1 /* 2 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * 5 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 /* 23 * Supports following chips: 24 * 25 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 26 * w83791d 10 5 5 3 0x71 0x5ca3 yes no 27 * 28 * The w83791d chip appears to be part way between the 83781d and the 29 * 83792d. Thus, this file is derived from both the w83792d.c and 30 * w83781d.c files. 31 * 32 * The w83791g chip is the same as the w83791d but lead-free. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/i2c.h> 39 #include <linux/hwmon.h> 40 #include <linux/hwmon-vid.h> 41 #include <linux/hwmon-sysfs.h> 42 #include <linux/err.h> 43 #include <linux/mutex.h> 44 #include <linux/jiffies.h> 45 46 #define NUMBER_OF_VIN 10 47 #define NUMBER_OF_FANIN 5 48 #define NUMBER_OF_TEMPIN 3 49 #define NUMBER_OF_PWM 5 50 51 /* Addresses to scan */ 52 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, 53 I2C_CLIENT_END }; 54 55 /* Insmod parameters */ 56 57 static unsigned short force_subclients[4]; 58 module_param_array(force_subclients, short, NULL, 0); 59 MODULE_PARM_DESC(force_subclients, 60 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); 61 62 static bool reset; 63 module_param(reset, bool, 0); 64 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset"); 65 66 static bool init; 67 module_param(init, bool, 0); 68 MODULE_PARM_DESC(init, "Set to one to force extra software initialization"); 69 70 /* The W83791D registers */ 71 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = { 72 0x20, /* VCOREA in DataSheet */ 73 0x21, /* VINR0 in DataSheet */ 74 0x22, /* +3.3VIN in DataSheet */ 75 0x23, /* VDD5V in DataSheet */ 76 0x24, /* +12VIN in DataSheet */ 77 0x25, /* -12VIN in DataSheet */ 78 0x26, /* -5VIN in DataSheet */ 79 0xB0, /* 5VSB in DataSheet */ 80 0xB1, /* VBAT in DataSheet */ 81 0xB2 /* VINR1 in DataSheet */ 82 }; 83 84 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = { 85 0x2B, /* VCOREA High Limit in DataSheet */ 86 0x2D, /* VINR0 High Limit in DataSheet */ 87 0x2F, /* +3.3VIN High Limit in DataSheet */ 88 0x31, /* VDD5V High Limit in DataSheet */ 89 0x33, /* +12VIN High Limit in DataSheet */ 90 0x35, /* -12VIN High Limit in DataSheet */ 91 0x37, /* -5VIN High Limit in DataSheet */ 92 0xB4, /* 5VSB High Limit in DataSheet */ 93 0xB6, /* VBAT High Limit in DataSheet */ 94 0xB8 /* VINR1 High Limit in DataSheet */ 95 }; 96 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = { 97 0x2C, /* VCOREA Low Limit in DataSheet */ 98 0x2E, /* VINR0 Low Limit in DataSheet */ 99 0x30, /* +3.3VIN Low Limit in DataSheet */ 100 0x32, /* VDD5V Low Limit in DataSheet */ 101 0x34, /* +12VIN Low Limit in DataSheet */ 102 0x36, /* -12VIN Low Limit in DataSheet */ 103 0x38, /* -5VIN Low Limit in DataSheet */ 104 0xB5, /* 5VSB Low Limit in DataSheet */ 105 0xB7, /* VBAT Low Limit in DataSheet */ 106 0xB9 /* VINR1 Low Limit in DataSheet */ 107 }; 108 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = { 109 0x28, /* FAN 1 Count in DataSheet */ 110 0x29, /* FAN 2 Count in DataSheet */ 111 0x2A, /* FAN 3 Count in DataSheet */ 112 0xBA, /* FAN 4 Count in DataSheet */ 113 0xBB, /* FAN 5 Count in DataSheet */ 114 }; 115 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = { 116 0x3B, /* FAN 1 Count Low Limit in DataSheet */ 117 0x3C, /* FAN 2 Count Low Limit in DataSheet */ 118 0x3D, /* FAN 3 Count Low Limit in DataSheet */ 119 0xBC, /* FAN 4 Count Low Limit in DataSheet */ 120 0xBD, /* FAN 5 Count Low Limit in DataSheet */ 121 }; 122 123 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = { 124 0x81, /* PWM 1 duty cycle register in DataSheet */ 125 0x83, /* PWM 2 duty cycle register in DataSheet */ 126 0x94, /* PWM 3 duty cycle register in DataSheet */ 127 0xA0, /* PWM 4 duty cycle register in DataSheet */ 128 0xA1, /* PWM 5 duty cycle register in DataSheet */ 129 }; 130 131 static const u8 W83791D_REG_TEMP_TARGET[3] = { 132 0x85, /* PWM 1 target temperature for temp 1 */ 133 0x86, /* PWM 2 target temperature for temp 2 */ 134 0x96, /* PWM 3 target temperature for temp 3 */ 135 }; 136 137 static const u8 W83791D_REG_TEMP_TOL[2] = { 138 0x87, /* PWM 1/2 temperature tolerance */ 139 0x97, /* PWM 3 temperature tolerance */ 140 }; 141 142 static const u8 W83791D_REG_FAN_CFG[2] = { 143 0x84, /* FAN 1/2 configuration */ 144 0x95, /* FAN 3 configuration */ 145 }; 146 147 static const u8 W83791D_REG_FAN_DIV[3] = { 148 0x47, /* contains FAN1 and FAN2 Divisor */ 149 0x4b, /* contains FAN3 Divisor */ 150 0x5C, /* contains FAN4 and FAN5 Divisor */ 151 }; 152 153 #define W83791D_REG_BANK 0x4E 154 #define W83791D_REG_TEMP2_CONFIG 0xC2 155 #define W83791D_REG_TEMP3_CONFIG 0xCA 156 157 static const u8 W83791D_REG_TEMP1[3] = { 158 0x27, /* TEMP 1 in DataSheet */ 159 0x39, /* TEMP 1 Over in DataSheet */ 160 0x3A, /* TEMP 1 Hyst in DataSheet */ 161 }; 162 163 static const u8 W83791D_REG_TEMP_ADD[2][6] = { 164 {0xC0, /* TEMP 2 in DataSheet */ 165 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ 166 0xC5, /* TEMP 2 Over High part in DataSheet */ 167 0xC6, /* TEMP 2 Over Low part in DataSheet */ 168 0xC3, /* TEMP 2 Thyst High part in DataSheet */ 169 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */ 170 {0xC8, /* TEMP 3 in DataSheet */ 171 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ 172 0xCD, /* TEMP 3 Over High part in DataSheet */ 173 0xCE, /* TEMP 3 Over Low part in DataSheet */ 174 0xCB, /* TEMP 3 Thyst High part in DataSheet */ 175 0xCC} /* TEMP 3 Thyst Low part in DataSheet */ 176 }; 177 178 #define W83791D_REG_BEEP_CONFIG 0x4D 179 180 static const u8 W83791D_REG_BEEP_CTRL[3] = { 181 0x56, /* BEEP Control Register 1 */ 182 0x57, /* BEEP Control Register 2 */ 183 0xA3, /* BEEP Control Register 3 */ 184 }; 185 186 #define W83791D_REG_GPIO 0x15 187 #define W83791D_REG_CONFIG 0x40 188 #define W83791D_REG_VID_FANDIV 0x47 189 #define W83791D_REG_DID_VID4 0x49 190 #define W83791D_REG_WCHIPID 0x58 191 #define W83791D_REG_CHIPMAN 0x4F 192 #define W83791D_REG_PIN 0x4B 193 #define W83791D_REG_I2C_SUBADDR 0x4A 194 195 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */ 196 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */ 197 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */ 198 199 #define W83791D_REG_VBAT 0x5D 200 #define W83791D_REG_I2C_ADDR 0x48 201 202 /* 203 * The SMBus locks itself. The Winbond W83791D has a bank select register 204 * (index 0x4e), but the driver only accesses registers in bank 0. Since 205 * we don't switch banks, we don't need any special code to handle 206 * locking access between bank switches 207 */ 208 static inline int w83791d_read(struct i2c_client *client, u8 reg) 209 { 210 return i2c_smbus_read_byte_data(client, reg); 211 } 212 213 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value) 214 { 215 return i2c_smbus_write_byte_data(client, reg, value); 216 } 217 218 /* 219 * The analog voltage inputs have 16mV LSB. Since the sysfs output is 220 * in mV as would be measured on the chip input pin, need to just 221 * multiply/divide by 16 to translate from/to register values. 222 */ 223 #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255)) 224 #define IN_FROM_REG(val) ((val) * 16) 225 226 static u8 fan_to_reg(long rpm, int div) 227 { 228 if (rpm == 0) 229 return 255; 230 rpm = clamp_val(rpm, 1, 1000000); 231 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 232 } 233 234 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ 235 ((val) == 255 ? 0 : \ 236 1350000 / ((val) * (div)))) 237 238 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */ 239 #define TEMP1_FROM_REG(val) ((val) * 1000) 240 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ 241 (val) >= 127000 ? 127 : \ 242 (val) < 0 ? ((val) - 500) / 1000 : \ 243 ((val) + 500) / 1000) 244 245 /* 246 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius 247 * Assumes the top 8 bits are the integral amount and the bottom 8 bits 248 * are the fractional amount. Since we only have 0.5 degree resolution, 249 * the bottom 7 bits will always be zero 250 */ 251 #define TEMP23_FROM_REG(val) ((val) / 128 * 500) 252 #define TEMP23_TO_REG(val) ((val) <= -128000 ? 0x8000 : \ 253 (val) >= 127500 ? 0x7F80 : \ 254 (val) < 0 ? ((val) - 250) / 500 * 128 : \ 255 ((val) + 250) / 500 * 128) 256 257 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */ 258 #define TARGET_TEMP_TO_REG(val) ((val) < 0 ? 0 : \ 259 (val) >= 127000 ? 127 : \ 260 ((val) + 500) / 1000) 261 262 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */ 263 #define TOL_TEMP_TO_REG(val) ((val) >= 15000 ? 15 : \ 264 ((val) + 500) / 1000) 265 266 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) 267 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff) 268 269 #define DIV_FROM_REG(val) (1 << (val)) 270 271 static u8 div_to_reg(int nr, long val) 272 { 273 int i; 274 275 /* fan divisors max out at 128 */ 276 val = clamp_val(val, 1, 128) >> 1; 277 for (i = 0; i < 7; i++) { 278 if (val == 0) 279 break; 280 val >>= 1; 281 } 282 return (u8) i; 283 } 284 285 struct w83791d_data { 286 struct device *hwmon_dev; 287 struct mutex update_lock; 288 289 char valid; /* !=0 if following fields are valid */ 290 unsigned long last_updated; /* In jiffies */ 291 292 /* array of 2 pointers to subclients */ 293 struct i2c_client *lm75[2]; 294 295 /* volts */ 296 u8 in[NUMBER_OF_VIN]; /* Register value */ 297 u8 in_max[NUMBER_OF_VIN]; /* Register value */ 298 u8 in_min[NUMBER_OF_VIN]; /* Register value */ 299 300 /* fans */ 301 u8 fan[NUMBER_OF_FANIN]; /* Register value */ 302 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */ 303 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */ 304 305 /* Temperature sensors */ 306 307 s8 temp1[3]; /* current, over, thyst */ 308 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the 309 * integral part, bottom 8 bits are the 310 * fractional part. We only use the top 311 * 9 bits as the resolution is only 312 * to the 0.5 degree C... 313 * two sensors with three values 314 * (cur, over, hyst) 315 */ 316 317 /* PWMs */ 318 u8 pwm[5]; /* pwm duty cycle */ 319 u8 pwm_enable[3]; /* pwm enable status for fan 1-3 320 * (fan 4-5 only support manual mode) 321 */ 322 323 u8 temp_target[3]; /* pwm 1-3 target temperature */ 324 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */ 325 326 /* Misc */ 327 u32 alarms; /* realtime status register encoding,combined */ 328 u8 beep_enable; /* Global beep enable */ 329 u32 beep_mask; /* Mask off specific beeps */ 330 u8 vid; /* Register encoding, combined */ 331 u8 vrm; /* hwmon-vid */ 332 }; 333 334 static int w83791d_probe(struct i2c_client *client, 335 const struct i2c_device_id *id); 336 static int w83791d_detect(struct i2c_client *client, 337 struct i2c_board_info *info); 338 static int w83791d_remove(struct i2c_client *client); 339 340 static int w83791d_read(struct i2c_client *client, u8 reg); 341 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value); 342 static struct w83791d_data *w83791d_update_device(struct device *dev); 343 344 #ifdef DEBUG 345 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev); 346 #endif 347 348 static void w83791d_init_client(struct i2c_client *client); 349 350 static const struct i2c_device_id w83791d_id[] = { 351 { "w83791d", 0 }, 352 { } 353 }; 354 MODULE_DEVICE_TABLE(i2c, w83791d_id); 355 356 static struct i2c_driver w83791d_driver = { 357 .class = I2C_CLASS_HWMON, 358 .driver = { 359 .name = "w83791d", 360 }, 361 .probe = w83791d_probe, 362 .remove = w83791d_remove, 363 .id_table = w83791d_id, 364 .detect = w83791d_detect, 365 .address_list = normal_i2c, 366 }; 367 368 /* following are the sysfs callback functions */ 369 #define show_in_reg(reg) \ 370 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 371 char *buf) \ 372 { \ 373 struct sensor_device_attribute *sensor_attr = \ 374 to_sensor_dev_attr(attr); \ 375 struct w83791d_data *data = w83791d_update_device(dev); \ 376 int nr = sensor_attr->index; \ 377 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 378 } 379 380 show_in_reg(in); 381 show_in_reg(in_min); 382 show_in_reg(in_max); 383 384 #define store_in_reg(REG, reg) \ 385 static ssize_t store_in_##reg(struct device *dev, \ 386 struct device_attribute *attr, \ 387 const char *buf, size_t count) \ 388 { \ 389 struct sensor_device_attribute *sensor_attr = \ 390 to_sensor_dev_attr(attr); \ 391 struct i2c_client *client = to_i2c_client(dev); \ 392 struct w83791d_data *data = i2c_get_clientdata(client); \ 393 int nr = sensor_attr->index; \ 394 unsigned long val; \ 395 int err = kstrtoul(buf, 10, &val); \ 396 if (err) \ 397 return err; \ 398 mutex_lock(&data->update_lock); \ 399 data->in_##reg[nr] = IN_TO_REG(val); \ 400 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \ 401 mutex_unlock(&data->update_lock); \ 402 \ 403 return count; \ 404 } 405 store_in_reg(MIN, min); 406 store_in_reg(MAX, max); 407 408 static struct sensor_device_attribute sda_in_input[] = { 409 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), 410 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), 411 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), 412 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3), 413 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4), 414 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5), 415 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6), 416 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7), 417 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8), 418 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9), 419 }; 420 421 static struct sensor_device_attribute sda_in_min[] = { 422 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), 423 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), 424 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), 425 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3), 426 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4), 427 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5), 428 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6), 429 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7), 430 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8), 431 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9), 432 }; 433 434 static struct sensor_device_attribute sda_in_max[] = { 435 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), 436 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), 437 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), 438 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3), 439 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4), 440 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5), 441 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6), 442 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7), 443 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8), 444 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9), 445 }; 446 447 448 static ssize_t show_beep(struct device *dev, struct device_attribute *attr, 449 char *buf) 450 { 451 struct sensor_device_attribute *sensor_attr = 452 to_sensor_dev_attr(attr); 453 struct w83791d_data *data = w83791d_update_device(dev); 454 int bitnr = sensor_attr->index; 455 456 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1); 457 } 458 459 static ssize_t store_beep(struct device *dev, struct device_attribute *attr, 460 const char *buf, size_t count) 461 { 462 struct sensor_device_attribute *sensor_attr = 463 to_sensor_dev_attr(attr); 464 struct i2c_client *client = to_i2c_client(dev); 465 struct w83791d_data *data = i2c_get_clientdata(client); 466 int bitnr = sensor_attr->index; 467 int bytenr = bitnr / 8; 468 unsigned long val; 469 int err; 470 471 err = kstrtoul(buf, 10, &val); 472 if (err) 473 return err; 474 475 val = val ? 1 : 0; 476 477 mutex_lock(&data->update_lock); 478 479 data->beep_mask &= ~(0xff << (bytenr * 8)); 480 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr]) 481 << (bytenr * 8); 482 483 data->beep_mask &= ~(1 << bitnr); 484 data->beep_mask |= val << bitnr; 485 486 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr], 487 (data->beep_mask >> (bytenr * 8)) & 0xff); 488 489 mutex_unlock(&data->update_lock); 490 491 return count; 492 } 493 494 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 495 char *buf) 496 { 497 struct sensor_device_attribute *sensor_attr = 498 to_sensor_dev_attr(attr); 499 struct w83791d_data *data = w83791d_update_device(dev); 500 int bitnr = sensor_attr->index; 501 502 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); 503 } 504 505 /* 506 * Note: The bitmask for the beep enable/disable is different than 507 * the bitmask for the alarm. 508 */ 509 static struct sensor_device_attribute sda_in_beep[] = { 510 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0), 511 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13), 512 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2), 513 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3), 514 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8), 515 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9), 516 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10), 517 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16), 518 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17), 519 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14), 520 }; 521 522 static struct sensor_device_attribute sda_in_alarm[] = { 523 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0), 524 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1), 525 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2), 526 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3), 527 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8), 528 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9), 529 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10), 530 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19), 531 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20), 532 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14), 533 }; 534 535 #define show_fan_reg(reg) \ 536 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 537 char *buf) \ 538 { \ 539 struct sensor_device_attribute *sensor_attr = \ 540 to_sensor_dev_attr(attr); \ 541 struct w83791d_data *data = w83791d_update_device(dev); \ 542 int nr = sensor_attr->index; \ 543 return sprintf(buf, "%d\n", \ 544 FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ 545 } 546 547 show_fan_reg(fan); 548 show_fan_reg(fan_min); 549 550 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, 551 const char *buf, size_t count) 552 { 553 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 554 struct i2c_client *client = to_i2c_client(dev); 555 struct w83791d_data *data = i2c_get_clientdata(client); 556 int nr = sensor_attr->index; 557 unsigned long val; 558 int err; 559 560 err = kstrtoul(buf, 10, &val); 561 if (err) 562 return err; 563 564 mutex_lock(&data->update_lock); 565 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr])); 566 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 567 mutex_unlock(&data->update_lock); 568 569 return count; 570 } 571 572 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 573 char *buf) 574 { 575 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 576 int nr = sensor_attr->index; 577 struct w83791d_data *data = w83791d_update_device(dev); 578 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); 579 } 580 581 /* 582 * Note: we save and restore the fan minimum here, because its value is 583 * determined in part by the fan divisor. This follows the principle of 584 * least surprise; the user doesn't expect the fan minimum to change just 585 * because the divisor changed. 586 */ 587 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, 588 const char *buf, size_t count) 589 { 590 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 591 struct i2c_client *client = to_i2c_client(dev); 592 struct w83791d_data *data = i2c_get_clientdata(client); 593 int nr = sensor_attr->index; 594 unsigned long min; 595 u8 tmp_fan_div; 596 u8 fan_div_reg; 597 u8 vbat_reg; 598 int indx = 0; 599 u8 keep_mask = 0; 600 u8 new_shift = 0; 601 unsigned long val; 602 int err; 603 604 err = kstrtoul(buf, 10, &val); 605 if (err) 606 return err; 607 608 /* Save fan_min */ 609 min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); 610 611 mutex_lock(&data->update_lock); 612 data->fan_div[nr] = div_to_reg(nr, val); 613 614 switch (nr) { 615 case 0: 616 indx = 0; 617 keep_mask = 0xcf; 618 new_shift = 4; 619 break; 620 case 1: 621 indx = 0; 622 keep_mask = 0x3f; 623 new_shift = 6; 624 break; 625 case 2: 626 indx = 1; 627 keep_mask = 0x3f; 628 new_shift = 6; 629 break; 630 case 3: 631 indx = 2; 632 keep_mask = 0xf8; 633 new_shift = 0; 634 break; 635 case 4: 636 indx = 2; 637 keep_mask = 0x8f; 638 new_shift = 4; 639 break; 640 #ifdef DEBUG 641 default: 642 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr); 643 count = -EINVAL; 644 goto err_exit; 645 #endif 646 } 647 648 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx]) 649 & keep_mask; 650 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; 651 652 w83791d_write(client, W83791D_REG_FAN_DIV[indx], 653 fan_div_reg | tmp_fan_div); 654 655 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */ 656 if (nr < 3) { 657 keep_mask = ~(1 << (nr + 5)); 658 vbat_reg = w83791d_read(client, W83791D_REG_VBAT) 659 & keep_mask; 660 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask; 661 w83791d_write(client, W83791D_REG_VBAT, 662 vbat_reg | tmp_fan_div); 663 } 664 665 /* Restore fan_min */ 666 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr])); 667 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); 668 669 #ifdef DEBUG 670 err_exit: 671 #endif 672 mutex_unlock(&data->update_lock); 673 674 return count; 675 } 676 677 static struct sensor_device_attribute sda_fan_input[] = { 678 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), 679 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), 680 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2), 681 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3), 682 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4), 683 }; 684 685 static struct sensor_device_attribute sda_fan_min[] = { 686 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, 687 show_fan_min, store_fan_min, 0), 688 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, 689 show_fan_min, store_fan_min, 1), 690 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, 691 show_fan_min, store_fan_min, 2), 692 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, 693 show_fan_min, store_fan_min, 3), 694 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, 695 show_fan_min, store_fan_min, 4), 696 }; 697 698 static struct sensor_device_attribute sda_fan_div[] = { 699 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, 700 show_fan_div, store_fan_div, 0), 701 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, 702 show_fan_div, store_fan_div, 1), 703 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO, 704 show_fan_div, store_fan_div, 2), 705 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO, 706 show_fan_div, store_fan_div, 3), 707 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO, 708 show_fan_div, store_fan_div, 4), 709 }; 710 711 static struct sensor_device_attribute sda_fan_beep[] = { 712 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6), 713 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7), 714 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11), 715 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21), 716 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22), 717 }; 718 719 static struct sensor_device_attribute sda_fan_alarm[] = { 720 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6), 721 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7), 722 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11), 723 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21), 724 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22), 725 }; 726 727 /* read/write PWMs */ 728 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 729 char *buf) 730 { 731 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 732 int nr = sensor_attr->index; 733 struct w83791d_data *data = w83791d_update_device(dev); 734 return sprintf(buf, "%u\n", data->pwm[nr]); 735 } 736 737 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, 738 const char *buf, size_t count) 739 { 740 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 741 struct i2c_client *client = to_i2c_client(dev); 742 struct w83791d_data *data = i2c_get_clientdata(client); 743 int nr = sensor_attr->index; 744 unsigned long val; 745 746 if (kstrtoul(buf, 10, &val)) 747 return -EINVAL; 748 749 mutex_lock(&data->update_lock); 750 data->pwm[nr] = clamp_val(val, 0, 255); 751 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]); 752 mutex_unlock(&data->update_lock); 753 return count; 754 } 755 756 static struct sensor_device_attribute sda_pwm[] = { 757 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, 758 show_pwm, store_pwm, 0), 759 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, 760 show_pwm, store_pwm, 1), 761 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, 762 show_pwm, store_pwm, 2), 763 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, 764 show_pwm, store_pwm, 3), 765 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO, 766 show_pwm, store_pwm, 4), 767 }; 768 769 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr, 770 char *buf) 771 { 772 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 773 int nr = sensor_attr->index; 774 struct w83791d_data *data = w83791d_update_device(dev); 775 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1); 776 } 777 778 static ssize_t store_pwmenable(struct device *dev, 779 struct device_attribute *attr, const char *buf, size_t count) 780 { 781 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 782 struct i2c_client *client = to_i2c_client(dev); 783 struct w83791d_data *data = i2c_get_clientdata(client); 784 int nr = sensor_attr->index; 785 unsigned long val; 786 u8 reg_cfg_tmp; 787 u8 reg_idx = 0; 788 u8 val_shift = 0; 789 u8 keep_mask = 0; 790 791 int ret = kstrtoul(buf, 10, &val); 792 793 if (ret || val < 1 || val > 3) 794 return -EINVAL; 795 796 mutex_lock(&data->update_lock); 797 data->pwm_enable[nr] = val - 1; 798 switch (nr) { 799 case 0: 800 reg_idx = 0; 801 val_shift = 2; 802 keep_mask = 0xf3; 803 break; 804 case 1: 805 reg_idx = 0; 806 val_shift = 4; 807 keep_mask = 0xcf; 808 break; 809 case 2: 810 reg_idx = 1; 811 val_shift = 2; 812 keep_mask = 0xf3; 813 break; 814 } 815 816 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]); 817 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) | 818 data->pwm_enable[nr] << val_shift; 819 820 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp); 821 mutex_unlock(&data->update_lock); 822 823 return count; 824 } 825 static struct sensor_device_attribute sda_pwmenable[] = { 826 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, 827 show_pwmenable, store_pwmenable, 0), 828 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, 829 show_pwmenable, store_pwmenable, 1), 830 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, 831 show_pwmenable, store_pwmenable, 2), 832 }; 833 834 /* For Smart Fan I / Thermal Cruise */ 835 static ssize_t show_temp_target(struct device *dev, 836 struct device_attribute *attr, char *buf) 837 { 838 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 839 struct w83791d_data *data = w83791d_update_device(dev); 840 int nr = sensor_attr->index; 841 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr])); 842 } 843 844 static ssize_t store_temp_target(struct device *dev, 845 struct device_attribute *attr, const char *buf, size_t count) 846 { 847 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 848 struct i2c_client *client = to_i2c_client(dev); 849 struct w83791d_data *data = i2c_get_clientdata(client); 850 int nr = sensor_attr->index; 851 long val; 852 u8 target_mask; 853 854 if (kstrtol(buf, 10, &val)) 855 return -EINVAL; 856 857 mutex_lock(&data->update_lock); 858 data->temp_target[nr] = TARGET_TEMP_TO_REG(val); 859 target_mask = w83791d_read(client, 860 W83791D_REG_TEMP_TARGET[nr]) & 0x80; 861 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr], 862 data->temp_target[nr] | target_mask); 863 mutex_unlock(&data->update_lock); 864 return count; 865 } 866 867 static struct sensor_device_attribute sda_temp_target[] = { 868 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO, 869 show_temp_target, store_temp_target, 0), 870 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO, 871 show_temp_target, store_temp_target, 1), 872 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO, 873 show_temp_target, store_temp_target, 2), 874 }; 875 876 static ssize_t show_temp_tolerance(struct device *dev, 877 struct device_attribute *attr, char *buf) 878 { 879 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 880 struct w83791d_data *data = w83791d_update_device(dev); 881 int nr = sensor_attr->index; 882 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr])); 883 } 884 885 static ssize_t store_temp_tolerance(struct device *dev, 886 struct device_attribute *attr, const char *buf, size_t count) 887 { 888 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); 889 struct i2c_client *client = to_i2c_client(dev); 890 struct w83791d_data *data = i2c_get_clientdata(client); 891 int nr = sensor_attr->index; 892 unsigned long val; 893 u8 target_mask; 894 u8 reg_idx = 0; 895 u8 val_shift = 0; 896 u8 keep_mask = 0; 897 898 if (kstrtoul(buf, 10, &val)) 899 return -EINVAL; 900 901 switch (nr) { 902 case 0: 903 reg_idx = 0; 904 val_shift = 0; 905 keep_mask = 0xf0; 906 break; 907 case 1: 908 reg_idx = 0; 909 val_shift = 4; 910 keep_mask = 0x0f; 911 break; 912 case 2: 913 reg_idx = 1; 914 val_shift = 0; 915 keep_mask = 0xf0; 916 break; 917 } 918 919 mutex_lock(&data->update_lock); 920 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val); 921 target_mask = w83791d_read(client, 922 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask; 923 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx], 924 (data->temp_tolerance[nr] << val_shift) | target_mask); 925 mutex_unlock(&data->update_lock); 926 return count; 927 } 928 929 static struct sensor_device_attribute sda_temp_tolerance[] = { 930 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO, 931 show_temp_tolerance, store_temp_tolerance, 0), 932 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO, 933 show_temp_tolerance, store_temp_tolerance, 1), 934 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO, 935 show_temp_tolerance, store_temp_tolerance, 2), 936 }; 937 938 /* read/write the temperature1, includes measured value and limits */ 939 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr, 940 char *buf) 941 { 942 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 943 struct w83791d_data *data = w83791d_update_device(dev); 944 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index])); 945 } 946 947 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr, 948 const char *buf, size_t count) 949 { 950 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 951 struct i2c_client *client = to_i2c_client(dev); 952 struct w83791d_data *data = i2c_get_clientdata(client); 953 int nr = attr->index; 954 long val; 955 int err; 956 957 err = kstrtol(buf, 10, &val); 958 if (err) 959 return err; 960 961 mutex_lock(&data->update_lock); 962 data->temp1[nr] = TEMP1_TO_REG(val); 963 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]); 964 mutex_unlock(&data->update_lock); 965 return count; 966 } 967 968 /* read/write temperature2-3, includes measured value and limits */ 969 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr, 970 char *buf) 971 { 972 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 973 struct w83791d_data *data = w83791d_update_device(dev); 974 int nr = attr->nr; 975 int index = attr->index; 976 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index])); 977 } 978 979 static ssize_t store_temp23(struct device *dev, 980 struct device_attribute *devattr, 981 const char *buf, size_t count) 982 { 983 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 984 struct i2c_client *client = to_i2c_client(dev); 985 struct w83791d_data *data = i2c_get_clientdata(client); 986 long val; 987 int err; 988 int nr = attr->nr; 989 int index = attr->index; 990 991 err = kstrtol(buf, 10, &val); 992 if (err) 993 return err; 994 995 mutex_lock(&data->update_lock); 996 data->temp_add[nr][index] = TEMP23_TO_REG(val); 997 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2], 998 data->temp_add[nr][index] >> 8); 999 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1], 1000 data->temp_add[nr][index] & 0x80); 1001 mutex_unlock(&data->update_lock); 1002 1003 return count; 1004 } 1005 1006 static struct sensor_device_attribute_2 sda_temp_input[] = { 1007 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0), 1008 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0), 1009 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0), 1010 }; 1011 1012 static struct sensor_device_attribute_2 sda_temp_max[] = { 1013 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, 1014 show_temp1, store_temp1, 0, 1), 1015 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, 1016 show_temp23, store_temp23, 0, 1), 1017 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, 1018 show_temp23, store_temp23, 1, 1), 1019 }; 1020 1021 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { 1022 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, 1023 show_temp1, store_temp1, 0, 2), 1024 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, 1025 show_temp23, store_temp23, 0, 2), 1026 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, 1027 show_temp23, store_temp23, 1, 2), 1028 }; 1029 1030 /* 1031 * Note: The bitmask for the beep enable/disable is different than 1032 * the bitmask for the alarm. 1033 */ 1034 static struct sensor_device_attribute sda_temp_beep[] = { 1035 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4), 1036 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5), 1037 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1), 1038 }; 1039 1040 static struct sensor_device_attribute sda_temp_alarm[] = { 1041 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4), 1042 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5), 1043 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13), 1044 }; 1045 1046 /* get reatime status of all sensors items: voltage, temp, fan */ 1047 static ssize_t show_alarms_reg(struct device *dev, 1048 struct device_attribute *attr, char *buf) 1049 { 1050 struct w83791d_data *data = w83791d_update_device(dev); 1051 return sprintf(buf, "%u\n", data->alarms); 1052 } 1053 1054 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); 1055 1056 /* Beep control */ 1057 1058 #define GLOBAL_BEEP_ENABLE_SHIFT 15 1059 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT) 1060 1061 static ssize_t show_beep_enable(struct device *dev, 1062 struct device_attribute *attr, char *buf) 1063 { 1064 struct w83791d_data *data = w83791d_update_device(dev); 1065 return sprintf(buf, "%d\n", data->beep_enable); 1066 } 1067 1068 static ssize_t show_beep_mask(struct device *dev, 1069 struct device_attribute *attr, char *buf) 1070 { 1071 struct w83791d_data *data = w83791d_update_device(dev); 1072 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask)); 1073 } 1074 1075 1076 static ssize_t store_beep_mask(struct device *dev, 1077 struct device_attribute *attr, 1078 const char *buf, size_t count) 1079 { 1080 struct i2c_client *client = to_i2c_client(dev); 1081 struct w83791d_data *data = i2c_get_clientdata(client); 1082 int i; 1083 long val; 1084 int err; 1085 1086 err = kstrtol(buf, 10, &val); 1087 if (err) 1088 return err; 1089 1090 mutex_lock(&data->update_lock); 1091 1092 /* 1093 * The beep_enable state overrides any enabling request from 1094 * the masks 1095 */ 1096 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK; 1097 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1098 1099 val = data->beep_mask; 1100 1101 for (i = 0; i < 3; i++) { 1102 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff)); 1103 val >>= 8; 1104 } 1105 1106 mutex_unlock(&data->update_lock); 1107 1108 return count; 1109 } 1110 1111 static ssize_t store_beep_enable(struct device *dev, 1112 struct device_attribute *attr, 1113 const char *buf, size_t count) 1114 { 1115 struct i2c_client *client = to_i2c_client(dev); 1116 struct w83791d_data *data = i2c_get_clientdata(client); 1117 long val; 1118 int err; 1119 1120 err = kstrtol(buf, 10, &val); 1121 if (err) 1122 return err; 1123 1124 mutex_lock(&data->update_lock); 1125 1126 data->beep_enable = val ? 1 : 0; 1127 1128 /* Keep the full mask value in sync with the current enable */ 1129 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK; 1130 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); 1131 1132 /* 1133 * The global control is in the second beep control register 1134 * so only need to update that register 1135 */ 1136 val = (data->beep_mask >> 8) & 0xff; 1137 1138 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val); 1139 1140 mutex_unlock(&data->update_lock); 1141 1142 return count; 1143 } 1144 1145 static struct sensor_device_attribute sda_beep_ctrl[] = { 1146 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR, 1147 show_beep_enable, store_beep_enable, 0), 1148 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR, 1149 show_beep_mask, store_beep_mask, 1) 1150 }; 1151 1152 /* cpu voltage regulation information */ 1153 static ssize_t show_vid_reg(struct device *dev, 1154 struct device_attribute *attr, char *buf) 1155 { 1156 struct w83791d_data *data = w83791d_update_device(dev); 1157 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 1158 } 1159 1160 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); 1161 1162 static ssize_t show_vrm_reg(struct device *dev, 1163 struct device_attribute *attr, char *buf) 1164 { 1165 struct w83791d_data *data = dev_get_drvdata(dev); 1166 return sprintf(buf, "%d\n", data->vrm); 1167 } 1168 1169 static ssize_t store_vrm_reg(struct device *dev, 1170 struct device_attribute *attr, 1171 const char *buf, size_t count) 1172 { 1173 struct w83791d_data *data = dev_get_drvdata(dev); 1174 unsigned long val; 1175 int err; 1176 1177 /* 1178 * No lock needed as vrm is internal to the driver 1179 * (not read from a chip register) and so is not 1180 * updated in w83791d_update_device() 1181 */ 1182 1183 err = kstrtoul(buf, 10, &val); 1184 if (err) 1185 return err; 1186 1187 data->vrm = val; 1188 return count; 1189 } 1190 1191 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); 1192 1193 #define IN_UNIT_ATTRS(X) \ 1194 &sda_in_input[X].dev_attr.attr, \ 1195 &sda_in_min[X].dev_attr.attr, \ 1196 &sda_in_max[X].dev_attr.attr, \ 1197 &sda_in_beep[X].dev_attr.attr, \ 1198 &sda_in_alarm[X].dev_attr.attr 1199 1200 #define FAN_UNIT_ATTRS(X) \ 1201 &sda_fan_input[X].dev_attr.attr, \ 1202 &sda_fan_min[X].dev_attr.attr, \ 1203 &sda_fan_div[X].dev_attr.attr, \ 1204 &sda_fan_beep[X].dev_attr.attr, \ 1205 &sda_fan_alarm[X].dev_attr.attr 1206 1207 #define TEMP_UNIT_ATTRS(X) \ 1208 &sda_temp_input[X].dev_attr.attr, \ 1209 &sda_temp_max[X].dev_attr.attr, \ 1210 &sda_temp_max_hyst[X].dev_attr.attr, \ 1211 &sda_temp_beep[X].dev_attr.attr, \ 1212 &sda_temp_alarm[X].dev_attr.attr 1213 1214 static struct attribute *w83791d_attributes[] = { 1215 IN_UNIT_ATTRS(0), 1216 IN_UNIT_ATTRS(1), 1217 IN_UNIT_ATTRS(2), 1218 IN_UNIT_ATTRS(3), 1219 IN_UNIT_ATTRS(4), 1220 IN_UNIT_ATTRS(5), 1221 IN_UNIT_ATTRS(6), 1222 IN_UNIT_ATTRS(7), 1223 IN_UNIT_ATTRS(8), 1224 IN_UNIT_ATTRS(9), 1225 FAN_UNIT_ATTRS(0), 1226 FAN_UNIT_ATTRS(1), 1227 FAN_UNIT_ATTRS(2), 1228 TEMP_UNIT_ATTRS(0), 1229 TEMP_UNIT_ATTRS(1), 1230 TEMP_UNIT_ATTRS(2), 1231 &dev_attr_alarms.attr, 1232 &sda_beep_ctrl[0].dev_attr.attr, 1233 &sda_beep_ctrl[1].dev_attr.attr, 1234 &dev_attr_cpu0_vid.attr, 1235 &dev_attr_vrm.attr, 1236 &sda_pwm[0].dev_attr.attr, 1237 &sda_pwm[1].dev_attr.attr, 1238 &sda_pwm[2].dev_attr.attr, 1239 &sda_pwmenable[0].dev_attr.attr, 1240 &sda_pwmenable[1].dev_attr.attr, 1241 &sda_pwmenable[2].dev_attr.attr, 1242 &sda_temp_target[0].dev_attr.attr, 1243 &sda_temp_target[1].dev_attr.attr, 1244 &sda_temp_target[2].dev_attr.attr, 1245 &sda_temp_tolerance[0].dev_attr.attr, 1246 &sda_temp_tolerance[1].dev_attr.attr, 1247 &sda_temp_tolerance[2].dev_attr.attr, 1248 NULL 1249 }; 1250 1251 static const struct attribute_group w83791d_group = { 1252 .attrs = w83791d_attributes, 1253 }; 1254 1255 /* 1256 * Separate group of attributes for fan/pwm 4-5. Their pins can also be 1257 * in use for GPIO in which case their sysfs-interface should not be made 1258 * available 1259 */ 1260 static struct attribute *w83791d_attributes_fanpwm45[] = { 1261 FAN_UNIT_ATTRS(3), 1262 FAN_UNIT_ATTRS(4), 1263 &sda_pwm[3].dev_attr.attr, 1264 &sda_pwm[4].dev_attr.attr, 1265 NULL 1266 }; 1267 1268 static const struct attribute_group w83791d_group_fanpwm45 = { 1269 .attrs = w83791d_attributes_fanpwm45, 1270 }; 1271 1272 static int w83791d_detect_subclients(struct i2c_client *client) 1273 { 1274 struct i2c_adapter *adapter = client->adapter; 1275 struct w83791d_data *data = i2c_get_clientdata(client); 1276 int address = client->addr; 1277 int i, id, err; 1278 u8 val; 1279 1280 id = i2c_adapter_id(adapter); 1281 if (force_subclients[0] == id && force_subclients[1] == address) { 1282 for (i = 2; i <= 3; i++) { 1283 if (force_subclients[i] < 0x48 || 1284 force_subclients[i] > 0x4f) { 1285 dev_err(&client->dev, 1286 "invalid subclient " 1287 "address %d; must be 0x48-0x4f\n", 1288 force_subclients[i]); 1289 err = -ENODEV; 1290 goto error_sc_0; 1291 } 1292 } 1293 w83791d_write(client, W83791D_REG_I2C_SUBADDR, 1294 (force_subclients[2] & 0x07) | 1295 ((force_subclients[3] & 0x07) << 4)); 1296 } 1297 1298 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR); 1299 if (!(val & 0x08)) 1300 data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7)); 1301 if (!(val & 0x80)) { 1302 if ((data->lm75[0] != NULL) && 1303 ((val & 0x7) == ((val >> 4) & 0x7))) { 1304 dev_err(&client->dev, 1305 "duplicate addresses 0x%x, " 1306 "use force_subclient\n", 1307 data->lm75[0]->addr); 1308 err = -ENODEV; 1309 goto error_sc_1; 1310 } 1311 data->lm75[1] = i2c_new_dummy(adapter, 1312 0x48 + ((val >> 4) & 0x7)); 1313 } 1314 1315 return 0; 1316 1317 /* Undo inits in case of errors */ 1318 1319 error_sc_1: 1320 if (data->lm75[0] != NULL) 1321 i2c_unregister_device(data->lm75[0]); 1322 error_sc_0: 1323 return err; 1324 } 1325 1326 1327 /* Return 0 if detection is successful, -ENODEV otherwise */ 1328 static int w83791d_detect(struct i2c_client *client, 1329 struct i2c_board_info *info) 1330 { 1331 struct i2c_adapter *adapter = client->adapter; 1332 int val1, val2; 1333 unsigned short address = client->addr; 1334 1335 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1336 return -ENODEV; 1337 1338 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80) 1339 return -ENODEV; 1340 1341 val1 = w83791d_read(client, W83791D_REG_BANK); 1342 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1343 /* Check for Winbond ID if in bank 0 */ 1344 if (!(val1 & 0x07)) { 1345 if ((!(val1 & 0x80) && val2 != 0xa3) || 1346 ((val1 & 0x80) && val2 != 0x5c)) { 1347 return -ENODEV; 1348 } 1349 } 1350 /* 1351 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR 1352 * should match 1353 */ 1354 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address) 1355 return -ENODEV; 1356 1357 /* We want bank 0 and Vendor ID high byte */ 1358 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78; 1359 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80); 1360 1361 /* Verify it is a Winbond w83791d */ 1362 val1 = w83791d_read(client, W83791D_REG_WCHIPID); 1363 val2 = w83791d_read(client, W83791D_REG_CHIPMAN); 1364 if (val1 != 0x71 || val2 != 0x5c) 1365 return -ENODEV; 1366 1367 strlcpy(info->type, "w83791d", I2C_NAME_SIZE); 1368 1369 return 0; 1370 } 1371 1372 static int w83791d_probe(struct i2c_client *client, 1373 const struct i2c_device_id *id) 1374 { 1375 struct w83791d_data *data; 1376 struct device *dev = &client->dev; 1377 int i, err; 1378 u8 has_fanpwm45; 1379 1380 #ifdef DEBUG 1381 int val1; 1382 val1 = w83791d_read(client, W83791D_REG_DID_VID4); 1383 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n", 1384 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1); 1385 #endif 1386 1387 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data), 1388 GFP_KERNEL); 1389 if (!data) 1390 return -ENOMEM; 1391 1392 i2c_set_clientdata(client, data); 1393 mutex_init(&data->update_lock); 1394 1395 err = w83791d_detect_subclients(client); 1396 if (err) 1397 return err; 1398 1399 /* Initialize the chip */ 1400 w83791d_init_client(client); 1401 1402 /* 1403 * If the fan_div is changed, make sure there is a rational 1404 * fan_min in place 1405 */ 1406 for (i = 0; i < NUMBER_OF_FANIN; i++) 1407 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); 1408 1409 /* Register sysfs hooks */ 1410 err = sysfs_create_group(&client->dev.kobj, &w83791d_group); 1411 if (err) 1412 goto error3; 1413 1414 /* Check if pins of fan/pwm 4-5 are in use as GPIO */ 1415 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10; 1416 if (has_fanpwm45) { 1417 err = sysfs_create_group(&client->dev.kobj, 1418 &w83791d_group_fanpwm45); 1419 if (err) 1420 goto error4; 1421 } 1422 1423 /* Everything is ready, now register the working device */ 1424 data->hwmon_dev = hwmon_device_register(dev); 1425 if (IS_ERR(data->hwmon_dev)) { 1426 err = PTR_ERR(data->hwmon_dev); 1427 goto error5; 1428 } 1429 1430 return 0; 1431 1432 error5: 1433 if (has_fanpwm45) 1434 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45); 1435 error4: 1436 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1437 error3: 1438 if (data->lm75[0] != NULL) 1439 i2c_unregister_device(data->lm75[0]); 1440 if (data->lm75[1] != NULL) 1441 i2c_unregister_device(data->lm75[1]); 1442 return err; 1443 } 1444 1445 static int w83791d_remove(struct i2c_client *client) 1446 { 1447 struct w83791d_data *data = i2c_get_clientdata(client); 1448 1449 hwmon_device_unregister(data->hwmon_dev); 1450 sysfs_remove_group(&client->dev.kobj, &w83791d_group); 1451 1452 if (data->lm75[0] != NULL) 1453 i2c_unregister_device(data->lm75[0]); 1454 if (data->lm75[1] != NULL) 1455 i2c_unregister_device(data->lm75[1]); 1456 1457 return 0; 1458 } 1459 1460 static void w83791d_init_client(struct i2c_client *client) 1461 { 1462 struct w83791d_data *data = i2c_get_clientdata(client); 1463 u8 tmp; 1464 u8 old_beep; 1465 1466 /* 1467 * The difference between reset and init is that reset 1468 * does a hard reset of the chip via index 0x40, bit 7, 1469 * but init simply forces certain registers to have "sane" 1470 * values. The hope is that the BIOS has done the right 1471 * thing (which is why the default is reset=0, init=0), 1472 * but if not, reset is the hard hammer and init 1473 * is the soft mallet both of which are trying to whack 1474 * things into place... 1475 * NOTE: The data sheet makes a distinction between 1476 * "power on defaults" and "reset by MR". As far as I can tell, 1477 * the hard reset puts everything into a power-on state so I'm 1478 * not sure what "reset by MR" means or how it can happen. 1479 */ 1480 if (reset || init) { 1481 /* keep some BIOS settings when we... */ 1482 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG); 1483 1484 if (reset) { 1485 /* ... reset the chip and ... */ 1486 w83791d_write(client, W83791D_REG_CONFIG, 0x80); 1487 } 1488 1489 /* ... disable power-on abnormal beep */ 1490 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80); 1491 1492 /* disable the global beep (not done by hard reset) */ 1493 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]); 1494 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef); 1495 1496 if (init) { 1497 /* Make sure monitoring is turned on for add-ons */ 1498 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG); 1499 if (tmp & 1) { 1500 w83791d_write(client, W83791D_REG_TEMP2_CONFIG, 1501 tmp & 0xfe); 1502 } 1503 1504 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG); 1505 if (tmp & 1) { 1506 w83791d_write(client, W83791D_REG_TEMP3_CONFIG, 1507 tmp & 0xfe); 1508 } 1509 1510 /* Start monitoring */ 1511 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7; 1512 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01); 1513 } 1514 } 1515 1516 data->vrm = vid_which_vrm(); 1517 } 1518 1519 static struct w83791d_data *w83791d_update_device(struct device *dev) 1520 { 1521 struct i2c_client *client = to_i2c_client(dev); 1522 struct w83791d_data *data = i2c_get_clientdata(client); 1523 int i, j; 1524 u8 reg_array_tmp[3]; 1525 u8 vbat_reg; 1526 1527 mutex_lock(&data->update_lock); 1528 1529 if (time_after(jiffies, data->last_updated + (HZ * 3)) 1530 || !data->valid) { 1531 dev_dbg(dev, "Starting w83791d device update\n"); 1532 1533 /* Update the voltages measured value and limits */ 1534 for (i = 0; i < NUMBER_OF_VIN; i++) { 1535 data->in[i] = w83791d_read(client, 1536 W83791D_REG_IN[i]); 1537 data->in_max[i] = w83791d_read(client, 1538 W83791D_REG_IN_MAX[i]); 1539 data->in_min[i] = w83791d_read(client, 1540 W83791D_REG_IN_MIN[i]); 1541 } 1542 1543 /* Update the fan counts and limits */ 1544 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1545 /* Update the Fan measured value and limits */ 1546 data->fan[i] = w83791d_read(client, 1547 W83791D_REG_FAN[i]); 1548 data->fan_min[i] = w83791d_read(client, 1549 W83791D_REG_FAN_MIN[i]); 1550 } 1551 1552 /* Update the fan divisor */ 1553 for (i = 0; i < 3; i++) { 1554 reg_array_tmp[i] = w83791d_read(client, 1555 W83791D_REG_FAN_DIV[i]); 1556 } 1557 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03; 1558 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03; 1559 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03; 1560 data->fan_div[3] = reg_array_tmp[2] & 0x07; 1561 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07; 1562 1563 /* 1564 * The fan divisor for fans 0-2 get bit 2 from 1565 * bits 5-7 respectively of vbat register 1566 */ 1567 vbat_reg = w83791d_read(client, W83791D_REG_VBAT); 1568 for (i = 0; i < 3; i++) 1569 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04; 1570 1571 /* Update PWM duty cycle */ 1572 for (i = 0; i < NUMBER_OF_PWM; i++) { 1573 data->pwm[i] = w83791d_read(client, 1574 W83791D_REG_PWM[i]); 1575 } 1576 1577 /* Update PWM enable status */ 1578 for (i = 0; i < 2; i++) { 1579 reg_array_tmp[i] = w83791d_read(client, 1580 W83791D_REG_FAN_CFG[i]); 1581 } 1582 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03; 1583 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03; 1584 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03; 1585 1586 /* Update PWM target temperature */ 1587 for (i = 0; i < 3; i++) { 1588 data->temp_target[i] = w83791d_read(client, 1589 W83791D_REG_TEMP_TARGET[i]) & 0x7f; 1590 } 1591 1592 /* Update PWM temperature tolerance */ 1593 for (i = 0; i < 2; i++) { 1594 reg_array_tmp[i] = w83791d_read(client, 1595 W83791D_REG_TEMP_TOL[i]); 1596 } 1597 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f; 1598 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f; 1599 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f; 1600 1601 /* Update the first temperature sensor */ 1602 for (i = 0; i < 3; i++) { 1603 data->temp1[i] = w83791d_read(client, 1604 W83791D_REG_TEMP1[i]); 1605 } 1606 1607 /* Update the rest of the temperature sensors */ 1608 for (i = 0; i < 2; i++) { 1609 for (j = 0; j < 3; j++) { 1610 data->temp_add[i][j] = 1611 (w83791d_read(client, 1612 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) | 1613 w83791d_read(client, 1614 W83791D_REG_TEMP_ADD[i][j * 2 + 1]); 1615 } 1616 } 1617 1618 /* Update the realtime status */ 1619 data->alarms = 1620 w83791d_read(client, W83791D_REG_ALARM1) + 1621 (w83791d_read(client, W83791D_REG_ALARM2) << 8) + 1622 (w83791d_read(client, W83791D_REG_ALARM3) << 16); 1623 1624 /* Update the beep configuration information */ 1625 data->beep_mask = 1626 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) + 1627 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) + 1628 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16); 1629 1630 /* Extract global beep enable flag */ 1631 data->beep_enable = 1632 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01; 1633 1634 /* Update the cpu voltage information */ 1635 i = w83791d_read(client, W83791D_REG_VID_FANDIV); 1636 data->vid = i & 0x0f; 1637 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01) 1638 << 4; 1639 1640 data->last_updated = jiffies; 1641 data->valid = 1; 1642 } 1643 1644 mutex_unlock(&data->update_lock); 1645 1646 #ifdef DEBUG 1647 w83791d_print_debug(data, dev); 1648 #endif 1649 1650 return data; 1651 } 1652 1653 #ifdef DEBUG 1654 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev) 1655 { 1656 int i = 0, j = 0; 1657 1658 dev_dbg(dev, "======Start of w83791d debug values======\n"); 1659 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN); 1660 for (i = 0; i < NUMBER_OF_VIN; i++) { 1661 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]); 1662 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]); 1663 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]); 1664 } 1665 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN); 1666 for (i = 0; i < NUMBER_OF_FANIN; i++) { 1667 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]); 1668 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]); 1669 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]); 1670 } 1671 1672 /* 1673 * temperature math is signed, but only print out the 1674 * bits that matter 1675 */ 1676 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN); 1677 for (i = 0; i < 3; i++) 1678 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]); 1679 for (i = 0; i < 2; i++) { 1680 for (j = 0; j < 3; j++) { 1681 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j, 1682 (u16) data->temp_add[i][j]); 1683 } 1684 } 1685 1686 dev_dbg(dev, "Misc Information: ===>\n"); 1687 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms); 1688 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask); 1689 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable); 1690 dev_dbg(dev, "vid is: 0x%02x\n", data->vid); 1691 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm); 1692 dev_dbg(dev, "=======End of w83791d debug values========\n"); 1693 dev_dbg(dev, "\n"); 1694 } 1695 #endif 1696 1697 module_i2c_driver(w83791d_driver); 1698 1699 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>"); 1700 MODULE_DESCRIPTION("W83791D driver"); 1701 MODULE_LICENSE("GPL"); 1702