
1423 	 * The difference between reset and init is that reset
1424 	 * does a hard reset of the chip via index 0x40, bit 7,
1425 	 * but init simply forces certain registers to have "sane"
1426 	 * values. The hope is that the BIOS has done the right
1427 	 * thing (which is why the default is reset=0, init=0),
1428 	 * but if not, reset is the hard hammer and init
1429 	 * is the soft mallet both of which are trying to whack
1430 	 * things into place...
1431 	 * NOTE: The data sheet makes a distinction between
1432 	 * "power on defaults" and "reset by MR". As far as I can tell,
1433 	 * the hard reset puts everything into a power-on state so I'm
1434 	 * not sure what "reset by MR" means or how it can happen.
1435 	 */
1436 	if (reset || init) {
1437 		/* keep some BIOS settings when we... */
1438 		old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1439 
1440 		if (reset) {
1441 			/* ... reset the chip and ... */
1442 			w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1443 		}
1444 
1445 		/* ... disable power-on abnormal beep */
1446 		w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1447 
1448 		/* disable the global beep (not done by hard reset) */
1449 		tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1450 		w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1451 
1452 		if (init) {
1453 			/* Make sure monitoring is turned on for add-ons */
1454 			tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1455 			if (tmp & 1) {
1456 				w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1457 					tmp & 0xfe);
1458 			}
1459 
1460 			tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1461 			if (tmp & 1) {
1462 				w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1463 					tmp & 0xfe);
1464 			}
1465 
1466 			/* Start monitoring */
1467 			tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1468 			w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1469 		}
1470 	}
1471 
1472 	data->vrm = vid_which_vrm();
1473 }
1474 
1475 static struct w83791d_data *w83791d_update_device(struct device *dev)
1476 {
1477 	struct i2c_client *client = to_i2c_client(dev);
1478 	struct w83791d_data *data = i2c_get_clientdata(client);
1479 	int i, j;
1480 	u8 reg_array_tmp[3];
1481 	u8 vbat_reg;
1482 
1483 	mutex_lock(&data->update_lock);
1484 
1485 	if (time_after(jiffies, data->last_updated + (HZ * 3))
1486 			|| !data->valid) {
1487 		dev_dbg(dev, "Starting w83791d device update\n");
1488 
1489 		/* Update the voltages measured value and limits */
1490 		for (i = 0; i < NUMBER_OF_VIN; i++) {
1491 			data->in[i] = w83791d_read(client,
1492 						W83791D_REG_IN[i]);
1493 			data->in_max[i] = w83791d_read(client,
1494 						W83791D_REG_IN_MAX[i]);
1495 			data->in_min[i] = w83791d_read(client,
1496 						W83791D_REG_IN_MIN[i]);
1497 		}
1498 
1499 		/* Update the fan counts and limits */
1500 		for (i = 0; i < NUMBER_OF_FANIN; i++) {
1501 			/* Update the Fan measured value and limits */
1502 			data->fan[i] = w83791d_read(client,
1503 						W83791D_REG_FAN[i]);
1504 			data->fan_min[i] = w83791d_read(client,
1505 						W83791D_REG_FAN_MIN[i]);
1506 		}
1507 
1508 		/* Update the fan divisor */
1509 		for (i = 0; i < 3; i++) {
1510 			reg_array_tmp[i] = w83791d_read(client,
1511 						W83791D_REG_FAN_DIV[i]);
1512 		}
1513 		data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1514 		data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1515 		data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1516 		data->fan_div[3] = reg_array_tmp[2] & 0x07;
1517 		data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1518 
1519 		/*
1520 		 * The fan divisor for fans 0-2 get bit 2 from
1521 		 * bits 5-7 respectively of vbat register
1522 		 */
1523 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1524 		for (i = 0; i < 3; i++)
1525 			data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1526 
1527 		/* Update PWM duty cycle */
1528 		for (i = 0; i < NUMBER_OF_PWM; i++) {
1529 			data->pwm[i] =  w83791d_read(client,
1530 						W83791D_REG_PWM[i]);
1531 		}
1532 
1533 		/* Update PWM enable status */
1534 		for (i = 0; i < 2; i++) {
1535 			reg_array_tmp[i] = w83791d_read(client,
1536 						W83791D_REG_FAN_CFG[i]);
1537 		}
1538 		data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1539 		data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1540 		data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1541 
1542 		/* Update PWM target temperature */
1543 		for (i = 0; i < 3; i++) {
1544 			data->temp_target[i] = w83791d_read(client,
1545 				W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1546 		}
1547 
1548 		/* Update PWM temperature tolerance */
1549 		for (i = 0; i < 2; i++) {
1550 			reg_array_tmp[i] = w83791d_read(client,
1551 					W83791D_REG_TEMP_TOL[i]);
1552 		}
1553 		data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1554 		data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1555 		data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1556 
1557 		/* Update the first temperature sensor */
1558 		for (i = 0; i < 3; i++) {
1559 			data->temp1[i] = w83791d_read(client,
1560 						W83791D_REG_TEMP1[i]);
1561 		}
1562 
1563 		/* Update the rest of the temperature sensors */
1564 		for (i = 0; i < 2; i++) {
1565 			for (j = 0; j < 3; j++) {
1566 				data->temp_add[i][j] =
1567 					(w83791d_read(client,
1568 					W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1569 					w83791d_read(client,
1570 					W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1571 			}
1572 		}
1573 
1574 		/* Update the realtime status */
1575 		data->alarms =
1576 			w83791d_read(client, W83791D_REG_ALARM1) +
1577 			(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1578 			(w83791d_read(client, W83791D_REG_ALARM3) << 16);
1579 
1580 		/* Update the beep configuration information */
1581 		data->beep_mask =
1582 			w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1583 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1584 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1585 
1586 		/* Extract global beep enable flag */
1587 		data->beep_enable =
1588 			(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1589 
1590 		/* Update the cpu voltage information */
1591 		i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1592 		data->vid = i & 0x0f;
1593 		data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1594 				<< 4;
1595 
1596 		data->last_updated = jiffies;
1597 		data->valid = true;
1598 	}
1599 
1600 	mutex_unlock(&data->update_lock);
1601 
1602 #ifdef DEBUG
1603 	w83791d_print_debug(data, dev);
1604 #endif
1605 
1606 	return data;
1607 }
1608 
1609 #ifdef DEBUG
1610 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1611 {
1612 	int i = 0, j = 0;
1613 
1614 	dev_dbg(dev, "======Start of w83791d debug values======\n");
1615 	dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1616 	for (i = 0; i < NUMBER_OF_VIN; i++) {
1617 		dev_dbg(dev, "vin[%d] is:     0x%02x\n", i, data->in[i]);
1618 		dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1619 		dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1620 	}
1621 	dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1622 	for (i = 0; i < NUMBER_OF_FANIN; i++) {
1623 		dev_dbg(dev, "fan[%d] is:     0x%02x\n", i, data->fan[i]);
1624 		dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1625 		dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1626 	}
1627 
1628 	/*
1629 	 * temperature math is signed, but only print out the
1630 	 * bits that matter
1631 	 */
1632 	dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1633 	for (i = 0; i < 3; i++)
1634 		dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1635 	for (i = 0; i < 2; i++) {
1636 		for (j = 0; j < 3; j++) {
1637 			dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1638 				(u16) data->temp_add[i][j]);
1639 		}
1640 	}
1641 
1642 	dev_dbg(dev, "Misc Information: ===>\n");
1643 	dev_dbg(dev, "alarm is:     0x%08x\n", data->alarms);
1644 	dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1645 	dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1646 	dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1647 	dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1648 	dev_dbg(dev, "=======End of w83791d debug values========\n");
1649 	dev_dbg(dev, "\n");
1650 }
1651 #endif
1652 
1653 module_i2c_driver(w83791d_driver);
1654 
1655 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1656 MODULE_DESCRIPTION("W83791D driver");
1657 MODULE_LICENSE("GPL");
1658