xref: /openbmc/linux/drivers/hwmon/w83627ehf.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  w83627ehf - Driver for the hardware monitoring functionality of
4  *		the Winbond W83627EHF Super-I/O chip
5  *  Copyright (C) 2005-2012  Jean Delvare <jdelvare@suse.de>
6  *  Copyright (C) 2006  Yuan Mu (Winbond),
7  *			Rudolf Marek <r.marek@assembler.cz>
8  *			David Hubbard <david.c.hubbard@gmail.com>
9  *			Daniel J Blueman <daniel.blueman@gmail.com>
10  *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
11  *
12  *  Shamelessly ripped from the w83627hf driver
13  *  Copyright (C) 2003  Mark Studebaker
14  *
15  *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
16  *  in testing and debugging this driver.
17  *
18  *  This driver also supports the W83627EHG, which is the lead-free
19  *  version of the W83627EHF.
20  *
21  *  Supports the following chips:
22  *
23  *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
24  *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
25  *					       0x8860 0xa1
26  *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
27  *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
28  *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
29  *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
30  *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/jiffies.h>
39 #include <linux/platform_device.h>
40 #include <linux/hwmon.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/hwmon-vid.h>
43 #include <linux/err.h>
44 #include <linux/mutex.h>
45 #include <linux/acpi.h>
46 #include <linux/io.h>
47 #include "lm75.h"
48 
49 enum kinds {
50 	w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
51 	w83667hg, w83667hg_b,
52 };
53 
54 /* used to set data->name = w83627ehf_device_names[data->sio_kind] */
55 static const char * const w83627ehf_device_names[] = {
56 	"w83627ehf",
57 	"w83627dhg",
58 	"w83627dhg",
59 	"w83627uhg",
60 	"w83667hg",
61 	"w83667hg",
62 };
63 
64 static unsigned short force_id;
65 module_param(force_id, ushort, 0);
66 MODULE_PARM_DESC(force_id, "Override the detected device ID");
67 
68 #define DRVNAME "w83627ehf"
69 
70 /*
71  * Super-I/O constants and functions
72  */
73 
74 #define W83627EHF_LD_HWM	0x0b
75 #define W83667HG_LD_VID		0x0d
76 
77 #define SIO_REG_LDSEL		0x07	/* Logical device select */
78 #define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
79 #define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
80 #define SIO_REG_ENABLE		0x30	/* Logical device enable */
81 #define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
82 #define SIO_REG_VID_CTRL	0xF0	/* VID control */
83 #define SIO_REG_VID_DATA	0xF1	/* VID data */
84 
85 #define SIO_W83627EHF_ID	0x8850
86 #define SIO_W83627EHG_ID	0x8860
87 #define SIO_W83627DHG_ID	0xa020
88 #define SIO_W83627DHG_P_ID	0xb070
89 #define SIO_W83627UHG_ID	0xa230
90 #define SIO_W83667HG_ID		0xa510
91 #define SIO_W83667HG_B_ID	0xb350
92 #define SIO_ID_MASK		0xFFF0
93 
94 static inline void
95 superio_outb(int ioreg, int reg, int val)
96 {
97 	outb(reg, ioreg);
98 	outb(val, ioreg + 1);
99 }
100 
101 static inline int
102 superio_inb(int ioreg, int reg)
103 {
104 	outb(reg, ioreg);
105 	return inb(ioreg + 1);
106 }
107 
108 static inline void
109 superio_select(int ioreg, int ld)
110 {
111 	outb(SIO_REG_LDSEL, ioreg);
112 	outb(ld, ioreg + 1);
113 }
114 
115 static inline int
116 superio_enter(int ioreg)
117 {
118 	if (!request_muxed_region(ioreg, 2, DRVNAME))
119 		return -EBUSY;
120 
121 	outb(0x87, ioreg);
122 	outb(0x87, ioreg);
123 
124 	return 0;
125 }
126 
127 static inline void
128 superio_exit(int ioreg)
129 {
130 	outb(0xaa, ioreg);
131 	outb(0x02, ioreg);
132 	outb(0x02, ioreg + 1);
133 	release_region(ioreg, 2);
134 }
135 
136 /*
137  * ISA constants
138  */
139 
140 #define IOREGION_ALIGNMENT	(~7)
141 #define IOREGION_OFFSET		5
142 #define IOREGION_LENGTH		2
143 #define ADDR_REG_OFFSET		0
144 #define DATA_REG_OFFSET		1
145 
146 #define W83627EHF_REG_BANK		0x4E
147 #define W83627EHF_REG_CONFIG		0x40
148 
149 /*
150  * Not currently used:
151  * REG_MAN_ID has the value 0x5ca3 for all supported chips.
152  * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
153  * REG_MAN_ID is at port 0x4f
154  * REG_CHIP_ID is at port 0x58
155  */
156 
157 static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
158 static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
159 
160 /* The W83627EHF registers for nr=7,8,9 are in bank 5 */
161 #define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
162 					 (0x554 + (((nr) - 7) * 2)))
163 #define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
164 					 (0x555 + (((nr) - 7) * 2)))
165 #define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
166 					 (0x550 + (nr) - 7))
167 
168 static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
169 static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
170 static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
171 static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
172 
173 /* Fan clock dividers are spread over the following five registers */
174 #define W83627EHF_REG_FANDIV1		0x47
175 #define W83627EHF_REG_FANDIV2		0x4B
176 #define W83627EHF_REG_VBAT		0x5D
177 #define W83627EHF_REG_DIODE		0x59
178 #define W83627EHF_REG_SMI_OVT		0x4C
179 
180 #define W83627EHF_REG_ALARM1		0x459
181 #define W83627EHF_REG_ALARM2		0x45A
182 #define W83627EHF_REG_ALARM3		0x45B
183 
184 #define W83627EHF_REG_CASEOPEN_DET	0x42 /* SMI STATUS #2 */
185 #define W83627EHF_REG_CASEOPEN_CLR	0x46 /* SMI MASK #3 */
186 
187 /* SmartFan registers */
188 #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
189 #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
190 
191 /* DC or PWM output fan configuration */
192 static const u8 W83627EHF_REG_PWM_ENABLE[] = {
193 	0x04,			/* SYS FAN0 output mode and PWM mode */
194 	0x04,			/* CPU FAN0 output mode and PWM mode */
195 	0x12,			/* AUX FAN mode */
196 	0x62,			/* CPU FAN1 mode */
197 };
198 
199 static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
200 static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
201 
202 /* FAN Duty Cycle, be used to control */
203 static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
204 static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
205 static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
206 
207 /* Advanced Fan control, some values are common for all fans */
208 static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
209 static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
210 static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
211 
212 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
213 						= { 0xff, 0x67, 0xff, 0x69 };
214 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
215 						= { 0xff, 0x68, 0xff, 0x6a };
216 
217 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
218 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
219 						= { 0x68, 0x6a, 0x6c };
220 
221 static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
222 
223 static const char *const w83667hg_b_temp_label[] = {
224 	"SYSTIN",
225 	"CPUTIN",
226 	"AUXTIN",
227 	"AMDTSI",
228 	"PECI Agent 1",
229 	"PECI Agent 2",
230 	"PECI Agent 3",
231 	"PECI Agent 4"
232 };
233 
234 #define NUM_REG_TEMP	ARRAY_SIZE(W83627EHF_REG_TEMP)
235 
236 static int is_word_sized(u16 reg)
237 {
238 	return ((((reg & 0xff00) == 0x100
239 	      || (reg & 0xff00) == 0x200)
240 	     && ((reg & 0x00ff) == 0x50
241 	      || (reg & 0x00ff) == 0x53
242 	      || (reg & 0x00ff) == 0x55))
243 	     || (reg & 0xfff0) == 0x630
244 	     || reg == 0x640 || reg == 0x642
245 	     || ((reg & 0xfff0) == 0x650
246 		 && (reg & 0x000f) >= 0x06)
247 	     || reg == 0x73 || reg == 0x75 || reg == 0x77
248 		);
249 }
250 
251 /*
252  * Conversions
253  */
254 
255 /* 1 is PWM mode, output in ms */
256 static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
257 {
258 	return mode ? 100 * reg : 400 * reg;
259 }
260 
261 static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
262 {
263 	return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
264 			 1, 255);
265 }
266 
267 static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
268 {
269 	if (reg == 0 || reg == 255)
270 		return 0;
271 	return 1350000U / (reg << divreg);
272 }
273 
274 static inline unsigned int
275 div_from_reg(u8 reg)
276 {
277 	return 1 << reg;
278 }
279 
280 /*
281  * Some of the voltage inputs have internal scaling, the tables below
282  * contain 8 (the ADC LSB in mV) * scaling factor * 100
283  */
284 static const u16 scale_in_common[10] = {
285 	800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
286 };
287 static const u16 scale_in_w83627uhg[9] = {
288 	800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
289 };
290 
291 static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
292 {
293 	return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
294 }
295 
296 static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
297 {
298 	return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
299 }
300 
301 /*
302  * Data structures and manipulation thereof
303  */
304 
305 struct w83627ehf_data {
306 	int addr;	/* IO base of hw monitor block */
307 	const char *name;
308 
309 	struct mutex lock;
310 
311 	u16 reg_temp[NUM_REG_TEMP];
312 	u16 reg_temp_over[NUM_REG_TEMP];
313 	u16 reg_temp_hyst[NUM_REG_TEMP];
314 	u16 reg_temp_config[NUM_REG_TEMP];
315 	u8 temp_src[NUM_REG_TEMP];
316 	const char * const *temp_label;
317 
318 	const u16 *REG_FAN_MAX_OUTPUT;
319 	const u16 *REG_FAN_STEP_OUTPUT;
320 	const u16 *scale_in;
321 
322 	struct mutex update_lock;
323 	char valid;		/* !=0 if following fields are valid */
324 	unsigned long last_updated;	/* In jiffies */
325 
326 	/* Register values */
327 	u8 bank;		/* current register bank */
328 	u8 in_num;		/* number of in inputs we have */
329 	u8 in[10];		/* Register value */
330 	u8 in_max[10];		/* Register value */
331 	u8 in_min[10];		/* Register value */
332 	unsigned int rpm[5];
333 	u16 fan_min[5];
334 	u8 fan_div[5];
335 	u8 has_fan;		/* some fan inputs can be disabled */
336 	u8 has_fan_min;		/* some fans don't have min register */
337 	u8 temp_type[3];
338 	s8 temp_offset[3];
339 	s16 temp[9];
340 	s16 temp_max[9];
341 	s16 temp_max_hyst[9];
342 	u32 alarms;
343 	u8 caseopen;
344 
345 	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
346 	u8 pwm_enable[4]; /* 1->manual
347 			   * 2->thermal cruise mode (also called SmartFan I)
348 			   * 3->fan speed cruise mode
349 			   * 4->variable thermal cruise (also called
350 			   * SmartFan III)
351 			   * 5->enhanced variable thermal cruise (also called
352 			   * SmartFan IV)
353 			   */
354 	u8 pwm_enable_orig[4];	/* original value of pwm_enable */
355 	u8 pwm_num;		/* number of pwm */
356 	u8 pwm[4];
357 	u8 target_temp[4];
358 	u8 tolerance[4];
359 
360 	u8 fan_start_output[4]; /* minimum fan speed when spinning up */
361 	u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
362 	u8 fan_stop_time[4]; /* time at minimum before disabling fan */
363 	u8 fan_max_output[4]; /* maximum fan speed */
364 	u8 fan_step_output[4]; /* rate of change output value */
365 
366 	u8 vid;
367 	u8 vrm;
368 
369 	u16 have_temp;
370 	u16 have_temp_offset;
371 	u8 in6_skip:1;
372 	u8 temp3_val_only:1;
373 	u8 have_vid:1;
374 
375 #ifdef CONFIG_PM
376 	/* Remember extra register values over suspend/resume */
377 	u8 vbat;
378 	u8 fandiv1;
379 	u8 fandiv2;
380 #endif
381 };
382 
383 struct w83627ehf_sio_data {
384 	int sioreg;
385 	enum kinds kind;
386 };
387 
388 /*
389  * On older chips, only registers 0x50-0x5f are banked.
390  * On more recent chips, all registers are banked.
391  * Assume that is the case and set the bank number for each access.
392  * Cache the bank number so it only needs to be set if it changes.
393  */
394 static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
395 {
396 	u8 bank = reg >> 8;
397 	if (data->bank != bank) {
398 		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
399 		outb_p(bank, data->addr + DATA_REG_OFFSET);
400 		data->bank = bank;
401 	}
402 }
403 
404 static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
405 {
406 	int res, word_sized = is_word_sized(reg);
407 
408 	mutex_lock(&data->lock);
409 
410 	w83627ehf_set_bank(data, reg);
411 	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
412 	res = inb_p(data->addr + DATA_REG_OFFSET);
413 	if (word_sized) {
414 		outb_p((reg & 0xff) + 1,
415 		       data->addr + ADDR_REG_OFFSET);
416 		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
417 	}
418 
419 	mutex_unlock(&data->lock);
420 	return res;
421 }
422 
423 static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
424 				 u16 value)
425 {
426 	int word_sized = is_word_sized(reg);
427 
428 	mutex_lock(&data->lock);
429 
430 	w83627ehf_set_bank(data, reg);
431 	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
432 	if (word_sized) {
433 		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
434 		outb_p((reg & 0xff) + 1,
435 		       data->addr + ADDR_REG_OFFSET);
436 	}
437 	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
438 
439 	mutex_unlock(&data->lock);
440 	return 0;
441 }
442 
443 /* We left-align 8-bit temperature values to make the code simpler */
444 static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
445 {
446 	u16 res;
447 
448 	res = w83627ehf_read_value(data, reg);
449 	if (!is_word_sized(reg))
450 		res <<= 8;
451 
452 	return res;
453 }
454 
455 static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
456 				       u16 value)
457 {
458 	if (!is_word_sized(reg))
459 		value >>= 8;
460 	return w83627ehf_write_value(data, reg, value);
461 }
462 
463 /* This function assumes that the caller holds data->update_lock */
464 static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
465 {
466 	u8 reg;
467 
468 	switch (nr) {
469 	case 0:
470 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
471 		    | ((data->fan_div[0] & 0x03) << 4);
472 		/* fan5 input control bit is write only, compute the value */
473 		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
474 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
475 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
476 		    | ((data->fan_div[0] & 0x04) << 3);
477 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
478 		break;
479 	case 1:
480 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
481 		    | ((data->fan_div[1] & 0x03) << 6);
482 		/* fan5 input control bit is write only, compute the value */
483 		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
484 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
485 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
486 		    | ((data->fan_div[1] & 0x04) << 4);
487 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
488 		break;
489 	case 2:
490 		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
491 		    | ((data->fan_div[2] & 0x03) << 6);
492 		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
493 		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
494 		    | ((data->fan_div[2] & 0x04) << 5);
495 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
496 		break;
497 	case 3:
498 		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
499 		    | (data->fan_div[3] & 0x03);
500 		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
501 		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
502 		    | ((data->fan_div[3] & 0x04) << 5);
503 		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
504 		break;
505 	case 4:
506 		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
507 		    | ((data->fan_div[4] & 0x03) << 2)
508 		    | ((data->fan_div[4] & 0x04) << 5);
509 		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
510 		break;
511 	}
512 }
513 
514 static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
515 {
516 	int i;
517 
518 	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
519 	data->fan_div[0] = (i >> 4) & 0x03;
520 	data->fan_div[1] = (i >> 6) & 0x03;
521 	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
522 	data->fan_div[2] = (i >> 6) & 0x03;
523 	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
524 	data->fan_div[0] |= (i >> 3) & 0x04;
525 	data->fan_div[1] |= (i >> 4) & 0x04;
526 	data->fan_div[2] |= (i >> 5) & 0x04;
527 	if (data->has_fan & ((1 << 3) | (1 << 4))) {
528 		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
529 		data->fan_div[3] = i & 0x03;
530 		data->fan_div[4] = ((i >> 2) & 0x03)
531 				 | ((i >> 5) & 0x04);
532 	}
533 	if (data->has_fan & (1 << 3)) {
534 		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
535 		data->fan_div[3] |= (i >> 5) & 0x04;
536 	}
537 }
538 
539 static void w83627ehf_update_pwm(struct w83627ehf_data *data)
540 {
541 	int i;
542 	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
543 
544 	for (i = 0; i < data->pwm_num; i++) {
545 		if (!(data->has_fan & (1 << i)))
546 			continue;
547 
548 		/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
549 		if (i != 1) {
550 			pwmcfg = w83627ehf_read_value(data,
551 					W83627EHF_REG_PWM_ENABLE[i]);
552 			tolerance = w83627ehf_read_value(data,
553 					W83627EHF_REG_TOLERANCE[i]);
554 		}
555 		data->pwm_mode[i] =
556 			((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
557 		data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
558 				       & 3) + 1;
559 		data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
560 
561 		data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
562 	}
563 }
564 
565 static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
566 {
567 	struct w83627ehf_data *data = dev_get_drvdata(dev);
568 	int i;
569 
570 	mutex_lock(&data->update_lock);
571 
572 	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
573 	 || !data->valid) {
574 		/* Fan clock dividers */
575 		w83627ehf_update_fan_div(data);
576 
577 		/* Measured voltages and limits */
578 		for (i = 0; i < data->in_num; i++) {
579 			if ((i == 6) && data->in6_skip)
580 				continue;
581 
582 			data->in[i] = w83627ehf_read_value(data,
583 				      W83627EHF_REG_IN(i));
584 			data->in_min[i] = w83627ehf_read_value(data,
585 					  W83627EHF_REG_IN_MIN(i));
586 			data->in_max[i] = w83627ehf_read_value(data,
587 					  W83627EHF_REG_IN_MAX(i));
588 		}
589 
590 		/* Measured fan speeds and limits */
591 		for (i = 0; i < 5; i++) {
592 			u16 reg;
593 
594 			if (!(data->has_fan & (1 << i)))
595 				continue;
596 
597 			reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
598 			data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
599 
600 			if (data->has_fan_min & (1 << i))
601 				data->fan_min[i] = w83627ehf_read_value(data,
602 					   W83627EHF_REG_FAN_MIN[i]);
603 
604 			/*
605 			 * If we failed to measure the fan speed and clock
606 			 * divider can be increased, let's try that for next
607 			 * time
608 			 */
609 			if (reg >= 0xff && data->fan_div[i] < 0x07) {
610 				dev_dbg(dev,
611 					"Increasing fan%d clock divider from %u to %u\n",
612 					i + 1, div_from_reg(data->fan_div[i]),
613 					div_from_reg(data->fan_div[i] + 1));
614 				data->fan_div[i]++;
615 				w83627ehf_write_fan_div(data, i);
616 				/* Preserve min limit if possible */
617 				if ((data->has_fan_min & (1 << i))
618 				 && data->fan_min[i] >= 2
619 				 && data->fan_min[i] != 255)
620 					w83627ehf_write_value(data,
621 						W83627EHF_REG_FAN_MIN[i],
622 						(data->fan_min[i] /= 2));
623 			}
624 		}
625 
626 		w83627ehf_update_pwm(data);
627 
628 		for (i = 0; i < data->pwm_num; i++) {
629 			if (!(data->has_fan & (1 << i)))
630 				continue;
631 
632 			data->fan_start_output[i] =
633 			  w83627ehf_read_value(data,
634 					     W83627EHF_REG_FAN_START_OUTPUT[i]);
635 			data->fan_stop_output[i] =
636 			  w83627ehf_read_value(data,
637 					     W83627EHF_REG_FAN_STOP_OUTPUT[i]);
638 			data->fan_stop_time[i] =
639 			  w83627ehf_read_value(data,
640 					       W83627EHF_REG_FAN_STOP_TIME[i]);
641 
642 			if (data->REG_FAN_MAX_OUTPUT &&
643 			    data->REG_FAN_MAX_OUTPUT[i] != 0xff)
644 				data->fan_max_output[i] =
645 				  w83627ehf_read_value(data,
646 						data->REG_FAN_MAX_OUTPUT[i]);
647 
648 			if (data->REG_FAN_STEP_OUTPUT &&
649 			    data->REG_FAN_STEP_OUTPUT[i] != 0xff)
650 				data->fan_step_output[i] =
651 				  w83627ehf_read_value(data,
652 						data->REG_FAN_STEP_OUTPUT[i]);
653 
654 			data->target_temp[i] =
655 				w83627ehf_read_value(data,
656 					W83627EHF_REG_TARGET[i]) &
657 					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
658 		}
659 
660 		/* Measured temperatures and limits */
661 		for (i = 0; i < NUM_REG_TEMP; i++) {
662 			if (!(data->have_temp & (1 << i)))
663 				continue;
664 			data->temp[i] = w83627ehf_read_temp(data,
665 						data->reg_temp[i]);
666 			if (data->reg_temp_over[i])
667 				data->temp_max[i]
668 				  = w83627ehf_read_temp(data,
669 						data->reg_temp_over[i]);
670 			if (data->reg_temp_hyst[i])
671 				data->temp_max_hyst[i]
672 				  = w83627ehf_read_temp(data,
673 						data->reg_temp_hyst[i]);
674 			if (i > 2)
675 				continue;
676 			if (data->have_temp_offset & (1 << i))
677 				data->temp_offset[i]
678 				  = w83627ehf_read_value(data,
679 						W83627EHF_REG_TEMP_OFFSET[i]);
680 		}
681 
682 		data->alarms = w83627ehf_read_value(data,
683 					W83627EHF_REG_ALARM1) |
684 			       (w83627ehf_read_value(data,
685 					W83627EHF_REG_ALARM2) << 8) |
686 			       (w83627ehf_read_value(data,
687 					W83627EHF_REG_ALARM3) << 16);
688 
689 		data->caseopen = w83627ehf_read_value(data,
690 						W83627EHF_REG_CASEOPEN_DET);
691 
692 		data->last_updated = jiffies;
693 		data->valid = 1;
694 	}
695 
696 	mutex_unlock(&data->update_lock);
697 	return data;
698 }
699 
700 #define store_in_reg(REG, reg) \
701 static int \
702 store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
703 	       long val) \
704 { \
705 	if (val < 0) \
706 		return -EINVAL; \
707 	mutex_lock(&data->update_lock); \
708 	data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
709 	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
710 			      data->in_##reg[channel]); \
711 	mutex_unlock(&data->update_lock); \
712 	return 0; \
713 }
714 
715 store_in_reg(MIN, min)
716 store_in_reg(MAX, max)
717 
718 static int
719 store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
720 	      long val)
721 {
722 	unsigned int reg;
723 	u8 new_div;
724 
725 	if (val < 0)
726 		return -EINVAL;
727 
728 	mutex_lock(&data->update_lock);
729 	if (!val) {
730 		/* No min limit, alarm disabled */
731 		data->fan_min[channel] = 255;
732 		new_div = data->fan_div[channel]; /* No change */
733 		dev_info(dev, "fan%u low limit and alarm disabled\n",
734 			 channel + 1);
735 	} else if ((reg = 1350000U / val) >= 128 * 255) {
736 		/*
737 		 * Speed below this value cannot possibly be represented,
738 		 * even with the highest divider (128)
739 		 */
740 		data->fan_min[channel] = 254;
741 		new_div = 7; /* 128 == (1 << 7) */
742 		dev_warn(dev,
743 			 "fan%u low limit %lu below minimum %u, set to minimum\n",
744 			 channel + 1, val, fan_from_reg8(254, 7));
745 	} else if (!reg) {
746 		/*
747 		 * Speed above this value cannot possibly be represented,
748 		 * even with the lowest divider (1)
749 		 */
750 		data->fan_min[channel] = 1;
751 		new_div = 0; /* 1 == (1 << 0) */
752 		dev_warn(dev,
753 			 "fan%u low limit %lu above maximum %u, set to maximum\n",
754 			 channel + 1, val, fan_from_reg8(1, 0));
755 	} else {
756 		/*
757 		 * Automatically pick the best divider, i.e. the one such
758 		 * that the min limit will correspond to a register value
759 		 * in the 96..192 range
760 		 */
761 		new_div = 0;
762 		while (reg > 192 && new_div < 7) {
763 			reg >>= 1;
764 			new_div++;
765 		}
766 		data->fan_min[channel] = reg;
767 	}
768 
769 	/*
770 	 * Write both the fan clock divider (if it changed) and the new
771 	 * fan min (unconditionally)
772 	 */
773 	if (new_div != data->fan_div[channel]) {
774 		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
775 			channel + 1, div_from_reg(data->fan_div[channel]),
776 			div_from_reg(new_div));
777 		data->fan_div[channel] = new_div;
778 		w83627ehf_write_fan_div(data, channel);
779 		/* Give the chip time to sample a new speed value */
780 		data->last_updated = jiffies;
781 	}
782 
783 	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
784 			      data->fan_min[channel]);
785 	mutex_unlock(&data->update_lock);
786 
787 	return 0;
788 }
789 
790 #define store_temp_reg(addr, reg) \
791 static int \
792 store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
793 	    long val) \
794 { \
795 	mutex_lock(&data->update_lock); \
796 	data->reg[channel] = LM75_TEMP_TO_REG(val); \
797 	w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
798 	mutex_unlock(&data->update_lock); \
799 	return 0; \
800 }
801 store_temp_reg(reg_temp_over, temp_max);
802 store_temp_reg(reg_temp_hyst, temp_max_hyst);
803 
804 static int
805 store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
806 		  long val)
807 {
808 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
809 
810 	mutex_lock(&data->update_lock);
811 	data->temp_offset[channel] = val;
812 	w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
813 	mutex_unlock(&data->update_lock);
814 	return 0;
815 }
816 
817 static int
818 store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
819 	       long val)
820 {
821 	u16 reg;
822 
823 	if (val < 0 || val > 1)
824 		return -EINVAL;
825 
826 	mutex_lock(&data->update_lock);
827 	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
828 	data->pwm_mode[channel] = val;
829 	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
830 	if (!val)
831 		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
832 	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
833 	mutex_unlock(&data->update_lock);
834 	return 0;
835 }
836 
837 static int
838 store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
839 	  long val)
840 {
841 	val = clamp_val(val, 0, 255);
842 
843 	mutex_lock(&data->update_lock);
844 	data->pwm[channel] = val;
845 	w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
846 	mutex_unlock(&data->update_lock);
847 	return 0;
848 }
849 
850 static int
851 store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
852 		 long val)
853 {
854 	u16 reg;
855 
856 	if (!val || val < 0 ||
857 	    (val > 4 && val != data->pwm_enable_orig[channel]))
858 		return -EINVAL;
859 
860 	mutex_lock(&data->update_lock);
861 	data->pwm_enable[channel] = val;
862 	reg = w83627ehf_read_value(data,
863 				   W83627EHF_REG_PWM_ENABLE[channel]);
864 	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
865 	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
866 	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
867 			      reg);
868 	mutex_unlock(&data->update_lock);
869 	return 0;
870 }
871 
872 #define show_tol_temp(reg) \
873 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
874 				char *buf) \
875 { \
876 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
877 	struct sensor_device_attribute *sensor_attr = \
878 		to_sensor_dev_attr(attr); \
879 	int nr = sensor_attr->index; \
880 	return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
881 }
882 
883 show_tol_temp(tolerance)
884 show_tol_temp(target_temp)
885 
886 static ssize_t
887 store_target_temp(struct device *dev, struct device_attribute *attr,
888 			const char *buf, size_t count)
889 {
890 	struct w83627ehf_data *data = dev_get_drvdata(dev);
891 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
892 	int nr = sensor_attr->index;
893 	long val;
894 	int err;
895 
896 	err = kstrtol(buf, 10, &val);
897 	if (err < 0)
898 		return err;
899 
900 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
901 
902 	mutex_lock(&data->update_lock);
903 	data->target_temp[nr] = val;
904 	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
905 	mutex_unlock(&data->update_lock);
906 	return count;
907 }
908 
909 static ssize_t
910 store_tolerance(struct device *dev, struct device_attribute *attr,
911 			const char *buf, size_t count)
912 {
913 	struct w83627ehf_data *data = dev_get_drvdata(dev);
914 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
915 	int nr = sensor_attr->index;
916 	u16 reg;
917 	long val;
918 	int err;
919 
920 	err = kstrtol(buf, 10, &val);
921 	if (err < 0)
922 		return err;
923 
924 	/* Limit the temp to 0C - 15C */
925 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
926 
927 	mutex_lock(&data->update_lock);
928 	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
929 	if (nr == 1)
930 		reg = (reg & 0x0f) | (val << 4);
931 	else
932 		reg = (reg & 0xf0) | val;
933 	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
934 	data->tolerance[nr] = val;
935 	mutex_unlock(&data->update_lock);
936 	return count;
937 }
938 
939 static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
940 	    store_target_temp, 0);
941 static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
942 	    store_target_temp, 1);
943 static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
944 	    store_target_temp, 2);
945 static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
946 	    store_target_temp, 3);
947 
948 static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
949 	    store_tolerance, 0);
950 static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
951 	    store_tolerance, 1);
952 static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
953 	    store_tolerance, 2);
954 static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
955 	    store_tolerance, 3);
956 
957 /* Smart Fan registers */
958 
959 #define fan_functions(reg, REG) \
960 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
961 		       char *buf) \
962 { \
963 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
964 	struct sensor_device_attribute *sensor_attr = \
965 		to_sensor_dev_attr(attr); \
966 	int nr = sensor_attr->index; \
967 	return sprintf(buf, "%d\n", data->reg[nr]); \
968 } \
969 static ssize_t \
970 store_##reg(struct device *dev, struct device_attribute *attr, \
971 			    const char *buf, size_t count) \
972 { \
973 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
974 	struct sensor_device_attribute *sensor_attr = \
975 		to_sensor_dev_attr(attr); \
976 	int nr = sensor_attr->index; \
977 	unsigned long val; \
978 	int err; \
979 	err = kstrtoul(buf, 10, &val); \
980 	if (err < 0) \
981 		return err; \
982 	val = clamp_val(val, 1, 255); \
983 	mutex_lock(&data->update_lock); \
984 	data->reg[nr] = val; \
985 	w83627ehf_write_value(data, REG[nr], val); \
986 	mutex_unlock(&data->update_lock); \
987 	return count; \
988 }
989 
990 fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
991 fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
992 fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
993 fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
994 
995 #define fan_time_functions(reg, REG) \
996 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
997 				char *buf) \
998 { \
999 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
1000 	struct sensor_device_attribute *sensor_attr = \
1001 		to_sensor_dev_attr(attr); \
1002 	int nr = sensor_attr->index; \
1003 	return sprintf(buf, "%d\n", \
1004 			step_time_from_reg(data->reg[nr], \
1005 					   data->pwm_mode[nr])); \
1006 } \
1007 \
1008 static ssize_t \
1009 store_##reg(struct device *dev, struct device_attribute *attr, \
1010 			const char *buf, size_t count) \
1011 { \
1012 	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1013 	struct sensor_device_attribute *sensor_attr = \
1014 		to_sensor_dev_attr(attr); \
1015 	int nr = sensor_attr->index; \
1016 	unsigned long val; \
1017 	int err; \
1018 	err = kstrtoul(buf, 10, &val); \
1019 	if (err < 0) \
1020 		return err; \
1021 	val = step_time_to_reg(val, data->pwm_mode[nr]); \
1022 	mutex_lock(&data->update_lock); \
1023 	data->reg[nr] = val; \
1024 	w83627ehf_write_value(data, REG[nr], val); \
1025 	mutex_unlock(&data->update_lock); \
1026 	return count; \
1027 } \
1028 
1029 fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1030 
1031 static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1032 	    store_fan_stop_time, 3);
1033 static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1034 	    store_fan_start_output, 3);
1035 static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1036 	    store_fan_stop_output, 3);
1037 static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1038 	    store_fan_max_output, 3);
1039 static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1040 	    store_fan_step_output, 3);
1041 
1042 static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1043 	    store_fan_stop_time, 2);
1044 static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1045 	    store_fan_start_output, 2);
1046 static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1047 		    store_fan_stop_output, 2);
1048 
1049 static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1050 	    store_fan_stop_time, 0);
1051 static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1052 	    store_fan_stop_time, 1);
1053 static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1054 	    store_fan_start_output, 0);
1055 static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1056 	    store_fan_start_output, 1);
1057 static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1058 	    store_fan_stop_output, 0);
1059 static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1060 	    store_fan_stop_output, 1);
1061 
1062 
1063 /*
1064  * pwm1 and pwm3 don't support max and step settings on all chips.
1065  * Need to check support while generating/removing attribute files.
1066  */
1067 static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1068 	    store_fan_max_output, 0);
1069 static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1070 	    store_fan_step_output, 0);
1071 static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1072 	    store_fan_max_output, 1);
1073 static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1074 	    store_fan_step_output, 1);
1075 static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1076 	    store_fan_max_output, 2);
1077 static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1078 	    store_fan_step_output, 2);
1079 
1080 static ssize_t
1081 cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1082 {
1083 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1084 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1085 }
1086 DEVICE_ATTR_RO(cpu0_vid);
1087 
1088 
1089 /* Case open detection */
1090 static int
1091 clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1092 	       long val)
1093 {
1094 	const u16 mask = 0x80;
1095 	u16 reg;
1096 
1097 	if (val != 0 || channel != 0)
1098 		return -EINVAL;
1099 
1100 	mutex_lock(&data->update_lock);
1101 	reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1102 	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1103 	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1104 	data->valid = 0;	/* Force cache refresh */
1105 	mutex_unlock(&data->update_lock);
1106 
1107 	return 0;
1108 }
1109 
1110 static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1111 				       struct attribute *a, int n)
1112 {
1113 	struct device *dev = container_of(kobj, struct device, kobj);
1114 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1115 	struct device_attribute *devattr;
1116 	struct sensor_device_attribute *sda;
1117 
1118 	devattr = container_of(a, struct device_attribute, attr);
1119 
1120 	/* Not sensor */
1121 	if (devattr->show == cpu0_vid_show && data->have_vid)
1122 		return a->mode;
1123 
1124 	sda = (struct sensor_device_attribute *)devattr;
1125 
1126 	if (sda->index < 2 &&
1127 		(devattr->show == show_fan_stop_time ||
1128 		 devattr->show == show_fan_start_output ||
1129 		 devattr->show == show_fan_stop_output))
1130 		return a->mode;
1131 
1132 	if (sda->index < 3 &&
1133 		(devattr->show == show_fan_max_output ||
1134 		 devattr->show == show_fan_step_output) &&
1135 		data->REG_FAN_STEP_OUTPUT &&
1136 		data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1137 		return a->mode;
1138 
1139 	/* if fan3 and fan4 are enabled create the files for them */
1140 	if (sda->index == 2 &&
1141 		(data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1142 		(devattr->show == show_fan_stop_time ||
1143 		 devattr->show == show_fan_start_output ||
1144 		 devattr->show == show_fan_stop_output))
1145 		return a->mode;
1146 
1147 	if (sda->index == 3 &&
1148 		(data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1149 		(devattr->show == show_fan_stop_time ||
1150 		 devattr->show == show_fan_start_output ||
1151 		 devattr->show == show_fan_stop_output ||
1152 		 devattr->show == show_fan_max_output ||
1153 		 devattr->show == show_fan_step_output))
1154 		return a->mode;
1155 
1156 	if ((devattr->show == show_target_temp ||
1157 	    devattr->show == show_tolerance) &&
1158 	    (data->has_fan & (1 << sda->index)) &&
1159 	    sda->index < data->pwm_num)
1160 		return a->mode;
1161 
1162 	return 0;
1163 }
1164 
1165 /* These groups handle non-standard attributes used in this device */
1166 static struct attribute *w83627ehf_attrs[] = {
1167 
1168 	&sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1169 	&sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1170 	&sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1171 	&sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1172 	&sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1173 	&sensor_dev_attr_pwm1_target.dev_attr.attr,
1174 	&sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1175 
1176 	&sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1177 	&sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1178 	&sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1179 	&sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1180 	&sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1181 	&sensor_dev_attr_pwm2_target.dev_attr.attr,
1182 	&sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1183 
1184 	&sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1185 	&sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1186 	&sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1187 	&sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1188 	&sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1189 	&sensor_dev_attr_pwm3_target.dev_attr.attr,
1190 	&sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1191 
1192 	&sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1193 	&sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1194 	&sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1195 	&sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1196 	&sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1197 	&sensor_dev_attr_pwm4_target.dev_attr.attr,
1198 	&sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1199 
1200 	&dev_attr_cpu0_vid.attr,
1201 	NULL
1202 };
1203 
1204 static const struct attribute_group w83627ehf_group = {
1205 	.attrs = w83627ehf_attrs,
1206 	.is_visible = w83627ehf_attrs_visible,
1207 };
1208 
1209 static const struct attribute_group *w83627ehf_groups[] = {
1210 	&w83627ehf_group,
1211 	NULL
1212 };
1213 
1214 /*
1215  * Driver and device management
1216  */
1217 
1218 /* Get the monitoring functions started */
1219 static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1220 						   enum kinds kind)
1221 {
1222 	int i;
1223 	u8 tmp, diode;
1224 
1225 	/* Start monitoring is needed */
1226 	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1227 	if (!(tmp & 0x01))
1228 		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1229 				      tmp | 0x01);
1230 
1231 	/* Enable temperature sensors if needed */
1232 	for (i = 0; i < NUM_REG_TEMP; i++) {
1233 		if (!(data->have_temp & (1 << i)))
1234 			continue;
1235 		if (!data->reg_temp_config[i])
1236 			continue;
1237 		tmp = w83627ehf_read_value(data,
1238 					   data->reg_temp_config[i]);
1239 		if (tmp & 0x01)
1240 			w83627ehf_write_value(data,
1241 					      data->reg_temp_config[i],
1242 					      tmp & 0xfe);
1243 	}
1244 
1245 	/* Enable VBAT monitoring if needed */
1246 	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1247 	if (!(tmp & 0x01))
1248 		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1249 
1250 	/* Get thermal sensor types */
1251 	switch (kind) {
1252 	case w83627ehf:
1253 		diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1254 		break;
1255 	case w83627uhg:
1256 		diode = 0x00;
1257 		break;
1258 	default:
1259 		diode = 0x70;
1260 	}
1261 	for (i = 0; i < 3; i++) {
1262 		const char *label = NULL;
1263 
1264 		if (data->temp_label)
1265 			label = data->temp_label[data->temp_src[i]];
1266 
1267 		/* Digital source overrides analog type */
1268 		if (label && strncmp(label, "PECI", 4) == 0)
1269 			data->temp_type[i] = 6;
1270 		else if (label && strncmp(label, "AMD", 3) == 0)
1271 			data->temp_type[i] = 5;
1272 		else if ((tmp & (0x02 << i)))
1273 			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1274 		else
1275 			data->temp_type[i] = 4; /* thermistor */
1276 	}
1277 }
1278 
1279 static void
1280 w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1281 {
1282 	int i;
1283 
1284 	for (i = 0; i < n_temp; i++) {
1285 		data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1286 		data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1287 		data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1288 		data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1289 	}
1290 }
1291 
1292 static void
1293 w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1294 			   struct w83627ehf_data *data)
1295 {
1296 	int fan3pin, fan4pin, fan5pin, regval;
1297 
1298 	/* The W83627UHG is simple, only two fan inputs, no config */
1299 	if (sio_data->kind == w83627uhg) {
1300 		data->has_fan = 0x03; /* fan1 and fan2 */
1301 		data->has_fan_min = 0x03;
1302 		return;
1303 	}
1304 
1305 	/* fan4 and fan5 share some pins with the GPIO and serial flash */
1306 	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1307 		fan3pin = 1;
1308 		fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1309 		fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1310 	} else {
1311 		fan3pin = 1;
1312 		fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1313 		fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1314 	}
1315 
1316 	data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1317 	data->has_fan |= (fan3pin << 2);
1318 	data->has_fan_min |= (fan3pin << 2);
1319 
1320 	/*
1321 	 * It looks like fan4 and fan5 pins can be alternatively used
1322 	 * as fan on/off switches, but fan5 control is write only :/
1323 	 * We assume that if the serial interface is disabled, designers
1324 	 * connected fan5 as input unless they are emitting log 1, which
1325 	 * is not the default.
1326 	 */
1327 	regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1328 	if ((regval & (1 << 2)) && fan4pin) {
1329 		data->has_fan |= (1 << 3);
1330 		data->has_fan_min |= (1 << 3);
1331 	}
1332 	if (!(regval & (1 << 1)) && fan5pin) {
1333 		data->has_fan |= (1 << 4);
1334 		data->has_fan_min |= (1 << 4);
1335 	}
1336 }
1337 
1338 static umode_t
1339 w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1340 		     u32 attr, int channel)
1341 {
1342 	const struct w83627ehf_data *data = drvdata;
1343 
1344 	switch (type) {
1345 	case hwmon_temp:
1346 		/* channel 0.., name 1.. */
1347 		if (!(data->have_temp & (1 << channel)))
1348 			return 0;
1349 		if (attr == hwmon_temp_input || attr == hwmon_temp_label)
1350 			return 0444;
1351 		if (channel == 2 && data->temp3_val_only)
1352 			return 0;
1353 		if (attr == hwmon_temp_max) {
1354 			if (data->reg_temp_over[channel])
1355 				return 0644;
1356 			else
1357 				return 0;
1358 		}
1359 		if (attr == hwmon_temp_max_hyst) {
1360 			if (data->reg_temp_hyst[channel])
1361 				return 0644;
1362 			else
1363 				return 0;
1364 		}
1365 		if (channel > 2)
1366 			return 0;
1367 		if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1368 			return 0444;
1369 		if (attr == hwmon_temp_offset) {
1370 			if (data->have_temp_offset & (1 << channel))
1371 				return 0644;
1372 			else
1373 				return 0;
1374 		}
1375 		break;
1376 
1377 	case hwmon_fan:
1378 		/* channel 0.., name 1.. */
1379 		if (!(data->has_fan & (1 << channel)))
1380 			return 0;
1381 		if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1382 			return 0444;
1383 		if (attr == hwmon_fan_div) {
1384 			return 0444;
1385 		}
1386 		if (attr == hwmon_fan_min) {
1387 			if (data->has_fan_min & (1 << channel))
1388 				return 0644;
1389 			else
1390 				return 0;
1391 		}
1392 		break;
1393 
1394 	case hwmon_in:
1395 		/* channel 0.., name 0.. */
1396 		if (channel >= data->in_num)
1397 			return 0;
1398 		if (channel == 6 && data->in6_skip)
1399 			return 0;
1400 		if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1401 			return 0444;
1402 		if (attr == hwmon_in_min || attr == hwmon_in_max)
1403 			return 0644;
1404 		break;
1405 
1406 	case hwmon_pwm:
1407 		/* channel 0.., name 1.. */
1408 		if (!(data->has_fan & (1 << channel)) ||
1409 		    channel >= data->pwm_num)
1410 			return 0;
1411 		if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1412 		    attr == hwmon_pwm_input)
1413 			return 0644;
1414 		break;
1415 
1416 	case hwmon_intrusion:
1417 		return 0644;
1418 
1419 	default: /* Shouldn't happen */
1420 		return 0;
1421 	}
1422 
1423 	return 0; /* Shouldn't happen */
1424 }
1425 
1426 static int
1427 w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1428 		       int channel, long *val)
1429 {
1430 	switch (attr) {
1431 	case hwmon_temp_input:
1432 		*val = LM75_TEMP_FROM_REG(data->temp[channel]);
1433 		return 0;
1434 	case hwmon_temp_max:
1435 		*val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1436 		return 0;
1437 	case hwmon_temp_max_hyst:
1438 		*val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1439 		return 0;
1440 	case hwmon_temp_offset:
1441 		*val = data->temp_offset[channel] * 1000;
1442 		return 0;
1443 	case hwmon_temp_type:
1444 		*val = (int)data->temp_type[channel];
1445 		return 0;
1446 	case hwmon_temp_alarm:
1447 		if (channel < 3) {
1448 			int bit[] = { 4, 5, 13 };
1449 			*val = (data->alarms >> bit[channel]) & 1;
1450 			return 0;
1451 		}
1452 		break;
1453 
1454 	default:
1455 		break;
1456 	}
1457 
1458 	return -EOPNOTSUPP;
1459 }
1460 
1461 static int
1462 w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1463 		     int channel, long *val)
1464 {
1465 	switch (attr) {
1466 	case hwmon_in_input:
1467 		*val = in_from_reg(data->in[channel], channel, data->scale_in);
1468 		return 0;
1469 	case hwmon_in_min:
1470 		*val = in_from_reg(data->in_min[channel], channel,
1471 				   data->scale_in);
1472 		return 0;
1473 	case hwmon_in_max:
1474 		*val = in_from_reg(data->in_max[channel], channel,
1475 				   data->scale_in);
1476 		return 0;
1477 	case hwmon_in_alarm:
1478 		if (channel < 10) {
1479 			int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1480 			*val = (data->alarms >> bit[channel]) & 1;
1481 			return 0;
1482 		}
1483 		break;
1484 	default:
1485 		break;
1486 	}
1487 	return -EOPNOTSUPP;
1488 }
1489 
1490 static int
1491 w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1492 		      int channel, long *val)
1493 {
1494 	switch (attr) {
1495 	case hwmon_fan_input:
1496 		*val = data->rpm[channel];
1497 		return 0;
1498 	case hwmon_fan_min:
1499 		*val = fan_from_reg8(data->fan_min[channel],
1500 				     data->fan_div[channel]);
1501 		return 0;
1502 	case hwmon_fan_div:
1503 		*val = div_from_reg(data->fan_div[channel]);
1504 		return 0;
1505 	case hwmon_fan_alarm:
1506 		if (channel < 5) {
1507 			int bit[] = { 6, 7, 11, 10, 23 };
1508 			*val = (data->alarms >> bit[channel]) & 1;
1509 			return 0;
1510 		}
1511 		break;
1512 	default:
1513 		break;
1514 	}
1515 	return -EOPNOTSUPP;
1516 }
1517 
1518 static int
1519 w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1520 		      int channel, long *val)
1521 {
1522 	switch (attr) {
1523 	case hwmon_pwm_input:
1524 		*val = data->pwm[channel];
1525 		return 0;
1526 	case hwmon_pwm_enable:
1527 		*val = data->pwm_enable[channel];
1528 		return 0;
1529 	case hwmon_pwm_mode:
1530 		*val = data->pwm_enable[channel];
1531 		return 0;
1532 	default:
1533 		break;
1534 	}
1535 	return -EOPNOTSUPP;
1536 }
1537 
1538 static int
1539 w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1540 			    int channel, long *val)
1541 {
1542 	if (attr != hwmon_intrusion_alarm || channel != 0)
1543 		return -EOPNOTSUPP; /* shouldn't happen */
1544 
1545 	*val = !!(data->caseopen & 0x10);
1546 	return 0;
1547 }
1548 
1549 static int
1550 w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1551 			u32 attr, int channel, long *val)
1552 {
1553 	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1554 
1555 	switch (type) {
1556 	case hwmon_fan:
1557 		return w83627ehf_do_read_fan(data, attr, channel, val);
1558 
1559 	case hwmon_in:
1560 		return w83627ehf_do_read_in(data, attr, channel, val);
1561 
1562 	case hwmon_pwm:
1563 		return w83627ehf_do_read_pwm(data, attr, channel, val);
1564 
1565 	case hwmon_temp:
1566 		return w83627ehf_do_read_temp(data, attr, channel, val);
1567 
1568 	case hwmon_intrusion:
1569 		return w83627ehf_do_read_intrusion(data, attr, channel, val);
1570 
1571 	default:
1572 		break;
1573 	}
1574 
1575 	return -EOPNOTSUPP;
1576 }
1577 
1578 static int
1579 w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1580 		      u32 attr, int channel, const char **str)
1581 {
1582 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1583 
1584 	switch (type) {
1585 	case hwmon_temp:
1586 		if (attr == hwmon_temp_label) {
1587 			*str = data->temp_label[data->temp_src[channel]];
1588 			return 0;
1589 		}
1590 		break;
1591 
1592 	default:
1593 		break;
1594 	}
1595 	/* Nothing else should be read as a string */
1596 	return -EOPNOTSUPP;
1597 }
1598 
1599 static int
1600 w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1601 			u32 attr, int channel, long val)
1602 {
1603 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1604 
1605 	if (type == hwmon_in && attr == hwmon_in_min)
1606 		return store_in_min(dev, data, channel, val);
1607 	if (type == hwmon_in && attr == hwmon_in_max)
1608 		return store_in_max(dev, data, channel, val);
1609 
1610 	if (type == hwmon_fan && attr == hwmon_fan_min)
1611 		return store_fan_min(dev, data, channel, val);
1612 
1613 	if (type == hwmon_temp && attr == hwmon_temp_max)
1614 		return store_temp_max(dev, data, channel, val);
1615 	if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1616 		return store_temp_max_hyst(dev, data, channel, val);
1617 	if (type == hwmon_temp && attr == hwmon_temp_offset)
1618 		return store_temp_offset(dev, data, channel, val);
1619 
1620 	if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1621 		return store_pwm_mode(dev, data, channel, val);
1622 	if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1623 		return store_pwm_enable(dev, data, channel, val);
1624 	if (type == hwmon_pwm && attr == hwmon_pwm_input)
1625 		return store_pwm(dev, data, channel, val);
1626 
1627 	if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1628 		return clear_caseopen(dev, data, channel, val);
1629 
1630 	return -EOPNOTSUPP;
1631 }
1632 
1633 static const struct hwmon_ops w83627ehf_ops = {
1634 	.is_visible = w83627ehf_is_visible,
1635 	.read = w83627ehf_read,
1636 	.read_string = w83627ehf_read_string,
1637 	.write = w83627ehf_write,
1638 };
1639 
1640 static const struct hwmon_channel_info *w83627ehf_info[] = {
1641 	HWMON_CHANNEL_INFO(fan,
1642 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1643 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1644 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1645 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1646 		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1647 	HWMON_CHANNEL_INFO(in,
1648 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1649 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1650 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1651 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1652 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1653 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657 		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1658 	HWMON_CHANNEL_INFO(pwm,
1659 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1660 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1661 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1662 		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1663 	HWMON_CHANNEL_INFO(temp,
1664 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1665 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1666 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1667 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1668 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1669 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1670 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1671 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1672 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1673 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1674 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1675 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1676 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1677 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1678 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1679 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1680 		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1681 			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1682 	HWMON_CHANNEL_INFO(intrusion,
1683 		HWMON_INTRUSION_ALARM),
1684 	NULL
1685 };
1686 
1687 static const struct hwmon_chip_info w83627ehf_chip_info = {
1688 	.ops = &w83627ehf_ops,
1689 	.info = w83627ehf_info,
1690 };
1691 
1692 static int w83627ehf_probe(struct platform_device *pdev)
1693 {
1694 	struct device *dev = &pdev->dev;
1695 	struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1696 	struct w83627ehf_data *data;
1697 	struct resource *res;
1698 	u8 en_vrm10;
1699 	int i, err = 0;
1700 	struct device *hwmon_dev;
1701 
1702 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1703 	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1704 		err = -EBUSY;
1705 		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
1706 			(unsigned long)res->start,
1707 			(unsigned long)res->start + IOREGION_LENGTH - 1);
1708 		goto exit;
1709 	}
1710 
1711 	data = devm_kzalloc(&pdev->dev, sizeof(struct w83627ehf_data),
1712 			    GFP_KERNEL);
1713 	if (!data) {
1714 		err = -ENOMEM;
1715 		goto exit_release;
1716 	}
1717 
1718 	data->addr = res->start;
1719 	mutex_init(&data->lock);
1720 	mutex_init(&data->update_lock);
1721 	data->name = w83627ehf_device_names[sio_data->kind];
1722 	data->bank = 0xff;		/* Force initial bank selection */
1723 	platform_set_drvdata(pdev, data);
1724 
1725 	/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1726 	data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1727 	/* 667HG has 3 pwms, and 627UHG has only 2 */
1728 	switch (sio_data->kind) {
1729 	default:
1730 		data->pwm_num = 4;
1731 		break;
1732 	case w83667hg:
1733 	case w83667hg_b:
1734 		data->pwm_num = 3;
1735 		break;
1736 	case w83627uhg:
1737 		data->pwm_num = 2;
1738 		break;
1739 	}
1740 
1741 	/* Default to 3 temperature inputs, code below will adjust as needed */
1742 	data->have_temp = 0x07;
1743 
1744 	/* Deal with temperature register setup first. */
1745 	if (sio_data->kind == w83667hg_b) {
1746 		u8 reg;
1747 
1748 		w83627ehf_set_temp_reg_ehf(data, 4);
1749 
1750 		/*
1751 		 * Temperature sources are selected with bank 0, registers 0x49
1752 		 * and 0x4a.
1753 		 */
1754 		reg = w83627ehf_read_value(data, 0x4a);
1755 		data->temp_src[0] = reg >> 5;
1756 		reg = w83627ehf_read_value(data, 0x49);
1757 		data->temp_src[1] = reg & 0x07;
1758 		data->temp_src[2] = (reg >> 4) & 0x07;
1759 
1760 		/*
1761 		 * W83667HG-B has another temperature register at 0x7e.
1762 		 * The temperature source is selected with register 0x7d.
1763 		 * Support it if the source differs from already reported
1764 		 * sources.
1765 		 */
1766 		reg = w83627ehf_read_value(data, 0x7d);
1767 		reg &= 0x07;
1768 		if (reg != data->temp_src[0] && reg != data->temp_src[1]
1769 		    && reg != data->temp_src[2]) {
1770 			data->temp_src[3] = reg;
1771 			data->have_temp |= 1 << 3;
1772 		}
1773 
1774 		/*
1775 		 * Chip supports either AUXTIN or VIN3. Try to find out which
1776 		 * one.
1777 		 */
1778 		reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1779 		if (data->temp_src[2] == 2 && (reg & 0x01))
1780 			data->have_temp &= ~(1 << 2);
1781 
1782 		if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1783 		    || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1784 			data->in6_skip = 1;
1785 
1786 		data->temp_label = w83667hg_b_temp_label;
1787 		data->have_temp_offset = data->have_temp & 0x07;
1788 		for (i = 0; i < 3; i++) {
1789 			if (data->temp_src[i] > 2)
1790 				data->have_temp_offset &= ~(1 << i);
1791 		}
1792 	} else if (sio_data->kind == w83627uhg) {
1793 		u8 reg;
1794 
1795 		w83627ehf_set_temp_reg_ehf(data, 3);
1796 
1797 		/*
1798 		 * Temperature sources for temp2 and temp3 are selected with
1799 		 * bank 0, registers 0x49 and 0x4a.
1800 		 */
1801 		data->temp_src[0] = 0;	/* SYSTIN */
1802 		reg = w83627ehf_read_value(data, 0x49) & 0x07;
1803 		/* Adjust to have the same mapping as other source registers */
1804 		if (reg == 0)
1805 			data->temp_src[1] = 1;
1806 		else if (reg >= 2 && reg <= 5)
1807 			data->temp_src[1] = reg + 2;
1808 		else	/* should never happen */
1809 			data->have_temp &= ~(1 << 1);
1810 		reg = w83627ehf_read_value(data, 0x4a);
1811 		data->temp_src[2] = reg >> 5;
1812 
1813 		/*
1814 		 * Skip temp3 if source is invalid or the same as temp1
1815 		 * or temp2.
1816 		 */
1817 		if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1818 		    data->temp_src[2] == data->temp_src[0] ||
1819 		    ((data->have_temp & (1 << 1)) &&
1820 		     data->temp_src[2] == data->temp_src[1]))
1821 			data->have_temp &= ~(1 << 2);
1822 		else
1823 			data->temp3_val_only = 1;	/* No limit regs */
1824 
1825 		data->in6_skip = 1;			/* No VIN3 */
1826 
1827 		data->temp_label = w83667hg_b_temp_label;
1828 		data->have_temp_offset = data->have_temp & 0x03;
1829 		for (i = 0; i < 3; i++) {
1830 			if (data->temp_src[i] > 1)
1831 				data->have_temp_offset &= ~(1 << i);
1832 		}
1833 	} else {
1834 		w83627ehf_set_temp_reg_ehf(data, 3);
1835 
1836 		/* Temperature sources are fixed */
1837 
1838 		if (sio_data->kind == w83667hg) {
1839 			u8 reg;
1840 
1841 			/*
1842 			 * Chip supports either AUXTIN or VIN3. Try to find
1843 			 * out which one.
1844 			 */
1845 			reg = w83627ehf_read_value(data,
1846 						W83627EHF_REG_TEMP_CONFIG[2]);
1847 			if (reg & 0x01)
1848 				data->have_temp &= ~(1 << 2);
1849 			else
1850 				data->in6_skip = 1;
1851 		}
1852 		data->have_temp_offset = data->have_temp & 0x07;
1853 	}
1854 
1855 	if (sio_data->kind == w83667hg_b) {
1856 		data->REG_FAN_MAX_OUTPUT =
1857 		  W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1858 		data->REG_FAN_STEP_OUTPUT =
1859 		  W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1860 	} else {
1861 		data->REG_FAN_MAX_OUTPUT =
1862 		  W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1863 		data->REG_FAN_STEP_OUTPUT =
1864 		  W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1865 	}
1866 
1867 	/* Setup input voltage scaling factors */
1868 	if (sio_data->kind == w83627uhg)
1869 		data->scale_in = scale_in_w83627uhg;
1870 	else
1871 		data->scale_in = scale_in_common;
1872 
1873 	/* Initialize the chip */
1874 	w83627ehf_init_device(data, sio_data->kind);
1875 
1876 	data->vrm = vid_which_vrm();
1877 
1878 	err = superio_enter(sio_data->sioreg);
1879 	if (err)
1880 		goto exit_release;
1881 
1882 	/* Read VID value */
1883 	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1884 		/*
1885 		 * W83667HG has different pins for VID input and output, so
1886 		 * we can get the VID input values directly at logical device D
1887 		 * 0xe3.
1888 		 */
1889 		superio_select(sio_data->sioreg, W83667HG_LD_VID);
1890 		data->vid = superio_inb(sio_data->sioreg, 0xe3);
1891 		data->have_vid = true;
1892 	} else if (sio_data->kind != w83627uhg) {
1893 		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1894 		if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1895 			/*
1896 			 * Set VID input sensibility if needed. In theory the
1897 			 * BIOS should have set it, but in practice it's not
1898 			 * always the case. We only do it for the W83627EHF/EHG
1899 			 * because the W83627DHG is more complex in this
1900 			 * respect.
1901 			 */
1902 			if (sio_data->kind == w83627ehf) {
1903 				en_vrm10 = superio_inb(sio_data->sioreg,
1904 						       SIO_REG_EN_VRM10);
1905 				if ((en_vrm10 & 0x08) && data->vrm == 90) {
1906 					dev_warn(dev,
1907 						 "Setting VID input voltage to TTL\n");
1908 					superio_outb(sio_data->sioreg,
1909 						     SIO_REG_EN_VRM10,
1910 						     en_vrm10 & ~0x08);
1911 				} else if (!(en_vrm10 & 0x08)
1912 					   && data->vrm == 100) {
1913 					dev_warn(dev,
1914 						 "Setting VID input voltage to VRM10\n");
1915 					superio_outb(sio_data->sioreg,
1916 						     SIO_REG_EN_VRM10,
1917 						     en_vrm10 | 0x08);
1918 				}
1919 			}
1920 
1921 			data->vid = superio_inb(sio_data->sioreg,
1922 						SIO_REG_VID_DATA);
1923 			if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1924 				data->vid &= 0x3f;
1925 			data->have_vid = true;
1926 		} else {
1927 			dev_info(dev,
1928 				 "VID pins in output mode, CPU VID not available\n");
1929 		}
1930 	}
1931 
1932 	w83627ehf_check_fan_inputs(sio_data, data);
1933 
1934 	superio_exit(sio_data->sioreg);
1935 
1936 	/* Read fan clock dividers immediately */
1937 	w83627ehf_update_fan_div(data);
1938 
1939 	/* Read pwm data to save original values */
1940 	w83627ehf_update_pwm(data);
1941 	for (i = 0; i < data->pwm_num; i++)
1942 		data->pwm_enable_orig[i] = data->pwm_enable[i];
1943 
1944 	hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1945 							 data->name,
1946 							 data,
1947 							 &w83627ehf_chip_info,
1948 							 w83627ehf_groups);
1949 
1950 	return PTR_ERR_OR_ZERO(hwmon_dev);
1951 
1952 exit_release:
1953 	release_region(res->start, IOREGION_LENGTH);
1954 exit:
1955 	return err;
1956 }
1957 
1958 static int w83627ehf_remove(struct platform_device *pdev)
1959 {
1960 	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1961 
1962 	release_region(data->addr, IOREGION_LENGTH);
1963 
1964 	return 0;
1965 }
1966 
1967 #ifdef CONFIG_PM
1968 static int w83627ehf_suspend(struct device *dev)
1969 {
1970 	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1971 
1972 	mutex_lock(&data->update_lock);
1973 	data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1974 	mutex_unlock(&data->update_lock);
1975 
1976 	return 0;
1977 }
1978 
1979 static int w83627ehf_resume(struct device *dev)
1980 {
1981 	struct w83627ehf_data *data = dev_get_drvdata(dev);
1982 	int i;
1983 
1984 	mutex_lock(&data->update_lock);
1985 	data->bank = 0xff;		/* Force initial bank selection */
1986 
1987 	/* Restore limits */
1988 	for (i = 0; i < data->in_num; i++) {
1989 		if ((i == 6) && data->in6_skip)
1990 			continue;
1991 
1992 		w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
1993 				      data->in_min[i]);
1994 		w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
1995 				      data->in_max[i]);
1996 	}
1997 
1998 	for (i = 0; i < 5; i++) {
1999 		if (!(data->has_fan_min & (1 << i)))
2000 			continue;
2001 
2002 		w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
2003 				      data->fan_min[i]);
2004 	}
2005 
2006 	for (i = 0; i < NUM_REG_TEMP; i++) {
2007 		if (!(data->have_temp & (1 << i)))
2008 			continue;
2009 
2010 		if (data->reg_temp_over[i])
2011 			w83627ehf_write_temp(data, data->reg_temp_over[i],
2012 					     data->temp_max[i]);
2013 		if (data->reg_temp_hyst[i])
2014 			w83627ehf_write_temp(data, data->reg_temp_hyst[i],
2015 					     data->temp_max_hyst[i]);
2016 		if (i > 2)
2017 			continue;
2018 		if (data->have_temp_offset & (1 << i))
2019 			w83627ehf_write_value(data,
2020 					      W83627EHF_REG_TEMP_OFFSET[i],
2021 					      data->temp_offset[i]);
2022 	}
2023 
2024 	/* Restore other settings */
2025 	w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2026 
2027 	/* Force re-reading all values */
2028 	data->valid = 0;
2029 	mutex_unlock(&data->update_lock);
2030 
2031 	return 0;
2032 }
2033 
2034 static const struct dev_pm_ops w83627ehf_dev_pm_ops = {
2035 	.suspend = w83627ehf_suspend,
2036 	.resume = w83627ehf_resume,
2037 	.freeze = w83627ehf_suspend,
2038 	.restore = w83627ehf_resume,
2039 };
2040 
2041 #define W83627EHF_DEV_PM_OPS	(&w83627ehf_dev_pm_ops)
2042 #else
2043 #define W83627EHF_DEV_PM_OPS	NULL
2044 #endif /* CONFIG_PM */
2045 
2046 static struct platform_driver w83627ehf_driver = {
2047 	.driver = {
2048 		.name	= DRVNAME,
2049 		.pm	= W83627EHF_DEV_PM_OPS,
2050 	},
2051 	.probe		= w83627ehf_probe,
2052 	.remove		= w83627ehf_remove,
2053 };
2054 
2055 /* w83627ehf_find() looks for a '627 in the Super-I/O config space */
2056 static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2057 				 struct w83627ehf_sio_data *sio_data)
2058 {
2059 	static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2060 	static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2061 	static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2062 	static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2063 	static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2064 	static const char sio_name_W83667HG[] __initconst = "W83667HG";
2065 	static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2066 
2067 	u16 val;
2068 	const char *sio_name;
2069 	int err;
2070 
2071 	err = superio_enter(sioaddr);
2072 	if (err)
2073 		return err;
2074 
2075 	if (force_id)
2076 		val = force_id;
2077 	else
2078 		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2079 		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2080 	switch (val & SIO_ID_MASK) {
2081 	case SIO_W83627EHF_ID:
2082 		sio_data->kind = w83627ehf;
2083 		sio_name = sio_name_W83627EHF;
2084 		break;
2085 	case SIO_W83627EHG_ID:
2086 		sio_data->kind = w83627ehf;
2087 		sio_name = sio_name_W83627EHG;
2088 		break;
2089 	case SIO_W83627DHG_ID:
2090 		sio_data->kind = w83627dhg;
2091 		sio_name = sio_name_W83627DHG;
2092 		break;
2093 	case SIO_W83627DHG_P_ID:
2094 		sio_data->kind = w83627dhg_p;
2095 		sio_name = sio_name_W83627DHG_P;
2096 		break;
2097 	case SIO_W83627UHG_ID:
2098 		sio_data->kind = w83627uhg;
2099 		sio_name = sio_name_W83627UHG;
2100 		break;
2101 	case SIO_W83667HG_ID:
2102 		sio_data->kind = w83667hg;
2103 		sio_name = sio_name_W83667HG;
2104 		break;
2105 	case SIO_W83667HG_B_ID:
2106 		sio_data->kind = w83667hg_b;
2107 		sio_name = sio_name_W83667HG_B;
2108 		break;
2109 	default:
2110 		if (val != 0xffff)
2111 			pr_debug("unsupported chip ID: 0x%04x\n", val);
2112 		superio_exit(sioaddr);
2113 		return -ENODEV;
2114 	}
2115 
2116 	/* We have a known chip, find the HWM I/O address */
2117 	superio_select(sioaddr, W83627EHF_LD_HWM);
2118 	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2119 	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2120 	*addr = val & IOREGION_ALIGNMENT;
2121 	if (*addr == 0) {
2122 		pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2123 		superio_exit(sioaddr);
2124 		return -ENODEV;
2125 	}
2126 
2127 	/* Activate logical device if needed */
2128 	val = superio_inb(sioaddr, SIO_REG_ENABLE);
2129 	if (!(val & 0x01)) {
2130 		pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2131 		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2132 	}
2133 
2134 	superio_exit(sioaddr);
2135 	pr_info("Found %s chip at %#x\n", sio_name, *addr);
2136 	sio_data->sioreg = sioaddr;
2137 
2138 	return 0;
2139 }
2140 
2141 /*
2142  * when Super-I/O functions move to a separate file, the Super-I/O
2143  * bus will manage the lifetime of the device and this module will only keep
2144  * track of the w83627ehf driver. But since we platform_device_alloc(), we
2145  * must keep track of the device
2146  */
2147 static struct platform_device *pdev;
2148 
2149 static int __init sensors_w83627ehf_init(void)
2150 {
2151 	int err;
2152 	unsigned short address;
2153 	struct resource res;
2154 	struct w83627ehf_sio_data sio_data;
2155 
2156 	/*
2157 	 * initialize sio_data->kind and sio_data->sioreg.
2158 	 *
2159 	 * when Super-I/O functions move to a separate file, the Super-I/O
2160 	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2161 	 * w83627ehf hardware monitor, and call probe()
2162 	 */
2163 	if (w83627ehf_find(0x2e, &address, &sio_data) &&
2164 	    w83627ehf_find(0x4e, &address, &sio_data))
2165 		return -ENODEV;
2166 
2167 	err = platform_driver_register(&w83627ehf_driver);
2168 	if (err)
2169 		goto exit;
2170 
2171 	pdev = platform_device_alloc(DRVNAME, address);
2172 	if (!pdev) {
2173 		err = -ENOMEM;
2174 		pr_err("Device allocation failed\n");
2175 		goto exit_unregister;
2176 	}
2177 
2178 	err = platform_device_add_data(pdev, &sio_data,
2179 				       sizeof(struct w83627ehf_sio_data));
2180 	if (err) {
2181 		pr_err("Platform data allocation failed\n");
2182 		goto exit_device_put;
2183 	}
2184 
2185 	memset(&res, 0, sizeof(res));
2186 	res.name = DRVNAME;
2187 	res.start = address + IOREGION_OFFSET;
2188 	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2189 	res.flags = IORESOURCE_IO;
2190 
2191 	err = acpi_check_resource_conflict(&res);
2192 	if (err)
2193 		goto exit_device_put;
2194 
2195 	err = platform_device_add_resources(pdev, &res, 1);
2196 	if (err) {
2197 		pr_err("Device resource addition failed (%d)\n", err);
2198 		goto exit_device_put;
2199 	}
2200 
2201 	/* platform_device_add calls probe() */
2202 	err = platform_device_add(pdev);
2203 	if (err) {
2204 		pr_err("Device addition failed (%d)\n", err);
2205 		goto exit_device_put;
2206 	}
2207 
2208 	return 0;
2209 
2210 exit_device_put:
2211 	platform_device_put(pdev);
2212 exit_unregister:
2213 	platform_driver_unregister(&w83627ehf_driver);
2214 exit:
2215 	return err;
2216 }
2217 
2218 static void __exit sensors_w83627ehf_exit(void)
2219 {
2220 	platform_device_unregister(pdev);
2221 	platform_driver_unregister(&w83627ehf_driver);
2222 }
2223 
2224 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2225 MODULE_DESCRIPTION("W83627EHF driver");
2226 MODULE_LICENSE("GPL");
2227 
2228 module_init(sensors_w83627ehf_init);
2229 module_exit(sensors_w83627ehf_exit);
2230