xref: /openbmc/linux/drivers/hwmon/pmbus/zl6100.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Hardware monitoring driver for ZL6100 and compatibles
3  *
4  * Copyright (c) 2011 Ericsson AB.
5  * Copyright (c) 2012 Guenter Roeck
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/bitops.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/err.h>
27 #include <linux/slab.h>
28 #include <linux/i2c.h>
29 #include <linux/ktime.h>
30 #include <linux/delay.h>
31 #include "pmbus.h"
32 
33 enum chips { zl2004, zl2005, zl2006, zl2008, zl2105, zl2106, zl6100, zl6105,
34 	     zl9101, zl9117 };
35 
36 struct zl6100_data {
37 	int id;
38 	ktime_t access;		/* chip access time */
39 	int delay;		/* Delay between chip accesses in uS */
40 	struct pmbus_driver_info info;
41 };
42 
43 #define to_zl6100_data(x)  container_of(x, struct zl6100_data, info)
44 
45 #define ZL6100_MFR_CONFIG		0xd0
46 #define ZL6100_DEVICE_ID		0xe4
47 
48 #define ZL6100_MFR_XTEMP_ENABLE		BIT(7)
49 
50 #define MFR_VMON_OV_FAULT_LIMIT		0xf5
51 #define MFR_VMON_UV_FAULT_LIMIT		0xf6
52 #define MFR_READ_VMON			0xf7
53 
54 #define VMON_UV_WARNING			BIT(5)
55 #define VMON_OV_WARNING			BIT(4)
56 #define VMON_UV_FAULT			BIT(1)
57 #define VMON_OV_FAULT			BIT(0)
58 
59 #define ZL6100_WAIT_TIME		1000	/* uS	*/
60 
61 static ushort delay = ZL6100_WAIT_TIME;
62 module_param(delay, ushort, 0644);
63 MODULE_PARM_DESC(delay, "Delay between chip accesses in uS");
64 
65 /* Convert linear sensor value to milli-units */
66 static long zl6100_l2d(s16 l)
67 {
68 	s16 exponent;
69 	s32 mantissa;
70 	long val;
71 
72 	exponent = l >> 11;
73 	mantissa = ((s16)((l & 0x7ff) << 5)) >> 5;
74 
75 	val = mantissa;
76 
77 	/* scale result to milli-units */
78 	val = val * 1000L;
79 
80 	if (exponent >= 0)
81 		val <<= exponent;
82 	else
83 		val >>= -exponent;
84 
85 	return val;
86 }
87 
88 #define MAX_MANTISSA	(1023 * 1000)
89 #define MIN_MANTISSA	(511 * 1000)
90 
91 static u16 zl6100_d2l(long val)
92 {
93 	s16 exponent = 0, mantissa;
94 	bool negative = false;
95 
96 	/* simple case */
97 	if (val == 0)
98 		return 0;
99 
100 	if (val < 0) {
101 		negative = true;
102 		val = -val;
103 	}
104 
105 	/* Reduce large mantissa until it fits into 10 bit */
106 	while (val >= MAX_MANTISSA && exponent < 15) {
107 		exponent++;
108 		val >>= 1;
109 	}
110 	/* Increase small mantissa to improve precision */
111 	while (val < MIN_MANTISSA && exponent > -15) {
112 		exponent--;
113 		val <<= 1;
114 	}
115 
116 	/* Convert mantissa from milli-units to units */
117 	mantissa = DIV_ROUND_CLOSEST(val, 1000);
118 
119 	/* Ensure that resulting number is within range */
120 	if (mantissa > 0x3ff)
121 		mantissa = 0x3ff;
122 
123 	/* restore sign */
124 	if (negative)
125 		mantissa = -mantissa;
126 
127 	/* Convert to 5 bit exponent, 11 bit mantissa */
128 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
129 }
130 
131 /* Some chips need a delay between accesses */
132 static inline void zl6100_wait(const struct zl6100_data *data)
133 {
134 	if (data->delay) {
135 		s64 delta = ktime_us_delta(ktime_get(), data->access);
136 		if (delta < data->delay)
137 			udelay(data->delay - delta);
138 	}
139 }
140 
141 static int zl6100_read_word_data(struct i2c_client *client, int page, int reg)
142 {
143 	const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
144 	struct zl6100_data *data = to_zl6100_data(info);
145 	int ret, vreg;
146 
147 	if (page > 0)
148 		return -ENXIO;
149 
150 	if (data->id == zl2005) {
151 		/*
152 		 * Limit register detection is not reliable on ZL2005.
153 		 * Make sure registers are not erroneously detected.
154 		 */
155 		switch (reg) {
156 		case PMBUS_VOUT_OV_WARN_LIMIT:
157 		case PMBUS_VOUT_UV_WARN_LIMIT:
158 		case PMBUS_IOUT_OC_WARN_LIMIT:
159 			return -ENXIO;
160 		}
161 	}
162 
163 	switch (reg) {
164 	case PMBUS_VIRT_READ_VMON:
165 		vreg = MFR_READ_VMON;
166 		break;
167 	case PMBUS_VIRT_VMON_OV_WARN_LIMIT:
168 	case PMBUS_VIRT_VMON_OV_FAULT_LIMIT:
169 		vreg = MFR_VMON_OV_FAULT_LIMIT;
170 		break;
171 	case PMBUS_VIRT_VMON_UV_WARN_LIMIT:
172 	case PMBUS_VIRT_VMON_UV_FAULT_LIMIT:
173 		vreg = MFR_VMON_UV_FAULT_LIMIT;
174 		break;
175 	default:
176 		if (reg >= PMBUS_VIRT_BASE)
177 			return -ENXIO;
178 		vreg = reg;
179 		break;
180 	}
181 
182 	zl6100_wait(data);
183 	ret = pmbus_read_word_data(client, page, vreg);
184 	data->access = ktime_get();
185 	if (ret < 0)
186 		return ret;
187 
188 	switch (reg) {
189 	case PMBUS_VIRT_VMON_OV_WARN_LIMIT:
190 		ret = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(ret) * 9, 10));
191 		break;
192 	case PMBUS_VIRT_VMON_UV_WARN_LIMIT:
193 		ret = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(ret) * 11, 10));
194 		break;
195 	}
196 
197 	return ret;
198 }
199 
200 static int zl6100_read_byte_data(struct i2c_client *client, int page, int reg)
201 {
202 	const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
203 	struct zl6100_data *data = to_zl6100_data(info);
204 	int ret, status;
205 
206 	if (page > 0)
207 		return -ENXIO;
208 
209 	zl6100_wait(data);
210 
211 	switch (reg) {
212 	case PMBUS_VIRT_STATUS_VMON:
213 		ret = pmbus_read_byte_data(client, 0,
214 					   PMBUS_STATUS_MFR_SPECIFIC);
215 		if (ret < 0)
216 			break;
217 
218 		status = 0;
219 		if (ret & VMON_UV_WARNING)
220 			status |= PB_VOLTAGE_UV_WARNING;
221 		if (ret & VMON_OV_WARNING)
222 			status |= PB_VOLTAGE_OV_WARNING;
223 		if (ret & VMON_UV_FAULT)
224 			status |= PB_VOLTAGE_UV_FAULT;
225 		if (ret & VMON_OV_FAULT)
226 			status |= PB_VOLTAGE_OV_FAULT;
227 		ret = status;
228 		break;
229 	default:
230 		ret = pmbus_read_byte_data(client, page, reg);
231 		break;
232 	}
233 	data->access = ktime_get();
234 
235 	return ret;
236 }
237 
238 static int zl6100_write_word_data(struct i2c_client *client, int page, int reg,
239 				  u16 word)
240 {
241 	const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
242 	struct zl6100_data *data = to_zl6100_data(info);
243 	int ret, vreg;
244 
245 	if (page > 0)
246 		return -ENXIO;
247 
248 	switch (reg) {
249 	case PMBUS_VIRT_VMON_OV_WARN_LIMIT:
250 		word = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(word) * 10, 9));
251 		vreg = MFR_VMON_OV_FAULT_LIMIT;
252 		pmbus_clear_cache(client);
253 		break;
254 	case PMBUS_VIRT_VMON_OV_FAULT_LIMIT:
255 		vreg = MFR_VMON_OV_FAULT_LIMIT;
256 		pmbus_clear_cache(client);
257 		break;
258 	case PMBUS_VIRT_VMON_UV_WARN_LIMIT:
259 		word = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(word) * 10, 11));
260 		vreg = MFR_VMON_UV_FAULT_LIMIT;
261 		pmbus_clear_cache(client);
262 		break;
263 	case PMBUS_VIRT_VMON_UV_FAULT_LIMIT:
264 		vreg = MFR_VMON_UV_FAULT_LIMIT;
265 		pmbus_clear_cache(client);
266 		break;
267 	default:
268 		if (reg >= PMBUS_VIRT_BASE)
269 			return -ENXIO;
270 		vreg = reg;
271 	}
272 
273 	zl6100_wait(data);
274 	ret = pmbus_write_word_data(client, page, vreg, word);
275 	data->access = ktime_get();
276 
277 	return ret;
278 }
279 
280 static int zl6100_write_byte(struct i2c_client *client, int page, u8 value)
281 {
282 	const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
283 	struct zl6100_data *data = to_zl6100_data(info);
284 	int ret;
285 
286 	if (page > 0)
287 		return -ENXIO;
288 
289 	zl6100_wait(data);
290 	ret = pmbus_write_byte(client, page, value);
291 	data->access = ktime_get();
292 
293 	return ret;
294 }
295 
296 static const struct i2c_device_id zl6100_id[] = {
297 	{"bmr450", zl2005},
298 	{"bmr451", zl2005},
299 	{"bmr462", zl2008},
300 	{"bmr463", zl2008},
301 	{"bmr464", zl2008},
302 	{"zl2004", zl2004},
303 	{"zl2005", zl2005},
304 	{"zl2006", zl2006},
305 	{"zl2008", zl2008},
306 	{"zl2105", zl2105},
307 	{"zl2106", zl2106},
308 	{"zl6100", zl6100},
309 	{"zl6105", zl6105},
310 	{"zl9101", zl9101},
311 	{"zl9117", zl9117},
312 	{ }
313 };
314 MODULE_DEVICE_TABLE(i2c, zl6100_id);
315 
316 static int zl6100_probe(struct i2c_client *client,
317 			const struct i2c_device_id *id)
318 {
319 	int ret;
320 	struct zl6100_data *data;
321 	struct pmbus_driver_info *info;
322 	u8 device_id[I2C_SMBUS_BLOCK_MAX + 1];
323 	const struct i2c_device_id *mid;
324 
325 	if (!i2c_check_functionality(client->adapter,
326 				     I2C_FUNC_SMBUS_READ_WORD_DATA
327 				     | I2C_FUNC_SMBUS_READ_BLOCK_DATA))
328 		return -ENODEV;
329 
330 	ret = i2c_smbus_read_block_data(client, ZL6100_DEVICE_ID,
331 					device_id);
332 	if (ret < 0) {
333 		dev_err(&client->dev, "Failed to read device ID\n");
334 		return ret;
335 	}
336 	device_id[ret] = '\0';
337 	dev_info(&client->dev, "Device ID %s\n", device_id);
338 
339 	mid = NULL;
340 	for (mid = zl6100_id; mid->name[0]; mid++) {
341 		if (!strncasecmp(mid->name, device_id, strlen(mid->name)))
342 			break;
343 	}
344 	if (!mid->name[0]) {
345 		dev_err(&client->dev, "Unsupported device\n");
346 		return -ENODEV;
347 	}
348 	if (id->driver_data != mid->driver_data)
349 		dev_notice(&client->dev,
350 			   "Device mismatch: Configured %s, detected %s\n",
351 			   id->name, mid->name);
352 
353 	data = devm_kzalloc(&client->dev, sizeof(struct zl6100_data),
354 			    GFP_KERNEL);
355 	if (!data)
356 		return -ENOMEM;
357 
358 	data->id = mid->driver_data;
359 
360 	/*
361 	 * According to information from the chip vendor, all currently
362 	 * supported chips are known to require a wait time between I2C
363 	 * accesses.
364 	 */
365 	data->delay = delay;
366 
367 	/*
368 	 * Since there was a direct I2C device access above, wait before
369 	 * accessing the chip again.
370 	 */
371 	data->access = ktime_get();
372 	zl6100_wait(data);
373 
374 	info = &data->info;
375 
376 	info->pages = 1;
377 	info->func[0] = PMBUS_HAVE_VIN | PMBUS_HAVE_STATUS_INPUT
378 	  | PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT
379 	  | PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT
380 	  | PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_TEMP;
381 
382 	/*
383 	 * ZL2004, ZL9101M, and ZL9117M support monitoring an extra voltage
384 	 * (VMON for ZL2004, VDRV for ZL9101M and ZL9117M). Report it as vmon.
385 	 */
386 	if (data->id == zl2004 || data->id == zl9101 || data->id == zl9117)
387 		info->func[0] |= PMBUS_HAVE_VMON | PMBUS_HAVE_STATUS_VMON;
388 
389 	ret = i2c_smbus_read_word_data(client, ZL6100_MFR_CONFIG);
390 	if (ret < 0)
391 		return ret;
392 
393 	if (ret & ZL6100_MFR_XTEMP_ENABLE)
394 		info->func[0] |= PMBUS_HAVE_TEMP2;
395 
396 	data->access = ktime_get();
397 	zl6100_wait(data);
398 
399 	info->read_word_data = zl6100_read_word_data;
400 	info->read_byte_data = zl6100_read_byte_data;
401 	info->write_word_data = zl6100_write_word_data;
402 	info->write_byte = zl6100_write_byte;
403 
404 	return pmbus_do_probe(client, mid, info);
405 }
406 
407 static struct i2c_driver zl6100_driver = {
408 	.driver = {
409 		   .name = "zl6100",
410 		   },
411 	.probe = zl6100_probe,
412 	.remove = pmbus_do_remove,
413 	.id_table = zl6100_id,
414 };
415 
416 module_i2c_driver(zl6100_driver);
417 
418 MODULE_AUTHOR("Guenter Roeck");
419 MODULE_DESCRIPTION("PMBus driver for ZL6100 and compatibles");
420 MODULE_LICENSE("GPL");
421