xref: /openbmc/linux/drivers/hwmon/via686a.c (revision 64c70b1c)
1 /*
2     via686a.c - Part of lm_sensors, Linux kernel modules
3 		for hardware monitoring
4 
5     Copyright (c) 1998 - 2002  Frodo Looijaard <frodol@dds.nl>,
6 			Ky�sti M�lkki <kmalkki@cc.hut.fi>,
7 			Mark Studebaker <mdsxyz123@yahoo.com>,
8 			and Bob Dougherty <bobd@stanford.edu>
9     (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
10     <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
11 
12     This program is free software; you can redistribute it and/or modify
13     it under the terms of the GNU General Public License as published by
14     the Free Software Foundation; either version 2 of the License, or
15     (at your option) any later version.
16 
17     This program is distributed in the hope that it will be useful,
18     but WITHOUT ANY WARRANTY; without even the implied warranty of
19     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20     GNU General Public License for more details.
21 
22     You should have received a copy of the GNU General Public License
23     along with this program; if not, write to the Free Software
24     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26 
27 /*
28     Supports the Via VT82C686A, VT82C686B south bridges.
29     Reports all as a 686A.
30     Warning - only supports a single device.
31 */
32 
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/jiffies.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-isa.h>
39 #include <linux/hwmon.h>
40 #include <linux/err.h>
41 #include <linux/init.h>
42 #include <linux/mutex.h>
43 #include <linux/sysfs.h>
44 #include <asm/io.h>
45 
46 
47 /* If force_addr is set to anything different from 0, we forcibly enable
48    the device at the given address. */
49 static unsigned short force_addr;
50 module_param(force_addr, ushort, 0);
51 MODULE_PARM_DESC(force_addr,
52 		 "Initialize the base address of the sensors");
53 
54 /* Device address
55    Note that we can't determine the ISA address until we have initialized
56    our module */
57 static unsigned short address;
58 
59 /*
60    The Via 686a southbridge has a LM78-like chip integrated on the same IC.
61    This driver is a customized copy of lm78.c
62 */
63 
64 /* Many VIA686A constants specified below */
65 
66 /* Length of ISA address segment */
67 #define VIA686A_EXTENT		0x80
68 #define VIA686A_BASE_REG	0x70
69 #define VIA686A_ENABLE_REG	0x74
70 
71 /* The VIA686A registers */
72 /* ins numbered 0-4 */
73 #define VIA686A_REG_IN_MAX(nr)	(0x2b + ((nr) * 2))
74 #define VIA686A_REG_IN_MIN(nr)	(0x2c + ((nr) * 2))
75 #define VIA686A_REG_IN(nr)	(0x22 + (nr))
76 
77 /* fans numbered 1-2 */
78 #define VIA686A_REG_FAN_MIN(nr)	(0x3a + (nr))
79 #define VIA686A_REG_FAN(nr)	(0x28 + (nr))
80 
81 /* temps numbered 1-3 */
82 static const u8 VIA686A_REG_TEMP[]	= { 0x20, 0x21, 0x1f };
83 static const u8 VIA686A_REG_TEMP_OVER[]	= { 0x39, 0x3d, 0x1d };
84 static const u8 VIA686A_REG_TEMP_HYST[]	= { 0x3a, 0x3e, 0x1e };
85 /* bits 7-6 */
86 #define VIA686A_REG_TEMP_LOW1	0x4b
87 /* 2 = bits 5-4, 3 = bits 7-6 */
88 #define VIA686A_REG_TEMP_LOW23	0x49
89 
90 #define VIA686A_REG_ALARM1	0x41
91 #define VIA686A_REG_ALARM2	0x42
92 #define VIA686A_REG_FANDIV	0x47
93 #define VIA686A_REG_CONFIG	0x40
94 /* The following register sets temp interrupt mode (bits 1-0 for temp1,
95  3-2 for temp2, 5-4 for temp3).  Modes are:
96     00 interrupt stays as long as value is out-of-range
97     01 interrupt is cleared once register is read (default)
98     10 comparator mode- like 00, but ignores hysteresis
99     11 same as 00 */
100 #define VIA686A_REG_TEMP_MODE		0x4b
101 /* We'll just assume that you want to set all 3 simultaneously: */
102 #define VIA686A_TEMP_MODE_MASK		0x3F
103 #define VIA686A_TEMP_MODE_CONTINUOUS	0x00
104 
105 /* Conversions. Limit checking is only done on the TO_REG
106    variants.
107 
108 ********* VOLTAGE CONVERSIONS (Bob Dougherty) ********
109  From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
110  voltagefactor[0]=1.25/2628; (2628/1.25=2102.4)   // Vccp
111  voltagefactor[1]=1.25/2628; (2628/1.25=2102.4)   // +2.5V
112  voltagefactor[2]=1.67/2628; (2628/1.67=1573.7)   // +3.3V
113  voltagefactor[3]=2.6/2628;  (2628/2.60=1010.8)   // +5V
114  voltagefactor[4]=6.3/2628;  (2628/6.30=417.14)   // +12V
115  in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
116  That is:
117  volts = (25*regVal+133)*factor
118  regVal = (volts/factor-133)/25
119  (These conversions were contributed by Jonathan Teh Soon Yew
120  <j.teh@iname.com>) */
121 static inline u8 IN_TO_REG(long val, int inNum)
122 {
123 	/* To avoid floating point, we multiply constants by 10 (100 for +12V).
124 	   Rounding is done (120500 is actually 133000 - 12500).
125 	   Remember that val is expressed in 0.001V/bit, which is why we divide
126 	   by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
127 	   for the constants. */
128 	if (inNum <= 1)
129 		return (u8)
130 		    SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255);
131 	else if (inNum == 2)
132 		return (u8)
133 		    SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255);
134 	else if (inNum == 3)
135 		return (u8)
136 		    SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255);
137 	else
138 		return (u8)
139 		    SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255);
140 }
141 
142 static inline long IN_FROM_REG(u8 val, int inNum)
143 {
144 	/* To avoid floating point, we multiply constants by 10 (100 for +12V).
145 	   We also multiply them by 1000 because we want 0.001V/bit for the
146 	   output value. Rounding is done. */
147 	if (inNum <= 1)
148 		return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
149 	else if (inNum == 2)
150 		return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
151 	else if (inNum == 3)
152 		return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
153 	else
154 		return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
155 }
156 
157 /********* FAN RPM CONVERSIONS ********/
158 /* Higher register values = slower fans (the fan's strobe gates a counter).
159  But this chip saturates back at 0, not at 255 like all the other chips.
160  So, 0 means 0 RPM */
161 static inline u8 FAN_TO_REG(long rpm, int div)
162 {
163 	if (rpm == 0)
164 		return 0;
165 	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
166 	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
167 }
168 
169 #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
170 
171 /******** TEMP CONVERSIONS (Bob Dougherty) *********/
172 /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
173       if(temp<169)
174 	      return double(temp)*0.427-32.08;
175       else if(temp>=169 && temp<=202)
176 	      return double(temp)*0.582-58.16;
177       else
178 	      return double(temp)*0.924-127.33;
179 
180  A fifth-order polynomial fits the unofficial data (provided by Alex van
181  Kaam <darkside@chello.nl>) a bit better.  It also give more reasonable
182  numbers on my machine (ie. they agree with what my BIOS tells me).
183  Here's the fifth-order fit to the 8-bit data:
184  temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
185 	2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
186 
187  (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
188  finding my typos in this formula!)
189 
190  Alas, none of the elegant function-fit solutions will work because we
191  aren't allowed to use floating point in the kernel and doing it with
192  integers doesn't provide enough precision.  So we'll do boring old
193  look-up table stuff.  The unofficial data (see below) have effectively
194  7-bit resolution (they are rounded to the nearest degree).  I'm assuming
195  that the transfer function of the device is monotonic and smooth, so a
196  smooth function fit to the data will allow us to get better precision.
197  I used the 5th-order poly fit described above and solved for
198  VIA register values 0-255.  I *10 before rounding, so we get tenth-degree
199  precision.  (I could have done all 1024 values for our 10-bit readings,
200  but the function is very linear in the useful range (0-80 deg C), so
201  we'll just use linear interpolation for 10-bit readings.)  So, tempLUT
202  is the temp at via register values 0-255: */
203 static const s16 tempLUT[] =
204 { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
205 	-503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
206 	-362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
207 	-255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
208 	-173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
209 	-108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
210 	-44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
211 	20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
212 	88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
213 	142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
214 	193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
215 	245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
216 	299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
217 	353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
218 	409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
219 	469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
220 	538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
221 	621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
222 	728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
223 	870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
224 	1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
225 	1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
226 };
227 
228 /* the original LUT values from Alex van Kaam <darkside@chello.nl>
229    (for via register values 12-240):
230 {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
231 -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
232 -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
233 -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
234 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
235 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
236 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
237 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
238 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
239 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
240 
241 
242  Here's the reverse LUT.  I got it by doing a 6-th order poly fit (needed
243  an extra term for a good fit to these inverse data!) and then
244  solving for each temp value from -50 to 110 (the useable range for
245  this chip).  Here's the fit:
246  viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
247  - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
248  Note that n=161: */
249 static const u8 viaLUT[] =
250 { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
251 	23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
252 	41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
253 	69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
254 	103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
255 	131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
256 	158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
257 	182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
258 	200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
259 	214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
260 	225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
261 	233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
262 	239, 240
263 };
264 
265 /* Converting temps to (8-bit) hyst and over registers
266    No interpolation here.
267    The +50 is because the temps start at -50 */
268 static inline u8 TEMP_TO_REG(long val)
269 {
270 	return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 :
271 		      (val < 0 ? val - 500 : val + 500) / 1000 + 50];
272 }
273 
274 /* for 8-bit temperature hyst and over registers */
275 #define TEMP_FROM_REG(val)	((long)tempLUT[val] * 100)
276 
277 /* for 10-bit temperature readings */
278 static inline long TEMP_FROM_REG10(u16 val)
279 {
280 	u16 eightBits = val >> 2;
281 	u16 twoBits = val & 3;
282 
283 	/* no interpolation for these */
284 	if (twoBits == 0 || eightBits == 255)
285 		return TEMP_FROM_REG(eightBits);
286 
287 	/* do some linear interpolation */
288 	return (tempLUT[eightBits] * (4 - twoBits) +
289 		tempLUT[eightBits + 1] * twoBits) * 25;
290 }
291 
292 #define DIV_FROM_REG(val) (1 << (val))
293 #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
294 
295 /* For each registered chip, we need to keep some data in memory.
296    The structure is dynamically allocated. */
297 struct via686a_data {
298 	struct i2c_client client;
299 	struct class_device *class_dev;
300 	struct mutex update_lock;
301 	char valid;		/* !=0 if following fields are valid */
302 	unsigned long last_updated;	/* In jiffies */
303 
304 	u8 in[5];		/* Register value */
305 	u8 in_max[5];		/* Register value */
306 	u8 in_min[5];		/* Register value */
307 	u8 fan[2];		/* Register value */
308 	u8 fan_min[2];		/* Register value */
309 	u16 temp[3];		/* Register value 10 bit */
310 	u8 temp_over[3];	/* Register value */
311 	u8 temp_hyst[3];	/* Register value */
312 	u8 fan_div[2];		/* Register encoding, shifted right */
313 	u16 alarms;		/* Register encoding, combined */
314 };
315 
316 static struct pci_dev *s_bridge;	/* pointer to the (only) via686a */
317 
318 static int via686a_detect(struct i2c_adapter *adapter);
319 static int via686a_detach_client(struct i2c_client *client);
320 
321 static inline int via686a_read_value(struct i2c_client *client, u8 reg)
322 {
323 	return (inb_p(client->addr + reg));
324 }
325 
326 static inline void via686a_write_value(struct i2c_client *client, u8 reg,
327 				       u8 value)
328 {
329 	outb_p(value, client->addr + reg);
330 }
331 
332 static struct via686a_data *via686a_update_device(struct device *dev);
333 static void via686a_init_client(struct i2c_client *client);
334 
335 /* following are the sysfs callback functions */
336 
337 /* 7 voltage sensors */
338 static ssize_t show_in(struct device *dev, char *buf, int nr) {
339 	struct via686a_data *data = via686a_update_device(dev);
340 	return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
341 }
342 
343 static ssize_t show_in_min(struct device *dev, char *buf, int nr) {
344 	struct via686a_data *data = via686a_update_device(dev);
345 	return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
346 }
347 
348 static ssize_t show_in_max(struct device *dev, char *buf, int nr) {
349 	struct via686a_data *data = via686a_update_device(dev);
350 	return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
351 }
352 
353 static ssize_t set_in_min(struct device *dev, const char *buf,
354 		size_t count, int nr) {
355 	struct i2c_client *client = to_i2c_client(dev);
356 	struct via686a_data *data = i2c_get_clientdata(client);
357 	unsigned long val = simple_strtoul(buf, NULL, 10);
358 
359 	mutex_lock(&data->update_lock);
360 	data->in_min[nr] = IN_TO_REG(val, nr);
361 	via686a_write_value(client, VIA686A_REG_IN_MIN(nr),
362 			data->in_min[nr]);
363 	mutex_unlock(&data->update_lock);
364 	return count;
365 }
366 static ssize_t set_in_max(struct device *dev, const char *buf,
367 		size_t count, int nr) {
368 	struct i2c_client *client = to_i2c_client(dev);
369 	struct via686a_data *data = i2c_get_clientdata(client);
370 	unsigned long val = simple_strtoul(buf, NULL, 10);
371 
372 	mutex_lock(&data->update_lock);
373 	data->in_max[nr] = IN_TO_REG(val, nr);
374 	via686a_write_value(client, VIA686A_REG_IN_MAX(nr),
375 			data->in_max[nr]);
376 	mutex_unlock(&data->update_lock);
377 	return count;
378 }
379 #define show_in_offset(offset)					\
380 static ssize_t 							\
381 	show_in##offset (struct device *dev, struct device_attribute *attr, char *buf)		\
382 {								\
383 	return show_in(dev, buf, offset);			\
384 }								\
385 static ssize_t 							\
386 	show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf)	\
387 {								\
388 	return show_in_min(dev, buf, offset);		\
389 }								\
390 static ssize_t 							\
391 	show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf)	\
392 {								\
393 	return show_in_max(dev, buf, offset);		\
394 }								\
395 static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, 	\
396 		const char *buf, size_t count) 			\
397 {								\
398 	return set_in_min(dev, buf, count, offset);		\
399 }								\
400 static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr,	\
401 			const char *buf, size_t count)		\
402 {								\
403 	return set_in_max(dev, buf, count, offset);		\
404 }								\
405 static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL);\
406 static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, 	\
407 		show_in##offset##_min, set_in##offset##_min);	\
408 static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, 	\
409 		show_in##offset##_max, set_in##offset##_max);
410 
411 show_in_offset(0);
412 show_in_offset(1);
413 show_in_offset(2);
414 show_in_offset(3);
415 show_in_offset(4);
416 
417 /* 3 temperatures */
418 static ssize_t show_temp(struct device *dev, char *buf, int nr) {
419 	struct via686a_data *data = via686a_update_device(dev);
420 	return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
421 }
422 static ssize_t show_temp_over(struct device *dev, char *buf, int nr) {
423 	struct via686a_data *data = via686a_update_device(dev);
424 	return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
425 }
426 static ssize_t show_temp_hyst(struct device *dev, char *buf, int nr) {
427 	struct via686a_data *data = via686a_update_device(dev);
428 	return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
429 }
430 static ssize_t set_temp_over(struct device *dev, const char *buf,
431 		size_t count, int nr) {
432 	struct i2c_client *client = to_i2c_client(dev);
433 	struct via686a_data *data = i2c_get_clientdata(client);
434 	int val = simple_strtol(buf, NULL, 10);
435 
436 	mutex_lock(&data->update_lock);
437 	data->temp_over[nr] = TEMP_TO_REG(val);
438 	via686a_write_value(client, VIA686A_REG_TEMP_OVER[nr],
439 			    data->temp_over[nr]);
440 	mutex_unlock(&data->update_lock);
441 	return count;
442 }
443 static ssize_t set_temp_hyst(struct device *dev, const char *buf,
444 		size_t count, int nr) {
445 	struct i2c_client *client = to_i2c_client(dev);
446 	struct via686a_data *data = i2c_get_clientdata(client);
447 	int val = simple_strtol(buf, NULL, 10);
448 
449 	mutex_lock(&data->update_lock);
450 	data->temp_hyst[nr] = TEMP_TO_REG(val);
451 	via686a_write_value(client, VIA686A_REG_TEMP_HYST[nr],
452 			    data->temp_hyst[nr]);
453 	mutex_unlock(&data->update_lock);
454 	return count;
455 }
456 #define show_temp_offset(offset)					\
457 static ssize_t show_temp_##offset (struct device *dev, struct device_attribute *attr, char *buf)	\
458 {									\
459 	return show_temp(dev, buf, offset - 1);				\
460 }									\
461 static ssize_t								\
462 show_temp_##offset##_over (struct device *dev, struct device_attribute *attr, char *buf)		\
463 {									\
464 	return show_temp_over(dev, buf, offset - 1);			\
465 }									\
466 static ssize_t								\
467 show_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, char *buf)		\
468 {									\
469 	return show_temp_hyst(dev, buf, offset - 1);			\
470 }									\
471 static ssize_t set_temp_##offset##_over (struct device *dev, struct device_attribute *attr, 		\
472 		const char *buf, size_t count) 				\
473 {									\
474 	return set_temp_over(dev, buf, count, offset - 1);		\
475 }									\
476 static ssize_t set_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, 		\
477 		const char *buf, size_t count) 				\
478 {									\
479 	return set_temp_hyst(dev, buf, count, offset - 1);		\
480 }									\
481 static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset, NULL);\
482 static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, 		\
483 		show_temp_##offset##_over, set_temp_##offset##_over);	\
484 static DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, 		\
485 		show_temp_##offset##_hyst, set_temp_##offset##_hyst);
486 
487 show_temp_offset(1);
488 show_temp_offset(2);
489 show_temp_offset(3);
490 
491 /* 2 Fans */
492 static ssize_t show_fan(struct device *dev, char *buf, int nr) {
493 	struct via686a_data *data = via686a_update_device(dev);
494 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
495 				DIV_FROM_REG(data->fan_div[nr])) );
496 }
497 static ssize_t show_fan_min(struct device *dev, char *buf, int nr) {
498 	struct via686a_data *data = via686a_update_device(dev);
499 	return sprintf(buf, "%d\n",
500 		FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) );
501 }
502 static ssize_t show_fan_div(struct device *dev, char *buf, int nr) {
503 	struct via686a_data *data = via686a_update_device(dev);
504 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) );
505 }
506 static ssize_t set_fan_min(struct device *dev, const char *buf,
507 		size_t count, int nr) {
508 	struct i2c_client *client = to_i2c_client(dev);
509 	struct via686a_data *data = i2c_get_clientdata(client);
510 	int val = simple_strtol(buf, NULL, 10);
511 
512 	mutex_lock(&data->update_lock);
513 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
514 	via686a_write_value(client, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
515 	mutex_unlock(&data->update_lock);
516 	return count;
517 }
518 static ssize_t set_fan_div(struct device *dev, const char *buf,
519 		size_t count, int nr) {
520 	struct i2c_client *client = to_i2c_client(dev);
521 	struct via686a_data *data = i2c_get_clientdata(client);
522 	int val = simple_strtol(buf, NULL, 10);
523 	int old;
524 
525 	mutex_lock(&data->update_lock);
526 	old = via686a_read_value(client, VIA686A_REG_FANDIV);
527 	data->fan_div[nr] = DIV_TO_REG(val);
528 	old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
529 	via686a_write_value(client, VIA686A_REG_FANDIV, old);
530 	mutex_unlock(&data->update_lock);
531 	return count;
532 }
533 
534 #define show_fan_offset(offset)						\
535 static ssize_t show_fan_##offset (struct device *dev, struct device_attribute *attr, char *buf)	\
536 {									\
537 	return show_fan(dev, buf, offset - 1);				\
538 }									\
539 static ssize_t show_fan_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf)	\
540 {									\
541 	return show_fan_min(dev, buf, offset - 1);			\
542 }									\
543 static ssize_t show_fan_##offset##_div (struct device *dev, struct device_attribute *attr, char *buf)	\
544 {									\
545 	return show_fan_div(dev, buf, offset - 1);			\
546 }									\
547 static ssize_t set_fan_##offset##_min (struct device *dev, struct device_attribute *attr, 		\
548 	const char *buf, size_t count) 					\
549 {									\
550 	return set_fan_min(dev, buf, count, offset - 1);		\
551 }									\
552 static ssize_t set_fan_##offset##_div (struct device *dev, struct device_attribute *attr, 		\
553 		const char *buf, size_t count) 				\
554 {									\
555 	return set_fan_div(dev, buf, count, offset - 1);		\
556 }									\
557 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset, NULL);\
558 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, 		\
559 		show_fan_##offset##_min, set_fan_##offset##_min);	\
560 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, 		\
561 		show_fan_##offset##_div, set_fan_##offset##_div);
562 
563 show_fan_offset(1);
564 show_fan_offset(2);
565 
566 /* Alarms */
567 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) {
568 	struct via686a_data *data = via686a_update_device(dev);
569 	return sprintf(buf, "%u\n", data->alarms);
570 }
571 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
572 
573 static struct attribute *via686a_attributes[] = {
574 	&dev_attr_in0_input.attr,
575 	&dev_attr_in1_input.attr,
576 	&dev_attr_in2_input.attr,
577 	&dev_attr_in3_input.attr,
578 	&dev_attr_in4_input.attr,
579 	&dev_attr_in0_min.attr,
580 	&dev_attr_in1_min.attr,
581 	&dev_attr_in2_min.attr,
582 	&dev_attr_in3_min.attr,
583 	&dev_attr_in4_min.attr,
584 	&dev_attr_in0_max.attr,
585 	&dev_attr_in1_max.attr,
586 	&dev_attr_in2_max.attr,
587 	&dev_attr_in3_max.attr,
588 	&dev_attr_in4_max.attr,
589 
590 	&dev_attr_temp1_input.attr,
591 	&dev_attr_temp2_input.attr,
592 	&dev_attr_temp3_input.attr,
593 	&dev_attr_temp1_max.attr,
594 	&dev_attr_temp2_max.attr,
595 	&dev_attr_temp3_max.attr,
596 	&dev_attr_temp1_max_hyst.attr,
597 	&dev_attr_temp2_max_hyst.attr,
598 	&dev_attr_temp3_max_hyst.attr,
599 
600 	&dev_attr_fan1_input.attr,
601 	&dev_attr_fan2_input.attr,
602 	&dev_attr_fan1_min.attr,
603 	&dev_attr_fan2_min.attr,
604 	&dev_attr_fan1_div.attr,
605 	&dev_attr_fan2_div.attr,
606 
607 	&dev_attr_alarms.attr,
608 	NULL
609 };
610 
611 static const struct attribute_group via686a_group = {
612 	.attrs = via686a_attributes,
613 };
614 
615 /* The driver. I choose to use type i2c_driver, as at is identical to both
616    smbus_driver and isa_driver, and clients could be of either kind */
617 static struct i2c_driver via686a_driver = {
618 	.driver = {
619 		.owner	= THIS_MODULE,
620 		.name	= "via686a",
621 	},
622 	.attach_adapter	= via686a_detect,
623 	.detach_client	= via686a_detach_client,
624 };
625 
626 
627 /* This is called when the module is loaded */
628 static int via686a_detect(struct i2c_adapter *adapter)
629 {
630 	struct i2c_client *new_client;
631 	struct via686a_data *data;
632 	int err = 0;
633 	const char client_name[] = "via686a";
634 	u16 val;
635 
636 	/* 8231 requires multiple of 256, we enforce that on 686 as well */
637 	if (force_addr) {
638 		address = force_addr & 0xFF00;
639 		dev_warn(&adapter->dev, "forcing ISA address 0x%04X\n",
640 			 address);
641 		if (PCIBIOS_SUCCESSFUL !=
642 		    pci_write_config_word(s_bridge, VIA686A_BASE_REG, address))
643 			return -ENODEV;
644 	}
645 	if (PCIBIOS_SUCCESSFUL !=
646 	    pci_read_config_word(s_bridge, VIA686A_ENABLE_REG, &val))
647 		return -ENODEV;
648 	if (!(val & 0x0001)) {
649 		if (force_addr) {
650 			dev_info(&adapter->dev, "enabling sensors\n");
651 			if (PCIBIOS_SUCCESSFUL !=
652 			    pci_write_config_word(s_bridge, VIA686A_ENABLE_REG,
653 						  val | 0x0001))
654 				return -ENODEV;
655 		} else {
656 			dev_warn(&adapter->dev, "sensors disabled - enable "
657 				 "with force_addr=0x%x\n", address);
658 			return -ENODEV;
659 		}
660 	}
661 
662 	/* Reserve the ISA region */
663 	if (!request_region(address, VIA686A_EXTENT,
664 			    via686a_driver.driver.name)) {
665 		dev_err(&adapter->dev, "region 0x%x already in use!\n",
666 			address);
667 		return -ENODEV;
668 	}
669 
670 	if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) {
671 		err = -ENOMEM;
672 		goto exit_release;
673 	}
674 
675 	new_client = &data->client;
676 	i2c_set_clientdata(new_client, data);
677 	new_client->addr = address;
678 	new_client->adapter = adapter;
679 	new_client->driver = &via686a_driver;
680 	new_client->flags = 0;
681 
682 	/* Fill in the remaining client fields and put into the global list */
683 	strlcpy(new_client->name, client_name, I2C_NAME_SIZE);
684 
685 	data->valid = 0;
686 	mutex_init(&data->update_lock);
687 	/* Tell the I2C layer a new client has arrived */
688 	if ((err = i2c_attach_client(new_client)))
689 		goto exit_free;
690 
691 	/* Initialize the VIA686A chip */
692 	via686a_init_client(new_client);
693 
694 	/* Register sysfs hooks */
695 	if ((err = sysfs_create_group(&new_client->dev.kobj, &via686a_group)))
696 		goto exit_detach;
697 
698 	data->class_dev = hwmon_device_register(&new_client->dev);
699 	if (IS_ERR(data->class_dev)) {
700 		err = PTR_ERR(data->class_dev);
701 		goto exit_remove_files;
702 	}
703 
704 	return 0;
705 
706 exit_remove_files:
707 	sysfs_remove_group(&new_client->dev.kobj, &via686a_group);
708 exit_detach:
709 	i2c_detach_client(new_client);
710 exit_free:
711 	kfree(data);
712 exit_release:
713 	release_region(address, VIA686A_EXTENT);
714 	return err;
715 }
716 
717 static int via686a_detach_client(struct i2c_client *client)
718 {
719 	struct via686a_data *data = i2c_get_clientdata(client);
720 	int err;
721 
722 	hwmon_device_unregister(data->class_dev);
723 	sysfs_remove_group(&client->dev.kobj, &via686a_group);
724 
725 	if ((err = i2c_detach_client(client)))
726 		return err;
727 
728 	release_region(client->addr, VIA686A_EXTENT);
729 	kfree(data);
730 
731 	return 0;
732 }
733 
734 static void via686a_init_client(struct i2c_client *client)
735 {
736 	u8 reg;
737 
738 	/* Start monitoring */
739 	reg = via686a_read_value(client, VIA686A_REG_CONFIG);
740 	via686a_write_value(client, VIA686A_REG_CONFIG, (reg|0x01)&0x7F);
741 
742 	/* Configure temp interrupt mode for continuous-interrupt operation */
743 	via686a_write_value(client, VIA686A_REG_TEMP_MODE,
744 			    via686a_read_value(client, VIA686A_REG_TEMP_MODE) &
745 			    !(VIA686A_TEMP_MODE_MASK | VIA686A_TEMP_MODE_CONTINUOUS));
746 }
747 
748 static struct via686a_data *via686a_update_device(struct device *dev)
749 {
750 	struct i2c_client *client = to_i2c_client(dev);
751 	struct via686a_data *data = i2c_get_clientdata(client);
752 	int i;
753 
754 	mutex_lock(&data->update_lock);
755 
756 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
757 	    || !data->valid) {
758 		for (i = 0; i <= 4; i++) {
759 			data->in[i] =
760 			    via686a_read_value(client, VIA686A_REG_IN(i));
761 			data->in_min[i] = via686a_read_value(client,
762 							     VIA686A_REG_IN_MIN
763 							     (i));
764 			data->in_max[i] =
765 			    via686a_read_value(client, VIA686A_REG_IN_MAX(i));
766 		}
767 		for (i = 1; i <= 2; i++) {
768 			data->fan[i - 1] =
769 			    via686a_read_value(client, VIA686A_REG_FAN(i));
770 			data->fan_min[i - 1] = via686a_read_value(client,
771 						     VIA686A_REG_FAN_MIN(i));
772 		}
773 		for (i = 0; i <= 2; i++) {
774 			data->temp[i] = via686a_read_value(client,
775 						 VIA686A_REG_TEMP[i]) << 2;
776 			data->temp_over[i] =
777 			    via686a_read_value(client,
778 					       VIA686A_REG_TEMP_OVER[i]);
779 			data->temp_hyst[i] =
780 			    via686a_read_value(client,
781 					       VIA686A_REG_TEMP_HYST[i]);
782 		}
783 		/* add in lower 2 bits
784 		   temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
785 		   temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
786 		   temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
787 		 */
788 		data->temp[0] |= (via686a_read_value(client,
789 						     VIA686A_REG_TEMP_LOW1)
790 				  & 0xc0) >> 6;
791 		data->temp[1] |=
792 		    (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
793 		     0x30) >> 4;
794 		data->temp[2] |=
795 		    (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
796 		     0xc0) >> 6;
797 
798 		i = via686a_read_value(client, VIA686A_REG_FANDIV);
799 		data->fan_div[0] = (i >> 4) & 0x03;
800 		data->fan_div[1] = i >> 6;
801 		data->alarms =
802 		    via686a_read_value(client,
803 				       VIA686A_REG_ALARM1) |
804 		    (via686a_read_value(client, VIA686A_REG_ALARM2) << 8);
805 		data->last_updated = jiffies;
806 		data->valid = 1;
807 	}
808 
809 	mutex_unlock(&data->update_lock);
810 
811 	return data;
812 }
813 
814 static struct pci_device_id via686a_pci_ids[] = {
815 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
816 	{ 0, }
817 };
818 
819 MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
820 
821 static int __devinit via686a_pci_probe(struct pci_dev *dev,
822 				       const struct pci_device_id *id)
823 {
824 	u16 val;
825 
826 	if (PCIBIOS_SUCCESSFUL !=
827 	    pci_read_config_word(dev, VIA686A_BASE_REG, &val))
828 		return -ENODEV;
829 
830 	address = val & ~(VIA686A_EXTENT - 1);
831 	if (address == 0 && force_addr == 0) {
832 		dev_err(&dev->dev, "base address not set - upgrade BIOS "
833 			"or use force_addr=0xaddr\n");
834 		return -ENODEV;
835 	}
836 
837 	s_bridge = pci_dev_get(dev);
838 	if (i2c_isa_add_driver(&via686a_driver)) {
839 		pci_dev_put(s_bridge);
840 		s_bridge = NULL;
841 	}
842 
843 	/* Always return failure here.  This is to allow other drivers to bind
844 	 * to this pci device.  We don't really want to have control over the
845 	 * pci device, we only wanted to read as few register values from it.
846 	 */
847 	return -ENODEV;
848 }
849 
850 static struct pci_driver via686a_pci_driver = {
851 	.name		= "via686a",
852 	.id_table	= via686a_pci_ids,
853 	.probe		= via686a_pci_probe,
854 };
855 
856 static int __init sm_via686a_init(void)
857 {
858 	return pci_register_driver(&via686a_pci_driver);
859 }
860 
861 static void __exit sm_via686a_exit(void)
862 {
863 	pci_unregister_driver(&via686a_pci_driver);
864 	if (s_bridge != NULL) {
865 		i2c_isa_del_driver(&via686a_driver);
866 		pci_dev_put(s_bridge);
867 		s_bridge = NULL;
868 	}
869 }
870 
871 MODULE_AUTHOR("Ky�sti M�lkki <kmalkki@cc.hut.fi>, "
872 	      "Mark Studebaker <mdsxyz123@yahoo.com> "
873 	      "and Bob Dougherty <bobd@stanford.edu>");
874 MODULE_DESCRIPTION("VIA 686A Sensor device");
875 MODULE_LICENSE("GPL");
876 
877 module_init(sm_via686a_init);
878 module_exit(sm_via686a_exit);
879